
Architectural Issues and Solutions in the Development of
Data-Intensive Web Applications

S. Ceri, P.Fraternali

Dipartimento di Elettronica,

Politecnico di Milano, P.za L. Da Vinci 32,

20123 Milano Italy

R. Acerbis, A. Bongio, S. Butti,

F. Ciapessoni, C. Conserva, R. Elli,

C. Greppi, M. Tagliasacchi, G. Toffetti

WebRatio

P.le Gerbetto 6,

22100 Como, Italy

Abstract

A data�intensive Web application is a Web-enabled
software system for the publication and management
of large data collections, typically stored in one or
more database management systems. Data-intensive
Web applications constitute the most diffused class
of applications found on the Web today, and their
industrial relevance is an established fact. As a
consequence, an intense technical and scientific
debate is ongoing on the various aspects of their
implementation, especially on the software
architectures and design process best suited to cope
with the peculiar aspects of a data-intensive Web
application.

The ideal software process should meet two possibly
competing goals: 1) capturing the application
requirements in a formal way, so to incorporate them
in the development lifecycle and derive the software
directly from the functional requirements; 2)
delivering a software architecture that meets the
non-functional requirements of performance,
security, scalability, availability, and maintainability.
Such process should also be amenable to
automation, to let developers concentrate on
functional requirements and optimization, and
delegate the repetitive tasks to software tools.

The goal of this paper is to report on an experience
of applying a novel software development process to
data-intensive Web applications, and to discuss the
problems, design choices, and trade-offs that led to
the conception of WebRatio, an innovative
technology for Web application development.

1 Introduction

Data-intensive Web applications are the predominant kind
of applications found on the Web, and therefore their
effective specification, design, implementation, and
maintenance is crucial; several architectures, design tools,
and implementation practices are being developed to better
serve their needs. In particular, this paper focuses on

WebRatio, a software tool representative of a particular
approach to the development of Web applications, called
the �model-driven approach�, which claims that more and
more effort should be spent on the application modeling,
and re-usable implementations should be automatically or
semi-automatically produced from high-level models.

The distinguishing feature of WebRatio [WebRatio02] is
the adoption of formal graphical languages for the
specification of data intensive Web applications, and the
semi-automatic generation of code from such specifications.
Web applications are specified using the Entity-
Relationship (ER) model for the data requirements, and the
Web Modelling Language (WebML) [CF+02, WebML02]
for the functional requirements.

The supported ER model is quite conventional, with a few
limitations that make the ER schema easier to map onto a
standard relational schema; this standard schema is then
used by the WebRatio implementation as either the schema
of a newly designed database supporting the Web
application, or as a reference for mapping to pre-existing
data sources.

WebML is a visual language for expressing the
hypertextual front-end of a data-intensive Web application,
i.e., the interfaces presented to the users for content
browsing and management. WebML includes primitives for
modelling such aspects as:

• The structuring of the application into different

hypertexts (called site views) targeted to different
user groups or access devices.

• The hierarchical organization of a site view into

areas.

• The pages that constitute the actual application

interface, the content units contained in each page,
with their relationship to the elements of the data
model (entities and relationship)

• The operations and services that can be activated

from the application pages.

• The links that connect pages, content units, and

operations to provide users with suitable
interactions on the browsers (e.g., anchors, radio
buttons, forms for data entry).

• Session-level information and personalization

aspects.

Figure 1 shows an example of WebML hypertext diagram,
in which page are represented as white rectangles, units as
labelled icons inside pages, and links as arrows between
pages or units.

The model of Figure 1 represents a real page taken from the
ACM Digital library Web site, which displays the details of
an ACM TODS volume (Figure 2). The page includes a
data unit (Volume Data) constructed on entity Volume,
which displays the detail of a TODS volume selected in a
previous page, as indicate by the link pointing to the unit,
which implicitly transports the identifier of the volume.

The data unit is associated by a transport link (shown as a
dashed arrow) to a hierarchical index unit, which displays
the volume issues and papers.

The hierarchical index unit receives from the data unit the
identifier of the volume, and constructs the hierarchy of
issues and papers using the entities Issue and Paper, and the
relationship VolumeToIssue and IssueToPaper. The
outgoing link from the index unit points to a separate page
(not shown in Figure 2), where the details of the paper are
published. The page also contains an entry unit, whereby
the user can insert search keywords, to be matched against
the volume papers.

