

Sorting And Indexing With Partitioned B-Trees

Goetz Graefe
Microsoft Corporation

Redmond, WA 98052-6399
USA

GoetzG@Microsoft.com

Abstract
Partitioning within a B-tree, based on an artificial lead-
ing key column and combined with online reorganiza-
tion, can be exploited during external merge sort for
accurate deep read-ahead and dynamic resource alloca-
tion, during index creation for a reduced delay until the
first query can search the new index, during data load-
ing for streaming integration of new data into a fully
indexed database, and for miscellaneous other opera-
tions. Despite improving multiple fundamental data-
base operations using a single basic mechanism, the
proposal offers these benefits without requiring data
structures or algorithms not yet supported in modern
relational database management systems. While some
of the ideas discussed here have been touched upon
elsewhere, the focus here is on re-thinking the relation-
ship between sorting and B-trees more thoroughly, on
exploiting this relationship to simplify and unify data
structures and algorithms, and on gathering compre-
hensive lists of issues and benefits.

Introduction
Even the most advanced data models rely on very tradi-

tional data structures and algorithms for storing and man-
aging records, including efficient query and update proc-
essing. Thus, there is a continuous stream of research into
improvements to these data structures, these algorithms,
and their usage. Among the perpetually interesting data
structures in database systems is the B-tree [BM 72] and
its many variants, and among the perpetually interesting
algorithms is external merge sort. Sorting is used to build
B-tree indexes efficiently, and B-trees are used to avoid
the expense of sorting and to reduce the expense of
searching during query processing – however, the mutu-
ally beneficial relationship between sorting and B-trees
can go substantially further than that.

The present paper proposes not a new data structure or a
new search algorithm but an adaptation of well-known
algorithms and of a well-known data structure. The es-
sence of the proposal is to add an artificial leading key

column to a B-tree index. If only a single value for this
leading B-tree column is present, which is the usual and
most desirable state, the B-tree index is rather like a tradi-
tional index. If multiple values are present at any one point
in time, which usually is only a transient state, the set of
index entries is effectively partitioned. It is rather surpris-
ing how many problems this one simple technique can
help address in a database management product and its
real-world usage.

Let us briefly consider some example benefits, which
will be explained and discussed in more detail in later sec-
tions of this paper.

First, it permits putting all runs in an external merge sort
into a single B-tree (with the run number as artificial lead-
ing key column), which in turn permits improvements to
asynchronous read-ahead and to adaptive memory usage.
Given the trend to remote disks, e.g., in SAN and NAS
environments, hiding latency by exploiting asynchronous
read-ahead is important, and given the continued trend to
striped disks, forecasting multiple I/O operations is gain-
ing importance. Similarly, given the trend to extremely
large online databases, the ability to dynamically grow and
shrink resources dedicated to a single operation is very
important, and the proposed changes permit doing so even
to the extremes of pausing an operation altogether and of
letting a single operation use a machine’s entire memory
and entire set of processors during an otherwise idle batch
window.

Second, it substantially reduces by at least a factor of
two the wait time until a newly created index is available
for query answering. While the initial form of the index
does not perform as well as the final, fully optimized in-
dex or a traditional index, at least it is usable by queries
and permits replacing table scans with index searches.
Moreover, the index can be improved incrementally from
its initial form to its final and fully optimized form, which
is very similar to the final form after traditional index
creation. Thus, the final indexes are extremely similar in
performance to indexes created offline or with traditional
online methods; the main difference is cutting in half (or
better) the delay between a decision to create a new index
and its first beneficial impact on query processing.

Third, adding a large amount of data to a very large,
fully indexed data warehouse so far has created a dilemma
between dropping and rebuilding all indexes or updating

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment.
Proceedings of the 2003 CIDR Conference

all indexes one record at a time, implying random inser-
tions, poor performance, a large log volume, and a large
incremental backup. The present proposal resolves this
dilemma in most cases. Note that it does so without spe-
cial new data structures. Recently proposed approaches to
this problem have relied on adding a special separate
lookup structure in main memory, or on retaining records
waiting to be pushed down within an index tree by divid-
ing each B-tree node into a segment with traditional key-
pointer pairs and another segment with waiting records.
Special or novel data structures and algorithms can have
enormous costs for real-world database systems, first in
development and testing, then when installing the new
release and reformatting large production databases, and
finally for training staff in application development and in
operations; all this not only for the core database system
but also for relevant third-party add-on products for capac-
ity planning, tuning, operations, disaster preparedness and
recovery, monitoring, etc.

