
Towards High Performance Peer-to-Peer Content and
Resource Sharing Systems

Peter Triantafillou

Dept. of Computer
Engineering and

Informatics,
University of Patras,

Patras, Greece

Chrysanni Xiruhaki

Dept. of Electronic and
Computer Engineering,
Technical University

of Crete,
Chania, Greece

Manolis Koubarakis

Dept. of Electronic and
Computer Engineering,
Technical University

of Crete,
Chania, Greece

Nikolaos Ntarmos

Dept. of Computer
Engineering and

Informatics,
University of Patras,

Patras, Greece

Abstract
Peer-to-peer sharing systems are becoming
increasingly popular and an exciting new class of
innovative, internet-based data management
systems. In these systems, users contribute their
own resources (processing units and storage
devices) and content (i.e., documents) to the P2P
community. We focus on the management of
content and resources in such systems. Our goal
is to harness all available resources in the P2P
network so that the users can access all available
content efficiently. Efficiency is taken both from
(i) the point of view of the system, in that we
strive to ensure fair load distribution among all
peer nodes, and (ii) from the point of view of the
users, in that we strive to ensure low user-request
response times.
We propose a novel architecture for this new
class of applications, which differs drastically
from what is either found currently in existing
products or proposed in academia. We contribute
and study novel solutions that achieve our goals,
while at the same time addressing the formidable
challenges due to the autonomy of peers, their
heterogeneous processing and storage capacities,
their different content contributions, the huge
system scale, and the highly dynamic system
environment.

1 Introduction
The client-server model has been the dominant model for
constructing distributed systems and services and the
simplicity of its concept has played a key role in the
successful commercial deployment of distributed
computing for more than a decade. The emergence of
internet computing and applications, however, have made
prominent some of the model’s inherent weaknesses: the
requirement of central control of information and
processing at specialized computing nodes (i.e., the
servers) is too stringent and limiting for a variety of
rapidly emerging internet computing application classes.
Internet content sharing systems are an example of
systems supporting such an application class, which has
become very popular with systems like Napster [20],
Gnutella [13], KaZaa [18], Audio Galaxy [4], etc.

In general, content sharing systems consist of a
(potentially very large) number of computing nodes,
offering (computing and storage) resources and content
(“documents”) to the community. Thus, nodes belonging
to users may contribute content to the rest of the
community and, in addition, may permit the use of their
own resources to store content contributed by others and
allow access to it from other community members. Given
these characteristics, the central control of information at
special nodes is undesirable in order to avoid central
points of failure and performance bottlenecks, to preserve
the anonymity of users accessing content and services,
and to fully utilize the available resources contributed by
all member nodes. As a result, the peer-to-peer (P2P)
paradigm for architecting distributed systems is recently
becoming increasingly popular. P2P systems consist of a
set of peers, which are nodes of equal stature, which have
autonomy, and which can collaborate with each other,
pulling together their resources, in order to either obtain
services or jointly tackle large computing jobs.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, requires a fee and/or special permission from
the Endowment
Proceedings of the 2003 CIDR Conference

1.1 Problem Definition

Our Goals
Our goal with this research is to ensure the high
performance of the system through the proper exploitation
of all available resources and the efficient management of
content. Efficiency is interpreted both (i) from the
system’s point of view and will be ensured through the
fair load distribution across all peers in the system, and
(ii) from a user’s point of view, by facilitating short
response times to user requests. Fair load distribution in
our setting implies that we ensure load balancing, while
taking into account the heterogeneity of the contributed
resources by the different peers.

In addition to the obvious high usefulness of achieving
these goals, it should be stressed that achieving fair load
distribution is of fundamental importance in a P2P
system, given the equal stature of the nodes, and that low
response times is one of the main promises inherent in the
peer-to-peer paradigm.

The Challenges
Ensuring the efficiency in P2P content sharing systems is
a formidable task. Having autonomous nodes of equal
stature introduces the need of complex distributed
coordination algorithms. Furthermore, the system should
be expected to scale to hundreds of thousands of nodes
and millions of documents. In addition, different nodes
make different content contributions (e.g., from no
contribution at all, to contributing several documents) and
offer/possess heterogeneous processing and storage
capacities. Finally, the system may operate in a highly
dynamic environment in which the popularity of the
stored content varies with time, nodes enter and leave the
system at will, and content can be added and deleted at
any time. These facts significantly raise the level of
complexity involved in the goal of managing content and
all available resources so as to provide efficient access to
the stored content.

1.2 An Overview of our Approach

We assume that the content in the system has (an initially
static and) known popularity1, with document popularities
following the Zipf distribution, as is the case for Web
objects [19, 31] and existing popular P2P systems [17].
The key elements of the proposed architecture are that:
1. We form groups of documents. The document groups

can be defined for example using hashing functions
on document ids, or they can be defined using more
elaborate approaches: for example, assuming that the
contributed documents are accompanied by keywords

1 Initial popularities of documents can fairly easily be estimated in most
applications. For example, music file popularities follow their position in
popular charts; the popularities of book files in library applications can
be estimated using check-out information at conventional libraries;
popularities of video files can be estimated by information at video
rental stores, etc.

characterizing their semantic content, we can utilize
tools (e.g., [27, 5, 32]) that can classify the
documents, given their keywords, into semantic
categories. (Hereafter, for simplicity we will describe
our architecture using document semantic categories.
However, it should be clear that any other document
grouping is equally acceptable).

2. We form clusters of peers (nodes), based on the
semantic categories of the documents contributed by
them.

3. Given this, our load balancing task is then viewed as
a two level problem: First, we ensure load balancing
across the peer clusters (inter-cluster load balancing)
through the appropriate assignment of the document
categories to the clusters; second, we ensure the load
balancing among the peers that belong in the same
cluster (intra-cluster load balancing), for all clusters.

4. Finally, our intra-cluster load balancing and response
time goals are achieved through the maintenance and
exploitation of metadata describing the association
between peer clusters and document categories,
and/or the use of routing indices, as proposed in the
literature.