A WebML specification may also contain operations, which
are services callable from within pages, which execute
some processing and then display a result page. WebML

offers several built-in operations, and a mechanism for
adding user-defined content units and operations.

The WebRatio development architecture includes a graphic
interface for editing ER and WebML schemas, and
customisable code generators for transforming ER
specifications into relational table definitions for any JDBC
or ODBC compliant data source, and WebML
specifications into page templates for the Java2EE and
.NET architectures.

The design of the WebRatio development process and tools
has faced a number of challenges, in part inherent to any
CASE environment, in part specific of the Web application
development context.

• The code generator should be based on a modular

software architecture, where each aspect of the
application logic is as isolated as possible. In
particular, the presentation, business, and data
extraction and manipulation logic should remain
separated and be independently evolvable.

• The part of the presentation dealing with the

graphical aspects of the pages (like the overall
page layout, static texts and images, CSS styles,
and so on) and client-side processing (like input
validation) should be factored out of the code
generation process, and editable by a non-
technical graphic designer.

• The data extraction and manipulation queries

should also be factored out of the code generation
process and from the implementation code, so that
the data expert should be able to override the
system-generated queries, both in the design stage
and after the application is deployed.

Volume Page

Volume

Volume data

Issues&Papers

Issue
[VolumeToIssue]

NEST Paper
[PaperToIssue]

Enter keyword

To SearchResults page

To Paper details page

Figure 1 - Example of WebML page specification

• The design and code generation process should

scale to thousands of dynamic page templates and
hundred of thousands database queries. In these
contexts, applying presentation styles and client-
side logic to page templates manually is
unfeasible, and these features should be applied
automatically in a bulk manner.

• The generated code should perform and scale

well, and comply with the requirements of Web
caching architectures, especially those for caching
dynamic page templates.

In the remainder of this paper, we address each of these
problems and the solution adopted in WebRatio; the design
principles that will be discussed are indeed very general, as
they apply to arbitrarily designed Web applications
(including those which are manually coded) and to any Web
development environment supporting a clear separation
between data extraction, business logic, and presentation.

2 Software Architecture for data-intensive
Web Applications

The simplest way of organizing the architecture of a data-
intensive Web application goes under the denomination of
template-based approach. Each page of the application
that publishes dynamic content is mapped to one page
template, which includes the static markup of the page and
server side scripting instructions, which typically perform
three tasks:

• The decoding of the parameters of the HTTP

request.

• The preparation and execution of the database

queries or component calls necessary to retrieve
content or execute operations.

• The generation of the dynamic part of the page

from the database content.

In the template-based approach, each client request is
addressed to one page template, which accomplishes all the
functions required for building the response, possibly
interacting with business components.

The template-based approach is simple to master, because
of the one-to-one mapping between pages and templates,
but suffers from several problems that make it impractical
for large applications:

1. The source code of the page template is
overloaded with too many functions, which are
heterogeneous in nature (request decoding, data
extraction, interaction with business logic, markup
generation).

2. The control logic is scattered through the templates
and hard-wired; each template embeds the URLs
pointing to the other templates callable from that
page, and thus any change in the hypertext
topology or control logic of operations (e.g., to
which page redirect the user in case of operation
failure) requires intervention on the code of the
template.

3. Functions embedded inside templates are not
reusable in other templates.

4. If server-side scripting languages are used, source
code maintenance is problematic, because HTML
markup is mixed with programming instructions.

Figure 2 - A page from the ACM Digital Library modelled in Figure 1

5. Many presentation aspects are hardwired to the
source code of the template, both in the static
HTML and in the programming instructions for
building the dynamic content.

These problems are in part alleviated by the use of server-
side tags instead of server-side scripting languages, as
advocated by the JSP 1.1 and ASP.NET architectures. A
server side tag is an XML tag inserted into the page
template, which hides the presence of a server-side
component for dynamically producing content. The use of
server-side tags cleans up the page template from most
server-side scripting instructions, making the source code
more easily editable by the graphic designer, and
encapsulates into tags frequently used functions, like the
production of markup from the result sets of queries and the
validation of user input, into components that can be reused
in multiple templates. However, server-side tags are not a
panacea: the global control logic of the application remains
hard wired to the templates, and server-side tags still mix
the presentation and data extraction logic.