After a brief summary of related research, the remainder
of this paper first describes precisely how to manage parti-
tions within B-trees and then discusses how this technique
assists in the three situations outlined above, plus a few
other ones.

Related work
The present proposal is orthogonal to research into

alternative layouts of data within B-tree pages, e.g., in
[BU 77, DR 01, GL 01, H 81]. Similarly, it is orthogonal
to the data collection being indexed or the attribute being
indexed, which could be a column in a traditional rela-
tional table, a hash value, a location in multi-dimensional
space mapped to a single dimension [RMF 00], or any
other (deterministic) function.

Prior research and development into partitioning in par-
allel and distributed database systems are closely related,
including [AON 96, HD 91, CAB 88]. However, none of
the prior work specifically considers online index opera-
tions such as index creation, schema changes, etc., and
how to exploit partitioning for those purposes. Online in-
dex construction has been considered in the past [MN 92],
but not in the contexts of partitioning or of querying an
index still in its construction, as proposed here. Mohan
and Nareng [MN 92] also mention in a footnote that an
index could be made available incrementally, but their
description implies waiting until the complete sort opera-
tion starts to emit output, and they do not consider how a
query processor could exploit indexes coming online in-
crementally, as the present paper does.

Another related research direction has considered fast
insertion into novel data structures derived from B-trees,
both small insertions in OLTP environments and large
insertions in bulk loading, e.g., in [JDO 99, JNS 97,
JOY 02, MOP 98, OCG 96]. Other research has consid-
ered fast bulk deletions, either in response to user requests

[GKK 01] or as part of data migration in partitioned data
stores [LKO 00]. The value of the present proposal, from a
database implementer’s point of view, is that no new data
structures, algorithms, or quality assurance tests are re-
quired, except of course tests of truly new functionality,
e.g., pausing and resuming a sort operation or querying an
index still being built. Moreover, the present proposal
provides improvements concurrently in three main areas –
external sorting, index creation, and bulk loading – plus a
few additional ones.

There is, of course, a vast amount of research on sorting.
The most relevant work is on external merge sort with
dynamic memory management [PCL 93, ZL 97]. These
prior algorithms adjusted the merge fan-in between merge
steps, which might imply a long delay; the contribution
here is the ability to vary merge fan-in and memory usage
dramatically and quickly at any point during a merge step
without wasting or repeating any work.

Artificial leading key columns
The essence of the present proposal is to maintain parti-

tions within a single B-tree, by means of an artificial lead-
ing key column, and to reorganize and optimize such a B-
tree online using, effectively, the merge step well known
from external merge sort. This key column probably
should be an integer of 2 or 4 bytes. By default, the same
single value appears in all records in a B-tree, and most of
the techniques described later rely on carefully exploiting
multiple alternative values, temporarily in most cases and
permanently for some few techniques. If a table or view in
a relational database (or any equivalent concept in another
data model) has multiple indexes, each index has its own
artificial leading key column. The values in these columns
are not coordinated or propagated among the indexes. In
other words, each artificial leading key column is internal
to a single B-tree, such that each B-tree can be reorganized
and optimized independently of all others. If a table or
index is horizontally partitioned and represented in multi-
ple B-trees, the artificial leading key column can be de-
fined separately for each partition or once for all partitions
– the present paper does not consider this issue further.

In fact, the leading artificial key column effectively de-
fines partitions within a single B-tree. The proposal differs
from traditional horizontal partitioning using a separate B-
tree for each partition in an important way. Most advan-
tages of the present proposal depend on partitions (or dis-
tinct values in the leading artificial key column) being
created and removed quite dynamically. In a traditional
implementation of partitioning, each creation or removal
of a partition is a change of the table’s schema and catalog
entries, which requires locks on the table's schema or cata-
log entries and thus excludes concurrent or long-running
user accesses to the table, as well as forcing recompilation
of cached query and update plans. If, as proposed, parti-
tions are created and removed as easily as inserting and

deleting rows, smooth continuous operation is relatively
easy to achieve.