The maximum number of clusters in the system is
tunable and predefined during the bootstrap of the system,
while the number of document categories may expand at
will. This means that a document category exists only
when there are published documents associated with it.
On the other hand, since the maximum number of clusters
is constant during the lifetime of the system, we can
assume that all clusters are created empty during the
bootstrap phase and are dynamically populated with
document categories over time. We should note here that
peer clusters partition the domain of document categories,
so that every category belongs to only one cluster.
However, it is possible for a cluster to exist independently
of its association to document categories (this could
happen, for example, when the number of existing
categories is smaller than the maximum number of
clusters).

1.3 The Contributions
To our knowledge this is the first work that addresses the
problem of harnessing all available resources contributed
by the peers so to ensure efficiency of operation in this
exciting new application area. Our main contributions are:
1. A radically different proposal for architecting P2P

systems. Our proposed architecture imposes a logical
system structure based on the concepts of document
categories, node clustering, and their associations.

2. A formal description of the problem of inter-cluster
load balancing and its solution. We utilize the
fairness index of [25] as a novel metric for load
balancing in our context. We show that a greedy
algorithm achieves very good to excellent inter-
cluster load balancing across a wide range of
scenarios. We also present additional mechanisms

that can facilitate short response times and intra-
cluster load balancing.

3. A study of the robustness of our solution to the
dynamics of peers and content (omitted for space
reasons), and

4. The mechanism consisting of the additional
architecture, algorithms, and protocols, which
accommodate the dynamics of peers and content,
maintaining the system’s efficiency on the fly.

We offer evidence that show that our solution achieves
our performance goals and is robust with respect to
different distributions of the popularity of document
categories, varying skew of access to documents, different
scales (with respect to the number of documents, the
number of nodes, the number of categories, and to the
number of clusters), differing content contributions by
nodes, differing node processing and storage capacities,
and with respect to the dynamics of the environment.

2. Related Work
The problem of fair load distribution for P2P sharing
systems has not been addressed extensively by related
research and is an open problem.

Recent work in P2P systems, like the overlay
networks that have been designed to facilitate the
development of P2P applications, (e.g., Tapestry [8],
Pastry [3], CAN [28], and Chord [15]), focus only on the
problems of query routing and object location to
guarantee that if there exist results relevant to a query,
these results will be returned. In these systems load
balancing is addressed in a rather naive way, by simply
resorting to the uniformity of the hash function utilized.

The work in [29] is an exception to the above rule,
addressing the problem of load balancing in order to face
“flash crowds”. However, they assume a static system
architecture and global knowledge. Our work aims to
solve a much more general problem, as stated above.

Typical systems such as Freenet [14] and Gnutella
[13] might face serious difficulties when it comes to
ensuring low response times, since requests are passed
from peer to peer, until either one is found that stores the
desired document(s), or a user-determined “number-of-
hops” count is reached and the system gives up. Our
architecture will not burden the user with such difficult
decisions and will ensure a response time within only a
few hops for the common case and an upper bound on the
number of hops for the worst case.

The problem of the efficient search in a P2P network
is also addressed in [1] by introducing the concept of
routing indices, which allow nodes to forward queries to
their neighbors that are more likely to have answers. Also
[7] studies the same problem and demonstrates that some
simple search algorithms from AI can offer big benefits
when compared with the strategies of Gnutella and
Freenet. The search protocols of [1, 7] can be applied to
our architecture, as well. In [6] an analysis of “hybrid”

P2P systems (i.e., P2P systems where some sort of
centralized control still exists) is presented. [6] develops
and validates an analytical model and uses it to compare
various hybrid P2P architectures.

Other related work in P2P systems is the system
Gridella [17] and the project Piazza [30]. Gridella is a
system that goes beyond the well-known Gnutella system
and provides efficient and robust search by relying on a
sophisticated data structure called P-Grid. Piazza is an
ambitious project at the University of Washington with
the goal of using successful ideas from database
technology in the field of P2P computing.

Another strand of project DIET, under which this
work is carried out, studies P2P systems from the point of
view of autonomous agents, built using a bottom-up and
ecosystem-inspired approach [23, 9]. SWAN is a recent
P2P lookup system implemented using the agent platform
developed in DIET [12]. The system Anthill, presented in
[22], also attempts to build P2P systems using ideas from
nature-inspired computing (in particular, ant colonies
[11]). So far a file sharing and a load balancing
application have been built using Anthill [22, 2].

3. System Architecture
The basic (technological and “philosophical”) principle of
our approach that makes it radically different compared to
other approaches towards a P2P system architecture is
that, in order to achieve high performance in such a
system, we need to impose a logical system structure,
which can facilitate the achievement of our performance
goals. This structure we propose consists of the peer
clusters, the document categories, and their associations.
The challenge is to ensure that this structure respects the
autonomy of peers, the heterogeneity of their
characteristics, and that the overall solution successfully
addresses the difficulties presented earlier and facilitates
the achievement of our performance goals.

A fact that complicates our task is that there is no
consensus in our community to resolve the debate for the
most appropriate overall architecture for P2P systems.
Some favor pure peer-to-peer, as opposed to hybrid peer-
to-peer architectures in which typically there exists a set
of super peers, which are organized in their own P2P
network and are burdened with additional chores, such as
maintaining metadata and key knowledge for the proper
system functioning [6]. Where this dilemma arises in the
presentation of our architecture, we will be discussing
solutions that fit both environments.

We first present the architectural organization of our
architecture, assuming a static system for reasons of
simplicity. In Section 5 we deal with the dynamic
behavior of the system.

3.1 Peer Clustering and Document Categories

The nodes of the system will be logically organized into a
set C of clusters. All nodes belonging to the same cluster

will be able to either serve all the retrieval requests for
documents contributed by all the nodes of that cluster (for
example, in the case the nodes can store all documents),
or find another node that can. The latter can be achieved
by having each node, or a distinct set of super peer nodes,
store cluster metadata, describing which documents are
stored by which cluster nodes. In the following we will
assume this latter design choice and discuss the type of
metadata needed and its use. Alternatively, if pure P2P
solutions are favored, the same goal can be achieved
using routing indices2 at the cluster’s nodes, routing
requests for documents/categories to the proper cluster
node(s).

In the proposed architecture, clusters of nodes form
storage collectives/repositories, and each cluster can store
and thus serve requests for documents belonging to one or
more document categories. Each category may belong to
only one cluster. The nodes are assigned to clusters
according to the categories of the documents they
contribute. So, depending on how the categories are
assigned to clusters, a node may belong to more than one
cluster if it contributes documents associated with more
than one category.