An improvement to the template-based architecture is
granted by the so-called presentation frameworks, which
are software architectures that apply to the presentation
layer of Web applications the soundest design patterns of
modern software engineering. One of the most powerful
presentation frameworks is the so-called Model-View-

Controller (MVC for short). The MVC is conceived to
better separate and insulate the three essential functions of
an interactive application:

• The business logic of the application (the Model).

• The interface presented to the user (the View).

• The control of the interaction triggered by the

user's actions (the Controller).

In the MVC architecture, the computation is activated by a
user's request for some content or service. The request is
intercepted by the Controller, which is responsible of
deciding which action should be performed for servicing it.
The Controller dispatches the request, in the form of a
�request for action�, to the suitable component of the
Model. The Model incorporates the business logic for
performing the action, and executes such logic, which
updates the state of the application and produces a result to
be communicated to the user. The change in the Model
triggers the most appropriate View, which builds the
presentation of the response. Such presentation typically
embodies interaction objects, whereby the user may pose a
new request and reactivate the computation process.

In the Web context, the original MVC is adapted to take
into account the peculiarity of HTTP as a client-server
protocol. Figure 3 shows the adaptation of the classical
MVC architecture to the Web context, using Java as a
reference platform. The illustrated scheme is sometimes
called MVC 2 architecture.

The emitter of service requests in the MVC 2 architecture is
the Web browser. When the user clicks on a hyperlink in
the HTML page, an HTTP requests is addressed to the
HTTP server, which may route it to the servlet container,
where a program acting as the Controller intercepts it. The
Controller decides the course of action necessary to service
each request. The possible actions are contained in the
Model in the form of object-oriented components
(sometimes called action classes). The Controller maps the
HTTP request to the suitable action, by creating an object of
the action class and calling one of its functions.

Each action class is a Java class wrapping a particular
application function, operating on the state of the
application. Example of actions could be execution of a
database query, the sending of e-mail, or the authentication

HTTP

response

HTTP

request

HTTP

server

Servlet container

Controller

(Servlet)

Model

View

(JSP templates)

Actions

State

objects

Client

(Browser)

Figure 3 - The MVC architecture applied to Web applications

of the user. If the invoked action needs to update the state of
the application, it may create or modify appropriate objects
of the Model, called state objects, which represent the state
of the application. State objects may last just the time
needed for servicing the request, or persist between
consecutive requests; for example, they may store the result
of a data retrieval query, or the trolley items of the user.
After completion, the action communicates the outcome of
execution to the Controller, which decides what to do next.

In the typical flow of control of a Web MVC application,
after an action completes, the Controller invokes a JSP page
template, which is part of the View. The JSP template is
responsible of presenting the updated state of the
application to the user; for doing so, it accesses the state
objects of the Model, where the current state of the
application is stored, and builds the HTML page, which is
sent back to the browser. Examples of views built after the
execution of an action could be the display of the result of a
database query, the notification that e-mail has been sent,
and the home page of the Web site after the successful login
of the user.

3 The MVC architecture of WebRatio

WebRatio adopts an MVC-based organization, in which the
components produced by the code generators fit into a well-
established framework. The key aspect of the WebRatio
architecture is the mapping of the various hypertext
primitives of WebML (pages, content units, and operations)
into the boxes of the MVC 2 architecture. This mapping is
schematically illustrated in Figure 4.

Each WebML page is mapped into four elements: 1) a
page action in the Model, 2) a page service in the business

tier, 3) a JSP template in the View, and 4) a page action
mapping in the Controller's configuration file.

• The page action is an instance of an action class: it

extracts the input from the HTTP request and calls the
page service in the business tier, passing to it the
needed parameters. When the invoked page service
terminates, the page action notifies the Controller of
the outcome of page computation.

• The page service is a business function supporting the

computation of a page. It exposes a single function

computePage(), invoked to carry out the parameter
propagation and unit computation process. The page
service updates the state objects in the Model: at the
end of the page service execution, all the JavaBeans
storing the result of the data retrieval queries of the
page units (called unit beans) are available to the
View.

• The page template in the view computes the HTML

page to be sent to the user, based on the content of the
Model. The page template contains the static HTML
needed to define the layout where the units are
positioned, and custom tags implementing the
rendition of WebML units.

• The action mapping is a declaration placed in the

Controller's configuration file that ties together the
user's request, the page action, and the page view.