Adding an artificial leading key column to every B-tree
raises some obvious concerns, which will now be dis-
cussed in turn – potential benefits will be discussed in
subsequent sections. First, the artificial leading key col-
umn increases record lengths and therefore total disk us-
age as well as required disk bandwidth while reading or
writing the entire B-tree. However, if prefix truncation is
used [BU 77], almost all B-tree pages, both leaves and
internal nodes, will store only a single copy of this key
column, since its value will be constant for all records in
almost all pages. Note that implementations that exploit
prefix truncation do not necessarily split pages in the mid-
dle upon page overflow, instead favoring a split point near
the middle that permits truncating the longest possible
prefix in both pages after the split. Thus, this artificial key
imposes negligible new disk space and bandwidth re-
quirements.

Figure 1. B-tree with partitions

Second, searches within a page are more expensive, be-
cause each comparison must compare the entire key, start-
ing with the artificial leading key column. However, if
prefix truncation is used, the key component that has been
truncated because it is constant for all records in a page
actually does not participate in comparisons; thus, only
comparisons within pages with multiple values of the arti-
ficial key column within the page incur some cost, mean-
ing hardly any pages and thus hardly any comparisons.
Note that prefix truncation is not really required to reduce
the comparison cost; “dynamic prefix truncation” requires
that comparison operations indicate where in the compari-
son arguments the first difference was found, and permits
comparisons to skip over those leading parts in which
lower and upper bound of the remaining search interval
coincide [L 98].

Third, searches in the B-tree are more complex and more
expensive than in traditional B-tree indexes, in particular
if multiple partitions exist. The situation is, of course, very
similar to other B-tree indexes with low-cardinality lead-
ing columns. Each searching probe into the B-tree must
first determine the lowest actual value for the artificial
leading key, then search for the actual parameter of the
probe, then search whether there is another value for the
leading artificial key column, etc. [L 95]. The probe pat-
tern effectively interleaves two sequences: enumerating

distinct values in the leading column (as might be useful
in a “select distinct …” query) and searching for index
entries matching the current query.

Presume, for example, that the B-tree in Figure 1 is an
index on column x, and that a user query requests items
with x = 19. The first probe into the B-tree inspects the
left edge of the B-tree and determines that the lowest
value for the artificial leading key column is 0; the second
probe finds index entries within partition 0 with x = 19.
The third probe finds the first item beyond partition 0 and
thus determines that the next value in the artificial leading
key column is 3, etc., for a total of 7 probes including the
left and right edges of the B-tree.

Fortunately, this search can be limited at both ends by
the use of integrity constraints, either traditional “hard”
constraints or “soft” constraints that are observed auto-
matically by the database system and invalidated auto-
matically when a violating record is inserted into the data-
base [GSZ 01]. In Figure 1, if a constraint limits the parti-
tion number to 4 or less, the probe at the right edge can be
omitted. If there is only one value for the artificial leading
key column in the B-tree, and if integrity constraints for
both ends of the B-tree exist, a probe into the proposed B-
tree is as efficient as a probe into a traditional B-tree.

Fourth, B-tree indexes deliver sorted data streams as
query output or as intermediate query result. In order to
obtain the same sorted output stream, records from multi-
ple partitions of the B-tree must be merged on the fly. If
the number of partitions is moderate, this can be achieved
very efficiently, using well known algorithms and data
structures used in external merge sort.

Fifth, B-tree indexes are often used to efficiently enforce
uniqueness constraints, and the proposed B-trees with the
artificial leading key column substantially increase the
expense of checking for a duplicate key value. This check
disregards, of course, the artificial leading key column,
and therefore must probe into the B-tree index for each
actual value of the artificial leading key column. Again,
when multiple values for this column are present in the B-
tree, this concern is valid; however, in most cases and at
most times, there should be only one value present and
this fact should be known due to hard or soft integrity con-
straints.