3.2 Metadata description

Each node maintains data structures in order to be able to
communicate with other nodes and exchange information
or find other nodes that hold desired information. Each
node keeps the following metadata structures:
• The Document Table (DT), mapping ids of

documents stored locally to document categories.
• The Document Category Routing Table (DCRT),

mapping each document category to a cluster-id,
where cluster-ids are pseudorandom numbers
computed during the bootstrapping of the system.

• The Node Routing Table (NRT), mapping each
cluster-id to a list of node-ids (pseudorandom
numbers computed during the bootstrap of each
node) of nodes belonging to the cluster.
For the moment, we assume that each document

belongs to a single category. We will eliminate this
assumption later.

3.3 Query Processing

Let us now give an example of how queries are processed
in our system.

User queries Q are submitted to the system through
the users’ nodes and are of the form [(k1, k2 … kn), m, idQ],
where ki are user-supplied keywords, m is the number of
desired results, defaulting to and bounded by a system-
wide value (e.g., 50 results), and idQ is a pseudorandom

2 For routing indices and their use for a similar goal refer
to [1].

number, uniquely identifying each query. Query
processing is a two-step procedure:
1. The requesting node does the following:

a. It maps the keywords (k1, k2 … kn) to one or more
semantic categories, si, using appropriate
categorization tools (e.g, [27, 5, 32] - see section
1.2, item (1)).

b. Through its DCRT it finds the clusters of nodes
with the semantic categories, si.

c. It chooses a random node ni from each associated
cluster, using its NRT, and sends the query to it.
If no live node exists, the query will fail. The
random selection of nodes can ensure that cluster
nodes get an equal share of the workload
targeting their cluster.

2. The target node ni does the following:
a. It matches the categories of the query against the

semantic categories of its documents and finds a
number a of resulting documents matching the
query.

b. If the number a of resulting documents is less
than m, ni forwards the query to all of its known
neighbors in the cluster, decreasing m by a. This
will be recursively repeated until the desired
number of document(s) is found or all reachable
nodes of the cluster have been queried. Loops in
query forwarding can be easily detected and
broken using idQ.

c. The final result set R is returned to the requesting
node by node ni.

For the time being, we assume that the metadata data
structures of nodes are up to date.

Note that, as a result of our architecture, in the worst
case the response time will be bounded from above by the
number of nodes in the larger cluster to participate. Thus,
with this approach we can see that both (i) the load is
balanced within a cluster and (ii) guarantees can be given
to users with respect to worst-case response times.

4. Fair Load Distribution
In order to ensure the high performance of the system, we
have to avoid bottlenecks and balance the load across all
system nodes. Load in our case is the number of retrieval
requests served by a node of the system. This goal can be
partly achieved by associating the document categories
with clusters of nodes, in a manner that ensures a fair
distribution of the document-category popularities to the
clusters of nodes. We refer to this property as inter-cluster
load balancing.

With the term intra-cluster load balancing we mean
that, for each cluster, all the nodes that belong to it receive
on average (approximately) the same number of requests
from the total requests that target this cluster. With the
term global load balancing we mean that the average load
of all the nodes that belong to the system must be as
uniform as possible. Global load balancing is achieved by

independently achieving inter-cluster and intra-cluster
load balancing.

In the following we assume that all the nodes of a
cluster have enough storage capacity in order to store all
the documents of the cluster. In Section 4.3 we eliminate
this assumption. Thus, when a query reaches any node of
the cluster, it will be answered locally from the queried
node. So, if the query is initially forwarded to a randomly
chosen node of the cluster, then the load will be balanced
among the nodes of the cluster as described in Section
3.3. So, intra-cluster load balancing will be achieved and
henceforth we concentrate on the problem of inter-cluster
load balancing.

4.1 Formal Problem Formulation

We now formally define the problem of inter-cluster load
balancing. In order to gain insight on the complexity of
the problem and leverage known solutions, we first make
a few simplifying assumptions which lead us to the NP-
Completeness result and to known heuristics for the
problem. Later, we form our solution by extending known
heuristics and drop the simplifying assumptions.

As we already said above, we initially assume that
peers have the same processing and storage capacities,
and enough storage space to store all documents of the
categories to which they contribute. We will do away with
all these assumptions in Section 4.3.

We denote with |A| the number of elements of the set
A. Our system will store a set D of sharable documents.
The |D| documents are contributed by a set N of
peers/nodes. Each node in the system is a user’s
computer. Nodes can contribute more than one document
to the system. The |D| sharable documents of the system
belong to a set S of categories. This is captured by a
function f: D → S that maps each document to one or
more document categories. Each document d is associated
with a popularity, []10∈ ,p(d) , which gives us the
probability that a user will want to retrieve d. We will
denote with p(s) the total popularity of semantic category
s. This popularity is equal to the sum of the popularities of
the documents it consists of. In other words,

∑
=

=
})(:{

)()(
sdfd

dpsp . If a document belongs to more

than one semantic category, its popularity is evenly
distributed among them. We denote with D(n) and S(n)
the set of all the documents and categories that are stored
by node n. We will denote with Di(n) the set of documents
whose categories are assigned in cluster ci and are stored
in node n and Si(n) denotes the subset of S(n) that is
assigned to cluster ci. Each node n has a popularity

[]10∈ ,p(n) that is equal to the sum of the popularities of

its documents. Formally, ∑
∈

=
)(

)()(
nDd

dpnp . Finally, let

Si be the set of all semantic categories belonging to cluster
I, and ∑

∈

=
iSs

i spSp)()(.

4.2 Complexity Results

We now define the inter-cluster load balancing problem
(ICLB) formally.
The Decision Problem ICLB
Instance: Assume a set N of nodes and a set D of
documents contributed by the nodes in N. Each document

Dd ∈ has an associated category f(d) from a set of
categories S and a popularity []10∈ ,p(d) . For simplicity
reasons we assume that each node contributes documents
belonging to a single semantic category, that all nodes
have the same processing and storage capacity, and that
each document may belong to a single semantic category.
Question: Is there a partition of N into k clusters N1, N2,
…, Nk such that the following two constraints are
satisfied?
1. If two documents belong to the same category, then

the nodes that contributed/store these documents
belong to the same cluster.