Each WebML unit maps into two components of the
MVC2 architecture: a unit service in the business layer, and
a custom tag in the View. Note that units do not contribute
actions in the Model, because the Controller knows only

Business logic

Controller

(Servlet)

Model

Actions

State

objects

Client

(Browser)

Page actions

Operation actions

Form beans

Unit beans

State objects

Configuration file:

- Action mappings
Servlet container

Page services

Unit services

Operation services

Validation services

 Data tier

HTTP

response

HTTP

request

HTTP

server

View

(JSP templates)

HTML +

custom tags

Figure 4 - Mapping WebML concepts to the MVC architecture

about pages, and is unaware of the units contained in them,
which are not exposed as individually callable actions.

• A unit service is a Java class, which is responsible

for computing the unit's content and producing a
collection of unit beans, which are JavaBeans
objects belonging to the Model, holding the
content of each unit. The class encapsulates the
instructions needed to assemble the data retrieval
query, execute it, and package the results into
suitable unit beans.

• In the View, content units map to custom tags

transforming the content stored in the unit beans
into HTML. Such tags could be generic tags taken
from a standard tag library, or WebML-aware tags,
defined on purpose to match the features of
WebML units.

Each WebML or user-defined operation maps into two
components of the MVC2 architecture: an operation service
in the business layer, and an action mapping in the
Controller's configuration file, which dictates the flow of
control after the operation is executed. Note that operations
do not contribute templates to the View, because they do
not directly display content.

The MVC2 architecture of WebRatio solves two of the key
issues of template-based architectures:

• It factors out of the page templates the control

logic, which is centralized in the Controller's
configuration file.

• It separates presentation from business logic, by

associating the former to the View templates, and
the latter to the Model and business classes.

In particular, changing the business logic and the data
retrieval logic no longer impacts the building of the
dynamic markup, as long as the objects used to represent
the application state in the Model maintain their interface.

4 Scaling the software architecture to large
applications

The MVC architecture is a big step forwards in the
direction of facilitating the maintenance of data-intensive
Web applications. However, when the application is very
large, the MVC architecture does not alleviate the problems
associated with the size of the application:

� Every unit and operation requires a dedicated

service in the business tier. If units are many, a very
large number of services must be developed and
maintained. All the services of individual units of
the same kind (for instance, index units or create
units) are very similar, because they differ only for
the details of the data retrieval or update query, and
possibly for the properties of the data bean storing
the query result. However, this similarity is not
exploited to reduce the amount of code to build and
maintain.

� Every page requires a distinct page service. These

services are numerous and all similar, because they
differ only for the parameters fetched from the
HTTP request and for the sequence in which unit
services are invoked, and parameters are passed
from one query to another one. Again, similarities
are not factored out.

� The business services are implemented as

programs executed inside the servlet container.
It would be more appropriate to implement them as
full-fledged business components living in the
application server, using a distributed object
technology like Enterprise JavaBeans.

� The look and feel of the application is hardwired

to the JSP templates. Changing the presentation
style requires manual intervention on a large
number of files. For example, updating the graphic
style of all index units, for instance adding a
mouse-over JavaScript effect, requires locating and
manually updating the relevant mark-up in all
pages.

To avoid the proliferation of page and unit services,
WebRatio exploits genericity, a classical principle of
software design. Unit services can be re-organised
according to the pattern shown in Figure 5.

SQL query N

I/O parameters N

Generic
unit service

Unit

service N

Unit

service 2

SQL query 2

I/O parameters 2

Unit

service 1

SQL query 1

I/O parameters 1 SQL query

I/O parametersSQL query
I/O parameters

Unit descriptor:

Figure 5 - Unit-level services versus generic unit service plus descriptor

For each type of unit, a single generic service is designed,
which factors out the commonalities of unit-specific
services. This generic service is parametric with respect to
the features of individual units, like the SQL query to
perform, the input parameters of such a query, and the
properties of the output data bean produced by the query.
The unit-specific information can be stored in a descriptor
file, for instance written in XML, used at runtime to
instantiate the generic service into a concrete, unit-specific
service.

The same design practice is applied to page services, but in
this case the descriptor associated to an individual page is
more complex, because it describes the topology of the
page units and links, which is needed for computing units in
the proper order and with the correct input parameters.