2. Clusters have equal normalized popularities.

Formally,
() ()

j

j

i

i

N

Sp
N
Sp

= for all 1 ≤ I, j ≤ k.

The load-balancing objective formalized by ICLB is to
create k clusters of peers/nodes that will have equal total
popularity and consequently equal load. But not all
clusters are of equal size. So the popularity should be
normalized with respect to the number of nodes in the
clusters so that the average load faced by each peer/node
in the system will be equal. Thus, we want the clusters
that will be created to have equal normalized cluster
popularities and this is captured by the second constraint
above.
Proposition. ICLB is NP-complete.
Sketch of Proof. Membership in NP is straightforward.
To prove NP-hardness we use a transformation from the
BALANCED PARTITION problem3. This problem is a
generalization of the PARTITION problem given in [21].
 ■

In the inter-cluster load-balancing problem as defined
above, the normalized cluster popularities are constrained
to be equal to each other. An alternative way of looking at
this issue, would be not to equate but rather to balance the

normalized cluster popularities,
()

i

i

N

Sp
, among the

clusters. This balancing can be performed according to
any metric of “fairness” such as the ones compared in
[24]. In this paper, “fairness” is measured according to the

3 The proof is due to Apostolis Dimitromanolakis.

fairness index of [25] which is defined as follows. Let r
be a resource to be shared among n individuals and x be a
random variable giving the amount allocated to each
individual (where xi gives the amount allocated to
individual i). The fairness index of x is then given by the
following formula:

()()
()

==
∑

∑

=

=

n

i
i

n

i
i

xn

x

xE
xExfairness

1

2

2

1
2

2

)(

In our problem setting, r stands for the load, n stands
for the number of clusters, and xi for the normalized
popularity of cluster ci.

The value of the fairness index is always between 0
and 1. The closer the value is to 1, the fairer the load
distribution becomes (with 1 giving total fairness). Values
closer to 0 are less fair. As an example, if the fairness
index is 0.20 it means that the load distribution is fair
(unfair) for the 20% (80%) of the nodes in the system.
The fairness index represents a global property of the
system and naturally captures the essence of load
balancing. In our current work we revisit the issue of
fairness using majorization that has been shown to be
stricter than other fairness metrics such as the fairness
index [24].

4.3 Accounting for Different Peer Processing and
Storage Capacities and Content Contributions

So far, we have assumed that all the peers in the system
are equivalent, in that they all have the same processing
and storage capacity, that each node contributes
documents of a single category, and has enough storage
space to store all documents of this category. However, in
the general case, the system will consist of nodes that will
have different storage capacities and processing power
and that will contribute documents belonging to
categories assigned to different clusters. Our approach to
deal with this situation is as follows.

Each node n stores a set of documents, D(n), whose
categories may be assigned to different clusters. If, say,
some documents of n are assigned to cluster c1 and some
to cluster c2 then D1(n) and D2(n) represent the documents
stored by n which are assigned to c1 and c2 respectively.
Moreover, each node is modeled as having a number of
processing capacity units, measured in relation to some
reference point (e.g. clock speed, cpu benchmark
performance, etc.). Thus, in this case, the normalized
cluster popularities are given by:

()

()∑
∈)(

))((

iNk

ik

i
i

kDp
kDpu

Sp
cclusterofpopularitynormalized

⋅
=

where p(D(k)) and p(Di(k)) represent the popularity of the
document sets D(k) and Di(k), uk is the number of
computational units of the node k, p(Si) is the popularity

of the set Si of the semantic categories belonging to cluster
i, and Ni is the set of nodes belonging to cluster i.

We naturally expect that each node will be able to
store locally at least the documents it contributes. The
additional storage capacity that exists in some nodes will
be used to store replicas of some of the most popular
documents within the cluster.

The astute reader will notice that the achievement of
intra-cluster load balancing in this case can no longer be
guaranteed by the mechanism presented in Section 3.3,
which randomly selects a node, between those storing a
replica of the desired document within the cluster, and
forwards the request to it. The reason for this is that the
different nodes of the cluster can store content whose total
popularity differs.

Our solution for the intra-cluster load balancing
problem here is based on storing popular document
replicas in such a way that ensures that the total content
popularities stored by any two nodes of a cluster are
(almost) equal.

In this way, the mechanism presented in Section 3.3
continues to suffice to ensure intra-cluster load balancing.
In essence this document replica placement strategy
determines the values for the sets D(n), and Di(n) for all
nodes n and all clusters ci in the above formula.
Furthermore, this solution must also ensure that the
storage space requirements imposed by it onto the nodes
are very small.

The details of the proposed solution are as follows.
We expect that there is a number reflecting the desirable
number of replicas, n_reps, for each document (assume
for simplicity that this number is the same for all
documents). Then, for each cluster ci and for every
category s, which is stored in this cluster and which
contains n_docs documents, each with size size_of_doc,
the total storage space required to store s is equal to:

docofsizerepsndocsnssize ____)(××=
 We divide this storage size into │Ni│ pieces, one per

each node of this cluster. Thus, the popularity of a node k
p(k) depends on the documents k stores. If the popularity
distribution of the documents in s is uniform, then for any
two nodes k1, k2, we have p(k1) = p(k2) and we are done.

If the document popularity distribution in s is skewed,
we select the m most popular documents in the category,
whose total popularity covers a significant percentage of
the document probability mass (e.g., 35%). Subsequently,
we place one replica of these m documents in all nodes of
the cluster. In our experiments we have found that less
than 10% of all documents typically total more than 35%
of the document probability mass for practically all
realistic different Zipf distributions. Thus, the end result
of this policy is that the expected load to be received by
the nodes of this cluster is effectively balanced between
the cluster nodes.

The following example illustrates the storage
requirements this approach puts on the nodes.