A second improvement concerns the reusability of the
service in the business layer. In the MVC architecture
described in Figure 4, the business logic components are
implemented as Java classes executed inside the servlet
container. This approach impose several limitations to the
scalability and reusability of the implementation:

� Page and unit services live in the servlet container

and cannot be called by other applications, for
example by a non-Web application needing the
same services. Therefore, non-Web applications do
not share the business logic with Web applications,
and must re-implement it, which introduces
duplications, opens the way to errors and
misalignments, and impairs maintenance.

� Cloning the machine where the servlet container

resides duplicates also all the services of the
application. The number of clones must be decided
statically, and cannot be adapted at runtime. If the
traffic of a certain application reduces, the objects
implementing its services remain in main memory
and occupy resources, potentially impacting other
applications running on the same server.

A better software organization is obtained by splitting the
business logic into the servlet engine and an application
server, as shown in Figure 6. In particular, the role of the
Model can be shared between the action classes living in
the servlet container and business components
implementing the page and unit services, deployed in the
application server. In this case, the action classes call the
appropriate business objects, which implement the actual
application functions.

Figure 6 shows a concrete realization of the application
server architecture, fitting the Java2EE platform. In this
context, the business components are implemented as
Enterprise JavaBeans (EJB), an open standard for
building server-side distributed components in the Java
programming language. EJBs are deployed into the
application server, which is called EJB container, and can
be accessed by Web applications and other enterprise
applications.

5 Managing presentation

Another fundamental issue in the development of large
applications is the reduction of the effort necessary for
updating the look and feel of the application across a large
number of pages. Dealing with presentation requires
addressing two distinct concerns, graphic properties and
layout.

The effective management of graphic properties requires
some care in the use of HTML: graphic properties should
not be coded as tag attributes in the HTML mark-up, but
should be factored out into Cascading Style Sheets, stored
in separate files. A good practice in the definition of
Cascading Style Sheets for WebML applications is to
leverage the conceptual model to modularise the CSS rules.
A set of rules can be designed for each WebML unit, by
identifying the different graphic elements needed to present
a certain kind of unit (labels of various kinds, cell

Controller

(Servlet)

Model

View

(JSP with Java

tags)

Action

classes

State

objects

State objects

(JavaBeans)

Configuration

file

Application server

Business logic

(Enterprise Java Beans)

 Data tier

HTTP

response

HTTP

request

HTTP

server
Client

(Browser)

Servlet container

Page EJBs

Unit EJBs

Operation EJBs

Figure 6 - The MVC 2 architecture embedded in the application server architecture

backgrounds, and so on) and assigning to each element the
proper graphic attributes using CSS.

Factoring out the layout from the JSP template of a page is
more difficult, but can be done. An extremely effective
technique exploits XSLT for defining layout rules for pages
and units. The fundamental idea is to define the layout of
the page and of the different kinds of units separately from
the JSP templates, as illustrated in Figure 7:

� Producing a page template skeleton, which includes

all the custom tags corresponding to the units of the
page, but only the minimal HTML mark-up needed
to define the layout grid of the page and the
position of the various units in such a grid.

� Using XSLT presentation rules for transforming the

template skeleton into the final page template,
embodying the real presentation mark-up.

There are two kinds of XSLT rules: page rules and unit
rules.

• Page rules match the outermost part of the skeleton's

layout (for example, the top-level HTML table) and
transform it into the actual grid of the page, which may
include multiple frames, images, static texts, and other
kinds of embellishments. For facilitating the writing of
page rules, page layouts could be classified into general
categories (for instance, multi-frame pages, two-
columns pages, three-columns pages, and so on), and
different rule sets could be designed for each category
of layout.

• Unit rules match a class of units (for instance, index

units, or data units) and produce the markup for their
presentation. The produced markup includes the static
HTML for laying out the content of the unit, the
custom tags that actually produce the dynamic content
of the unit from the unit beans, and the CSS attributes
defining the unit look & feel.

A further benefit of presentation management with XSLT
lays in the possibility of applying the presentation rules
either at compile time or at runtime:

• Applying the rules at compile time yields a set of

page templates embodying the final look and feel
of the application; this approach is more efficient,
because no template transformation is required at
runtime.

• Presentation rules can be applied also at runtime,

by publishing in the application server the template
skeletons and transforming them on the fly, when
the HTTP request arrives. This approach is more
expensive in terms of execution time, because
XSLT processing takes place at runtime, but is
more flexible and may be very effective for multi-
device applications. Different XSL rules can be
designed addressing the presentation requirements
of alternative devices; then, the most appropriate
rules can be dynamically applied at runtime, based
on the user agent declared in the HTTP request. In
this way, the actual pages seen by the user have a
presentation dynamically adapted to the access
device, and the template skeletons plus the
different XSLT rules serve the needs of a broad
spectrum of access devices.

6 Optimisation and caching

A difficult aspect of automatic code generation is
addressing performance optimization, an area where no
software tool can replace human expertise. The architecture
of WebRatio addresses these issues in a pragmatic way:
rather than attempting complex optimizations, the code
generator lets developers integrate their own optimized
code in the software generation process. Developers can
force the use of their code in two ways:

• By customizing the XML descriptor of units,

where the data access queries produced by the
code generator are stored. Replacing the
automatically generated query with an optimized
one and marking the descriptor as optimized forces
the code generator to use the provided query.

Page template skeleton

<html>
<body>

<table>
 <tr><td>

 <webml:dataUnit>
 <webml:attribute>
 </webml:dataUnit>

 </td></tr>
</table>

</body>
</html>

Page template

<html>
<body style= ..>

<table border=..>
 <tr><td align= ..>

 <webml:dataUnit>
 <table> .. </table>
 </webml:dataUnit>

 </td></tr>
</table>

</body>
</html>

Page layout rules

Unit layout rules

Figure 7 - Factoring out page layout rules using XSLT

• By customizing the unit service: each descriptor

refers to the business component to use for filling
the content of a unit; this component can be
completely overridden by a user-supplied one,
which may implement any required optimization
policy.

Another subtle aspect of the MVC2 architecture applied to
Web application is its relationship with Web caching
architectures, which are a low-cost solution frequently used
by developers to down-scale the server-side hardware
necessary for meeting the performance requirements. First-
generation caching solutions cached entire pages, and were
inadequate for complex interactive and personalized Web
applications, with pages composed of different content
elements with different caching requirements. Last-
generation cache technologies, like the Edge Side Include
(ESI) initiative [ESI], apply more sophisticated caching
strategies, based on the capability of marking fragments of
the page template, which can be cached individually and
with different policies.

However, the MVC architecture partly reduces the benefits
of template-level caching, because the HTTP request does
not invoke the page template directly, but an action class,
which performs all the costly data queries before the page
template is parsed and executed. In other words, caching
fragments of the page template may spare only the
computation of markup from query results, not the
execution of the data extraction queries.

WebRatio solves this issue by adopting a two-level cache
architecture: on one side, developers can use their favorite
template caching product, for instance an ESI compliant
one; in addition, developers can tag any WebML content
unit in the conceptual model of the application as cached,
and specify the associate cache invalidation policy. Then,
WebRatio caches the data beans produced by the action
invocations, which typically include the result of data
access queries, and make them reusable by multiple
requests. Moreover, since a conceptual model of the
application is available, which clearly exposes the Entity or
Relationship on which the content of a unit depends, and
the operations that may act on such content, the
implementation of operations automatically invalidates the
affected cached objects, sparing to the developer the need
of managing a business-tier cache in his application code.

7 Evaluation

WebRatio demonstrates the feasibility of applying CASE
tools and automatic code generation to data intensive Web
applications, preserving the peculiar aspect of Web
development, like the production of high-quality
presentation and the integration with state-of-the-art
presentation frameworks and Web caches, and granting the
scale-up to very large applications.

The interesting aspect of this experience has been the
beneficial interplay of modeling and architectural issues.
The positive results achieved in the development of

applications can be ascribed both to the use of a high-level
modeling language and to the careful definition of the
software architecture.

• Having a high-level, yet formal language, as the

starting point of application development permits
one to exploit all the advantages of sophisticated
software architectures, without incurring into the
effort of managing the detailed and repetitive
aspects of implementation. Just as an example, in
the MCV architecture the configuration file of the
Controller, which centralizes the control logic of
the application, quickly becomes unmanageable
when the application size increase; in WebRatio, it
is automatically generated from the topology of the
hypertext in the WebML diagram. The developer
re-links the pages in the WebML diagram and the
code generator re-builds the new configuration
file.