Example. Consider a system with 2,000,000
documents, 200,000 nodes, 2,000 categories and 500
clusters, n_docs = 1,000, n_reps = 5, and which stores 3-
minute MP3 documents with size_of_doc = 4MB. Then
for every category s, size(s) = 20GB. Assuming each
cluster consists of 200 nodes, i.e., │Ni│=200, each node
in the cluster receives originally 100 MB of data. The
requirement to store the m = 100 (10%) most popular
documents costs an additional 400 MB for each node,
bringing the total storage requirement to 500 MB per
node, per category stored in the cluster. Since on average
4 categories are placed in a cluster, the total required
storage space amounts to 2GB, a very small percentage of
current disk space. ■

4.4 The MaxFair Algorithm for Inter-cluster Load
Balancing and its Performance

We have developed a greedy algorithm, called MaxFair,
for inter-cluster load balancing based on maximizing the
fairness index as defined in section 4.2. MaxFair works as
follows. It considers each category in turn and assigns it
to a cluster of nodes (O(|S|) time). The criterion for this
assignment is the “maximum fairness” among the
normalized cluster popularities, as they emerge after this
assignment. When a new category must be assigned to
one of the clusters, all the possible assignments are tested
(O(|C|) time) and finally it is assigned to the cluster
yielding the maximum fairness for the normalized cluster
popularities (O(|C|) time), between all possible
assignments. The MaxFair algorithm is not executed in a
distributed manner. MaxFair is incomplete but its worst-
case time complexity is O(|S|×│C│2) where │S│ is the
number of categories and │C│ is the number of clusters.
Additionally, it performs very well for a variety of
scenarios as we show below.

Performance Study Setup

In all the experiments we perform, the popularity
distribution of documents follows the Zipf distribution
with the Zipf parameter value equal to 0.8. (We note that
the Zipf parameter values, which have been found to
adequately capture the distributions of accesses for web
objects range between 0.6 and 0.8) [19, 31]. Since we
can’t know in advance how the documents are mapped to
categories, we also can’t know the popularity distribution
among the document categories. Thus, we test our
algorithm using two scenarios.

In the first scenario, we initially use a Zipf distribution
for the category popularities with a value for the Zipf
parameter θ equal to 0.7. This is a worse case scenario
since it is highly likely that the categories will contain a
mixture of popular and unpopular documents, resulting in
a category popularity distribution that is much less
skewed than the one with θ=0.7.

In this first scenario, each document is associated with
a category using a random number generator and taking

into account the popularity of the categories as this is
given from the initial Zipf distribution of the category
popularities. It should be noted that the final category
popularity distribution created in this way is Zipf-like,
with several “spikes” in the popularities of categories,
which give a significantly higher popularity for a large
number of categories than what was predicted by the
original Zipf category popularity distribution. The results
are shown in Figure 1.

In the second scenario, we have a random assignment
of documents to categories, which results in a near-
uniform distribution of documents into categories. The
results are shown in Figure 2.

We have tested a number of different configurations.
The system configuration we present here consists of
│D│=200,000 documents, │N│=20,000 nodes/peers,
│C│=100 clusters, and │S│=500 semantic categories.
Each one of the nodes has a relative processing capacity
that is randomly chosen in the range [1...5]. Each node
contributes a random number of documents, which span
various categories (between 1 and 20). Note that this
configuration corresponds to a system that is of much
larger scale in terms of the number of nodes in it. This is
so, since these 20,000 nodes are the “altruistic” nodes
contributing (documents, disk storage space, and
processing capacity) to our system. It is well known that
the greatest percentage of nodes in systems like Napster
and Gnutella, for example, were “free riders” [10] – these
free riders are not included in our algorithms managing
content and computational/storage resources. Please also
note that, the larger the scale of the system, the easier the
load balancing problem becomes.

Discussion of the Results

In general, for all the tested cases the fairness achieved by
MaxFair is greater then 95%.

 achieved fairness = 0.981903

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

0.000035

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

cluster id

no
rm

al
iz

ed
 c

lu
st

er
 p

op
ul

ar
ity

Figure 1: Normalized cluster popularities for a Zipf-like
(θ=0.7) popularity distribution for the category
popularities

Also, as the number of categories and the number of

clusters increases, the achievable fairness increases, as
well; this is as expected, since with greater numbers of

categories and clusters the balancing problem becomes
inherently easier (there are more and smaller popularity
values to be assigned to more clusters). However, even for
small values of these parameters (50 clusters, 200
categories), the achievable fairness was above 90%.

achieved fairness = 0.974958

0
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
cluster id

no
rm

al
iz

ed
 c

lu
st

er
 p

op
ul

ar
ity

Figure 2: Normalized cluster popularities for a random
popularity distribution for the category popularities

In Figures 1 and 2 we show the results for a skewed
assignment of documents to categories and for a Zipf
distribution of category popularities. The results testify to
the very good performance of MaxFair.

As mentioned, we have also evaluated MaxFair under
different access-distribution skews for documents and
categories, cluster population configurations, scaling
factors (on the number of documents, the number of
nodes, the number of categories, and the number of
clusters). We omit the results for space reasons. The
general conclusion is that the MaxFair algorithm can (i)
achieve very good to outstanding performance, and that
(ii) its performance is robust across a wide range of
system and problem parameter values and configurations.

5. Accommodating the Dynamics of Peers
and Content

We now develop the additional mechanism, consisting of
a cluster architecture, algorithms, and protocols necessary
to dynamically adapt to the changing environment so that
inter-cluster load balancing is ensured continuously. In
particular, we consider the following three cases:
1. The content popularity varies.
2. The content population varies (documents can be

added or deleted).
3. The peer population varies (nodes can be added or

deleted).
The same approach is used for all of these cases. Due to
space limitations, we present here only the solution for the
first case. However, we have designed and developed
publish/revoke and join/leave protocols, accounting for
the content and peer populations’ variations respectively.

5.1 Content Popularity Variations

In order to handle the complexity and the associated
overheads of content popularity variations, we adopt a
hierarchical organization for the nodes in the clusters: at
the top of the hierarchy, each cluster has a node, called the
leader of the cluster.

5.1.1 Cluster Leader Election

The selection of the cluster leader is done as follows:
Leaders are elected periodically (e.g., every day). Before
the end of a period, nodes inform their cluster neighbors
(the nodes in the cluster appearing in the node’s NRT) of
their computing, storage, and bandwidth capabilities,
while also forwarding relevant information received by
other nodes. Thus, over time, all nodes of the cluster have
a quite clear picture of the status of all nodes in the
cluster, as far as processing, storage, and bandwidth
capabilities are concerned. When the time has come for
the system to enter the adaptation stage, the most
powerful node in each cluster is chosen to be the leader of
the cluster (thus a node can be the leader in more than one
cluster). Note, that this process may result in more than
one peer believing to be the cluster leader (due to network
partitionings, or when peers decide with incomplete
information, for example). However, this poses no
problem.