• Implementing the tool on different software

architectures helped us in clarifying the deep
meaning of each modeling construct, and
achieving that critical mix of abstractness and
concreteness, which is necessary to ensure that the
conceptual model is indeed conceptual, but at the
same time can be implemented efficiently. In
particular, the porting WebML on the MVC
architecture, which was performed during the first
quarter of 2002, prompted a revision of several
language features and helped to clarify the
semantics of the core WebML units and of the
different ways in which they can be linked. After
the porting, and as an indirect advantage of such
experience, we have added to WebRatio the notion
of �plug-in units�, i.e. of new components, which
can be easily plugged into the design and runtime
environment, by providing their graphical icon,
their unit service and rendition tags and the XSL
rules for building their descriptors. Plug-in units
are being used for adding to WebRatio content and
operation units interacting with Web services and
implementing workflow functionalities.

A special mention is deserved by the management of
presentation, which has always been considered a killer of
any attempt of automating the production of Web front-
ends. We think that WebRatio pushed the solution to this
problem further ahead, demonstrating that automatic
implementation and high-quality interfaces are not
incompatible goals.

The use of CSS and XSLT for managing the presentation
features of a large application enforces a sound
development workflow, which fosters a healthy distinction
of responsibilities in the development team:

• The graphic designer establishes the

categories of page layouts, writes HTML
mock-ups for each class of page layout, and
produces HTML mock-ups for the different

kinds of units. He defines �examples of
presentation� and need not to worry about the
actual coding of units or pages.

• The XSLT programmer transforms the page

and unit mock-ups created by the graphic
designer into XSLT style sheets. This activity
is not difficult, because XSLT has an XML-
like syntax, which blends well with the syntax
of the HTML mock-ups. The XSLT
programmer needs only to understand the
structure of the custom tags representing the
different kinds of units, and may ignore the
way in which such tags are coded.

• The application modeller defines the

application pages and the units in each page,
and produces the template skeletons from the
WebML model of the page, which is quite a
trivial task.

• The programmer implements the custom tags

and the business services behind them.

8 Experience

The WebRatio technology is in use since October 2000 and
has been applied to several industrial applications. As an
illustrative case, we present the results of an application
developed for Acer Corporation, called Acer-Euro. This
application1 serves the customers and internal personnel of
the 21 national subsidiaries of the Acer European branch,
by organizing, collecting, managing and publishing on the
Web content about Acer products. Acer-Euro addresses
three categories of users: customers in the various nations,
who are offered a mix of centrally administered data, for
example product specifications and list prices, and locally
produced data, for instance country-specific news and
events; product managers, who verify and update data about
the products; and marketing and communication managers,
who administer marketing materials, like news and event
lists. The Acer-Euro application is integrated with an
extranet for managing the product distribution channel. The
integrated application features 22 site views, 556 page
templates, and 3068 units, for a total of over 3000 SQL
queries.

All the page templates of the 22 site views have been
automatically generated with WebRatio. Overall, less than
5% of the template source code and SQL queries needed
manual retouching, essentially for optimizing query
execution time or page presentation.

The MVC presentation framework with generic services has
greatly reduced the code to maintain. A conventional MVC
implementation would requires 556 Java classes for page

1 The public part of the Acer-Euro application, i.e., one of
the 22 developed site views, is reachable from
http://www.acer-euro.com . The remaining site views are
accessible only through the corporate VPN.

services and 3068 Java classes for unit services. Using
generic services and XML descriptors, only one generic
page service is required (accompanied by 556 page
descriptors, encoded as XML files) and 11 unit services (for
the basic WebML units: data, index, multidata, multi-
choice, scroller, entry, create, delete, modify, connect,
disconnect), accompanied by 3068 unit descriptors. For
each unit, developers can optimize the data extraction query
working on the XML descriptor, and deploying the
optimized version without interrupting the service.

Another area of substantial benefit is presentation
management, where factoring out presentation into CSS and
XSL rules has granted a substantial reduction of the
presentation management effort: for all the 556 pages the
look & feel has been produced by only three XSL style
sheets (one for the B2C site views, one for the B2B site
views, and one for the internal content management site
views). Less than 5% of the HTML code produced by the
XSL style has been retouched manually to improve the
rendition.

9 Related Work

The MVC software architecture was introduced in
[GHJV95]; its specific implementation for the Web context,
the so-called MVC 2 architecture, is discussed in several
textbooks and technical articles, including [ACM01,
Davis01]. An open source implementation of the MVC 2
architecture can be found in [Apache02], together with
many technical resources for developing Web applications.
Architectural patterns for Web applications implemented in
the Java 2 Enterprise Edition platform are discussed in the
section of the Sun's Web site blueprint applications [Sun-
BluePrint02]. The Enterprise JavaBeans API are specified
in [Sun-J2ee02], together with tutorials and technical
papers.