During the adaptation stage, nodes probe their cluster
leaders to assure they are alive. In the case of a leader
failure, another node is selected to be the new leader. This
can be the next more capable node, or a node close to the
leader in the tree hierarchy4 (i.e., one that has most of the
information needed for the adaptation and needs to send
out only a small number of messages to acquire all
remaining information). Furthermore, this guarantees that
all nodes of a cluster know which node is currently their
leader.

Note that the selection of the cluster leader is
performed on-the-fly when needed and assumes no
previous explicit structure or knowledge. Thus this is
indeed a pure P2P solution, since all nodes can become
their clusters’ leaders at some time and the parent-
children relations are dynamic.

5.1.2 Dynamic Adaptation

Our approach is structured into four phases: a per-cluster
monitoring phase, a leaders’ communication phase, a
fairness evaluation phase, and a load-rebalancing phase.
In the following we present step by step the four phases of
the adaptation mechanism. We assume that nodes keep
statistics of the retrieval requests they served, broken
down into per-category hits (implemented as per-category
hit counters).

4 To be presented later.

Phase 1. Per Cluster Monitoring
The leaders send to their cluster nodes a request for

their hit counters. The request message is recursively sent
from each node to its cluster neighbors, while loops in the
graph are detected and broken by dropping request
messages that have been seen again at a node. This results
in the dynamic, on-the-fly creation of a tree structure from
the cluster graph, where nodes consider the source of the
request query to be their parent and the target of the
forwarded queries to be their children.

Since the creation of the tree structure is orthogonal to
its actual functionality, we can alternatively assume a
preexisting tree structure, such as the one suggested in
[26].

Eventually, the leader node ends up with the set of
total per-category hits for the whole cluster in the last
period. Naturally, these hit counter values reflect the
current popularity of the categories that have been stored
in the cluster.

The above description covered the no-failure case. As
alluded to earlier, failures and faults may result in the
physical partitioning of clusters, resulting in turn in the
creation of multiple trees (sub-clusters) per cluster, which
will participate independently in the adaptation process.
Ensuring fault tolerance operation in P2P systems
efficiently, is largely an open problem and certainly
outside the scope of this paper. Here we only mention that
there are mainly two alternatives: (i) allow sub-clusters, in
different physical partitions, to form their own trees and
proceed in the next phases of the adaptation, described
below, and when the partitioning is resolved reconcile
their actions, merging their trees; and (ii) impose limits
(e.g., on the number of peer participants) so to reduce the
possibility that more than one tree per cluster participates
in the adaptation phases. In the following, we refer to a
“cluster”, and its “leader” but readers should keep in mind
that it could be only a “sub-cluster” in the presence of
failures.
Phase 2. Leader Communication Protocol

The leader nodes of clusters communicate with each
other in order to share their clusters’ load figures. In
system configurations with fewer but larger clusters this
can be done using traditional multi-cast protocols
involving all leaders. For systems with very large
numbers of clusters, the load information exchange can be
done through “epidemic-style” protocols, enabling leaders
of neighboring clusters to know about each other’s load.
Thus, at the end of this phase all communicating leaders
know the current load distribution among their clusters
and the load distribution among the document categories.
Note that, since nodes in a cluster know their leader
during adaptation, a cluster leader needs only contact one
random node in every cluster to discover the cluster’s
leader.
Phase 3. Evaluation of fairness

A chosen leader (e.g., the leader of the cluster with the
highest normalized popularity either among all clusters or

among the clusters in a “neighborhood”) measures the
fairness index value. If it is above a low-threshold value
(e.g., 90%) nothing is done. Else, the rebalancing phase is
entered).
Phase 4. Load rebalancing among clusters

In this phase, the leader with the highest normalized
popularity runs a variation of the MaxFair algorithm,
called the MaxFair_Reassign algorithm, with which
categories are reassigned to new clusters so that the load
is balanced and fairness increases.

Algorithm MaxFair_Reassign
While (fairness < upper threshold AND moves <
max_moves)

1. Among all clusters, find the cluster ci with the
highest normalized cluster popularity.

2. For every semantic category s of cluster ci:
a. For every cluster cj different than ci:

i. Do dummy reassigns of s to cj, recompute
the resulting fairness values and keep the id
of the cluster, m, during the move that gave
the better result.

3. Actually reassign s to cm (the procedure of
moving around categories will be discussed
later).

4. Update the normalized popularity of ci and cm
and recalculate the fairness value.

5. Increment moves.
End while

The algorithm is greedy in the sense that it tries at each
step to achieve the maximum gain in balance by making
the best reassignment in terms of which category to
reassign and to which cluster to reassign it and that it
selects, at each iteration, a category from the cluster with
the highest normalized cluster popularity.

Our primary concern was to ensure fast rebalancing,
which implies that only a very small number of categories
need be moved, since this will be the source of the
associated cost.

Algorithm MaxFair_Reassign updates only the
metadata kept by the nodes in the affected clusters. In this
way, we avoid having to perform very large volume
transfers, all in once, as a single transaction. Instead, we
adopt a lazy rebalancing protocol, as will be explained
below.

Lazy Rebalancing Protocol
After running MaxFair_Reassign:
1. Within the “source” cluster, all the nodes will be

notified and update their metadata to reflect that the
moved category is no longer to be served by this
cluster’s nodes. “Trace data” will be included
pointing to the “destination” cluster to which the
category has moved. Within the “destination” cluster
all nodes’ metadata will be also updated to reflect the
reassignment.

2. Recall from Section 4.3 that the set of documents of
each category have been partitioned into groups and
different groups have been stored in the nodes of the
“source” cluster. The transfer of these groups to the
nodes of the “destination” cluster will occur by
pairing nodes between the two clusters with each
“source” node delivering its group to the
“destination” node. These transfers can be taking
place in parallel and can be scheduled for the first
opportune time. The goal of this step is to break
down a very large transfer to a number of much
smaller transfer tasks. The transfer of higher
popularity groups can be scheduled first, so to ensure
faster rebalancing. The pairing between nodes in the
source and destination clusters can be achieved in
several ways, either using cluster node metadata
found at super peers, or searching in pure peer-to-
peer form by each node based on information
exchanged by the leaders in phase 2 of the adaptation
process.

3. Future requests for this category’s documents will be
initially coming into nodes of the “source” cluster
from nodes of other clusters that were not notified of
the reassignment. These requests will be forwarded to
the “destination” cluster as follows. A node, say n, of
the “destination” cluster will be randomly selected
(among those that have been chosen to store the
requested document) and the request and the id of the
requesting node will be forwarded to n.

4. When a node n from the “destination” cluster
receives a request, if n actually stores the requested
document(s) (i.e., step 2 has reached n for the
requested documents) it will send the reply to the
requesting node. Else, n will explicitly request the
document(s) from its coupling node in the “source”
cluster, store, and then return the document(s) to the
requesting node. It will also piggyback onto the reply
the update in the metadata information reflecting the
reassignment.

5. Periodically, all the nodes in the cluster send to their
neighboring nodes updates to their metadata
information that they have collected from the
piggybacked responses to their requests. The nodes
merge the information (resolving conflicts, as is
explained below) and propagate it. This epidemic-
style protocol eventually guarantees that all nodes of
the cluster become aware of all metadata information
updates.

Conflicts may arise in the metadata updates received
from different neighbors of a node of a cluster during step
5 above (e.g., when a category has moved twice and one
descendant node in the cluster is informed of the first
move while another descendant node is informed of the
second move). In order to facilitate conflict resolution, we
extend the DCRT of each node to keep a per-category

move_counter. When a category is moved to a new
cluster the new cluster’s nodes store as part of the
metadata for this category a move_counter (incremented
by one in step 1 above, for every move MaxFair_Reassign
decides). Thus, to resolve conflicts, the metadata
information with the highest move counter value is kept at
the ancestor node.

5.1.3 Discussion

Having “traditional” distributed systems in mind, one
might view the costs associated with rebalancing (i.e., the
transfer of potentially thousands of documents) as
prohibitively costly. However, we stress that P2P content
sharing systems are definitively characterized by very
large document transfers. For example, users routinely
“download” up to hundreds of megabytes. Our effort, as
exemplified in step 2 above, is intended to break down a
huge “rebalancing” data transfer to a number of smaller
ones, which mimic routine transfers to satisfy user
requests.

Example. To illustrate this further, consider an example
system with 200,000 nodes grouped in 400 clusters, each
with 500 nodes. The documents have a size of 4MB (e.g.,
3-minute MP3 clips). Let us suppose further that
MaxFair_Reassign selects to reassign 10 categories, with
each containing 1000 documents and that all documents
are desired to have a minimum number of two replicas.
This creates a data transfer for each reassigned category
of 8GB (1000 * 4MB * 2). This large data transfer is
broken down to 500 transfers (to the 500 nodes of the
destination cluster) of 16MB each. Since 10 categories are
reassigned, up to 5,000 pairs of nodes may be engaged in
this transfer. Thus with our approach, in the example
system of 200,000 active nodes engaged in content
sharing, the major rebalancing cost, owing to the data
transfers, “masquerades” as an increase of 2.5% on the
active users, engaged in small-to-medium-size data
transfers of 16MB each. ■

5.2 The Performance of Rebalancing

In this subsection we present some results regarding the
performance of our load rebalancing approach. We focus
on the internals of the MaxFair_Reassign algorithm, and
in particular, on the number of reassignments required to
ensure that the fairness of the inter-cluster load balancing
is within acceptable levels (i.e., within the upper and
lower thresholds).

In Figure 3, we present five experiments with each
experiment producing an initial configuration, and inter-
cluster load balancing performed by MaxFair for the
“challenging” case defined by an initial skewed Zipf
popularity distribution among the documents and among
the categories (θ = 0.8). In all experiments the reason for
requiring load rebalancing was the addition of new
documents, the total popularity of which amounts to 30%

of the total document popularity, and which are
distributed randomly to the categories.

The upper and lower threshold values for the fairness
are 92% and 83% respectively. The system consists of the
same number of documents, categories, clusters, and
nodes as for the test cases in Section 4.

It should be apparent that the above scenario
represents a very challenging test case for our approach.
The expected changes in a real system will bring about a
significantly lower change than the one captured by the
above test case.

Figure 3: The MaxFair_Reassign algorithm, when the
30% of the popularity mass changed, for five different
experiments.

The results show clearly that the number of

reassignments required in order to maintain very high
load distribution fairness among the clusters is small (7 or
8). Finally, because:
1. The fairness of the initial inter-cluster load

balancing achieved through algorithm MaxFair is
very high,

2. With a small number of reassigned categories the
algorithm MaxFair_Reassign can improve fairness
significantly, and

3. The cost for each category reassignment is small, as
argued above,

we can conclude that the overall cost of our solution for
rebalancing the load is small.

6. Conclusions
The P2P paradigm is becoming increasingly popular for
developing internet-scale applications. P2P content
sharing systems, as popularized by the initial endeavors of
Napster, Gnutella, etc., are receiving increasing attention
from academics and industry as an important class of
internet data management applications.

In this paper we have presented the problem of
managing content and resources in P2P sharing systems
so to ensure the efficiency of operation. Efficiency is
viewed both from the point of view of the system, in the
sense of ensuring globally fair load distribution among all

peers, and from the point of view of the users, in the sense
of facilitating low user-request response times.

We have presented (i) an overall system architecture,
(ii) a formal problem formulation, and, (iii) algorithms,
protocols and mechanisms that achieve our performance
goals. To our knowledge this is the first paper that tackles
the load distribution problem head on and at the same
time facilitating fast response and giving worst-case
guarantees for the response times user queries suffer.
Achieving these goals is a formidable challenge given the
need to respect the autonomy of peers, their heterogeneity
(in terms of storage and processing capacity), the peer
population dynamics (e.g., peers enter and leave the
system at their free will), and the content population
dynamics (e.g. documents being added/deleted at any time
and document populations are varying with time).

Finally, we have also presented the additional
architecture, algorithms, and protocols necessary to
accommodate the dynamics of the environment (peer
population changes, content population changes and
content popularities changes) and we presented arguments
regarding the efficiency of our approach.