The development of Web sites with a model-driven
approach has been specifically addressed by two important
research projects, namely Araneus [AMM98] and Strudel
[FFKLS98]. Both these methods allow the designer to
separately define the site's structure and content. In the
former, the Entity-Relationship model is used to describe
the data structure, whereas a logical model called Araneus
Data Model (ADM) is proposed to describe the site
structure. A page scheme in ADM may include both atomic
attributes (a text, an image, and so on) of a single object,
similar to the WebML concept of data unit, and complex
nested attributes representing sets of objects, similar to the
WebML concept of index. A site is defined as a set of
linked page-schemes. In Strudel, both the schema and the
content of a site are described by means of queries over a
data model for semi-structured information. Web sites are
defined in a declarative way, by writing one or more queries
over the internal representation of data, using the Strudel
query language (StruQL). Some commercial tools
[Hyperwawe98, Oracle02] provide a hypertext conceptual
model, typically based on an extension of the Entity-
Relationship model.

More information on WebML is available on
www.webml.org [WebML02]; more on WebRatio on
www.webratio.com [WebRatio02].

10 Conclusions

This paper has discussed an advanced architecture for
deploying Web applications onto a Model-View-Controller
framework, starting from high-level specifications based on
the ER and WebML languages. The illustrated architecture
is implemented in WebRatio, a commercial CASE tool for
the automatic generation of data-intensive Web
applications; this approach has been discussed in the
context of the J2EE platform, but is very general, and can
be used for implementing Web applications of arbitrary
nature. We have shown the benefits of the adopted
solutions, especially for what concerns the modularisation
of the application code, the maintainability of the different
aspects of the application, and the management of
presentation. These benefits become more and more
relevant as the application size increases.

11 References

[ACM01] D Alur, J Crupi, D Malks. Core J2EE Patterns:
Best Practices and Design Strategies. Prentice Hall, 2001.

[Apache02] http://jakarta.apache.org/struts, 2002.

[AMM98] P. Atzeni, G. Mecca, P. Merialdo, A. Masci, G.
Sindoni. The Araneus Web-Base Management System,
Proc. Int. Conf. ACM-SIGMOD 1998, Seattle, USA , June
1998, pp. 544-546.

[CFP99] S. Ceri, P. Fraternali, S. Paraboschi. Design
Principles for Data-Intensive Web Sites. ACM-SIGMOD
Record 28(1), pp. 84-89, 1999.

[CFM02] S. Ceri, P. Fraternali, M. Matera. Conceptual
modeling of data-intensive Web applications. IEEE-
Internet Computing, 6(4), July-August 2002, pp. 20-30.

[CF+02] S. Ceri, P. Fraternali, A. Bongio, S. Comai, M.
Brambilla, M. Matera. Building Data-Intensive Web
Applications, Morgan-Kaufmann, to appear (winter 2002).

[Davis01] M. Davis. Struts, an open-source MVC
implementation. February 2001, http://www-
106.ibm.com/developerworks/library/j-struts/?n-j-
2151,2001.

[FFKLS98] M. F. Fernandez, D. Florescu, J. Kang, A. Y.
Levy, and D. Suciu. Overvew of Strudel - A Web-Site
Management System. Networking and Information Systems
1(1), pp. 115-140, 1998.

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissedes.
Design Patterns - Elements of Reusable Object Oriented
Software, Addison Wesley, 1995.

[Hyperwave98] Hyperwave Information Management.
Hyperwave User's Guide, Version 4.0. Munich, Germany,
1998.

[Oracle02] Oracle. Oracle9i Designer: Technical Overview.
http://www.oracle.com, 2002.

[RAJ01] E. Roman, S. Ambler, T. Jewell. Mastering
Enterprise JavaBeans (2nd edition). John Wiley & Sons,
2001.

[Sun-Blueprint02]
http://java.sun.com/blueprints/patterns/j2ee_patterns/index.
html, 2002 .

[Sun-J2ee02] http://java.sun.com/j2ee, 2002.

[WebRatio02] WebRatio Site Development Studio,
www.webratio.com, 2002.

[WebML02] WebML Web Site, www.webml.org, 2002.