We believe the above constitutes the first effort that
addresses comprehensively the problems of fair load
distribution and low response times in P2P systems and
that enough evidence has been presented that testifies to
its benefits. We put it forward as a radically-different
proposal for architecting P2P sharing systems. However,
to complete our approach, a large number of issues, of
both theoretical and “systems” flavor, remain open. These
include, (i) the development of optimal algorithms for
inter-cluster load balancing and heuristics achieving near-
optimal performance; (ii) optimal system configurations,
in terms of the number of clusters versus the number of
nodes per cluster; (iii) epidemic-style algorithms (a la
Freenet and OceanStore[16]) for leader collaboration in
systems with very large numbers of clusters, (iv)
alternative architectures for each cluster, (v) alternative
definitions/metrics for fairness and related algorithms, (vi)
the optimal “granularity” (i.e., whether nodes, documents,
or whole categories should be moved) when correcting
imbalances between clusters, (vii) alternative, more
space-efficient document placement policies and related
algorithms that guarantee intra-cluster load balancing, and
(viii) cache placement and replacement algorithms that
can complement our architecture. Future efforts should
also involve the implementation of “champion
applications” and the empirical evaluation of the system’s
performance. We call on the community to join us in
tackling these research problems.

Acknowledgements
This work was supported in part by project DIET (IST-1999-
10088) funded by the IST Programme of the European
Commission, under the FET Proactive Initiative on “Universal
Information Ecosystems”. We would like to acknowledge the

contributions of all partners of DIET (Btexact Technologies,
Universidad Carlos III de Madrid, DFKI) to this work.

7. References
[1] A. Crespo, H. Garcia-Molina. Routing Indices

for Peer-to-Peer Systems. In Proc. ICDCS ’02.
[2] A. Montresor, O. Babaoglu, and H. Meiling.

Load-Balancing through a Swarm of
Autonomous Agents. In Proc. Workshop on
Agents and P2P Computing ’02.

[3] A. Rowstron and P. Druschel. Pastry: Scalable,
decentralized object location and routing for
large-scale peer-to-peer systems. Proc.
IFIP/ACM Middleware ‘01.

[4] Audio Galaxy: http://www.audiogalaxy.com
[5] Autonomy: http://autonomy.com
[6] B. Yang and H. G. Molina. Comparing Hybrid

P2P Systems. In Proc. VLDB ’01.
[7] B. Yang and H. G. Molina. Improving Search in

P2P Networks. In Proc. ICDCS ’02.
[8] B. Zhao, J. Kubiatowicz, and A. Joseph.

Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. Technical
Report UCB/CSD-01-1141, C.S.D., U.C.
Berkeley, April 2001.

[9] C. Hoile, F. Wang, E. Bonsma, P. Marrow.
Core Specification and Experiments in DIET: A
Decentralised Ecosystem-inspired Mobile Agent
System. In Proc. AAMAS ‘02.

[10] E. Adar and B. A. Huberman. Free riding on
Gnutella. Technical report, Xerox PARC, 10
Aug. 2000.

[11] E. Bonabeau, M. Dorigo, and G. Theraulaz.
Swarm Intelligence: From Natural to Artificial
Intelligence. Oxford University Press, 1999.

[12]

E. Bonsma and C. Hoile. A distributed
implementation of the SWAN peer-to-peer
lookup-system using mobile agents. In Proc.
Workshop on Agents and P2P Computing ’02.

[13] Gnutella: http://gnutella.wego.com
[14] Ian Clarke, O. Sandberg, B. Wiley and T. W.

Hong. Freenet: A Distributed, Anonymous
Information Storage and Retrieval System. In
Proc. ICSI Workshop on Design Issues in
Anonymity and Unobservability ’00.

[15] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for Internet applications.
In Proc. ACM SIGCOMM ’01.

[16] John Kubiatowicz, et al. OceanStore: An
Architecture for Global-Scale Persistent
Storage. In Proc. ASPLOS ‘00.

[17] K. Aberer, M. Punceva, M. Hauswirth and R.
Schmidt. Improving Data Access in P2P
Systems. IEEE Internet Computing, January-
February 2002.

[18] Kazaa: http://www.kazaa.com
[19] Lee Breslau, Pei Cao, Li Fan, Graham Philips,

Scott Shenker. Web Caching and Zipf-like
Distributions: Evidence and Implications. In
Proc. IEEE INFOCOM ‘99.

[20] Napster: http://napster.com
[21] M. R. Garey and D. S. Johnson. Computers and

Intractability - A Guide to the Theory of NP-
Completeness W. H. Freeman and Co. 1979.

[22] O. Babaoglu, H. Meling, and A. Montersor.
Anthill: A Framework for the Development of
Agent-Based Peer-to-Peer Systems. In Proc.
ICDCS ’02.

[23] P. Marrow et al. Agents in Decentralised
Information Ecosystems: The DIET Approach.
In Proc. Symposium on Information Agents for
E-Commerce, AISB'01 Convention, 2001.

[24] R. Bhargava, A. Goel and A. Meyerson. Using
approximate majorization to characterize
protocol fairness. In Proc. SIGMETRICS /
Performance’01.

[25] R. Jain D-M. Chiu, W.R. Hawe. A Quantitative
Measure of Fairnsess and Discrimination for
Resource Allocation in Shared Computer
Systems. DEC-TR-301, 1984.

[26] R. Renesse, K. Birman, D. Dumitriu and W.
Vogels. Scalable Management and Data Mining
using Astrolabe. In Proc. IPTPS ’02.

[27] Semio: http://www.semio.com
[28] S. Ratnasamy, P. Francis, M. Handley, R. Karp,

and S. Shenker. A scalable content-addressable
network. In Proc. ACM SIGCOMM ’01.

[29] T. Stading, P. Maniatis, M. Baker. Peer-to Peer
Cashing Schemes to Address Flash Crowds. In
Proc. IPTPS ’02.

[30] Steven Gribble, Alon Halevy, Zachary Ives,
Maya Rodrig, and Dan Suciu. What Can Peer-
to-Peer Do for Databases, and Vice Versa?
In Proc. WebDB ’01.

[31] V. Almeida, A. Bestavros, M. Crovella and A.
de Oliveira, Characterizing reference locality in
the WWW. In Proc. PDIS ’96.

[32] T. Joachims. Text categorization with Support
Vector Machines: Learning with many relevant
features. In Machine Learning: ECML-98,
Tenth European Conference on Machine
Learning.