Sixth, selectivity estimation, which is crucial for effec-
tive query optimization, could be hampered because the
histogram associated with an index describes primarily or
even exclusively the distribution of the leading key col-
umn, i.e., the artificial leading key column rather than the
first user-chosen key column. Fortunately, most modern
database systems separate the notions of histograms and
indexes. While it used to make sense to link the two be-
cause both needed full data scans and sorting for efficient
construction, modern database systems build histograms
from sampled data and refresh them much more often than
they rebuild B-tree indexes. Typically, a sufficient sample

3 4 Partition no. 0

easily fits into main memory and thus can be sorted effi-
ciently. Due to this efficiency, most database systems and
installations support statistics for columns that are not
indexed at all or are not leading columns in indexes, which
is precisely the type of statistics needed here.

Finally, a few more observations that likely are obvious
and thus are mentioned only briefly. The proposed use of
B-trees is entirely orthogonal to the data collection to be
indexed. The proposed technique applies to relational da-
tabases as well as data models and other storage tech-
niques that support associative search, it applies to both
primary (clustered) and secondary (non-clustered) in-
dexes, and it applies to indexes on traditional columns as
well as on computed columns, including B-trees on hash
values, Z-values (as in “universal B-trees” [RMF 00]), and
on user-defined functions. Similarly, it applies to indexes
on views (materialized and maintained results of queries)
just as well as to indexes on traditional tables.

To summarize, adding an artificial column to each B-
tree index raises several obvious possible concerns, but all
of them can be mitigated to a negligible level. Having
considered these concerns, let us now discuss the benefits.

Sorting
Virtually all database systems use external merge sort

for large inputs, with a variety of algorithms used for in-
ternal sorting and run generation. One important design
issue is how to store intermediate runs on disk such that
can be read efficiently in sort order. Many database serv-
ers use roughly ten times more disk drives than CPUs; in
some case, however, the number of disk arms is effec-
tively unknown to the database management system since
an entire disk farm or network attached storage is shared
by many users and even multiple servers, including multi-
ple database servers. In order to keep all disk arms use-
fully busy and in order to hide all I/O latencies, asynchro-
nous I/O is needed while writing initial runs and while
reading and writing runs during merge steps. Asynchro-
nous writing is relatively easy since it is always clear
which pages should be written and since the CPU process
does not need to wait for completion of the I/O. Asyn-
chronous reading in merge steps requires more attention
for two reasons. First, if a required page is not yet in
memory, the sorting program must wait, thus relinquish-
ing not only the CPU but also the CPU cache. Second, the
very nature of merging implies that many inputs are read,
and it is necessary to determine which of the inputs must
be read next, commonly known as forecasting [K 73].

Note that double buffering [S 89a] for all input runs does
not truly solve the problem. On one hand, it reduces the
merge fan-in to half, whereas good forecasting reduces the
fan-in only by a relatively small fixed number. Useful
values are the number of disk drives if known or simply
ten, based on the rule of thumb that there are roughly ten
times more disks than CPUs in a balanced server. On the

other hand, when merging runs of very different sizes,
substantially more read operations will pertain to the large
input runs – a typical situation occurs when merging some
initial runs (which are about the size of memory) and
some intermediate merge results (which are larger than the
initial runs by a factor equal to the merge fan-in, e.g.,
100). Moreover, if the key distribution in the input is
skewed, i.e., if there is any form of correlation between
input order and output order, even input runs of similar
sizes might require different amounts of read-ahead at
different times during a merge step.

In both cases, deep forecasting is required, i.e., forecast-
ing that reaches beyond one asynchronous read operation
and beyond finding the lowest one among the highest keys
on each page currently consumed by the merge logic
[K 73]. Other researchers have considered technique for
planning the “page consumption sequence” ahead of a
merge step [ZL 98] or as the merge progresses [S 94]. In
both efforts, a separate data structure was designed to re-
tain the highest keys in each data page. In commercial
reality, however, every new data structure requires new
development and, maybe more importantly and more ex-
pensively, testing, which is why neither of these designs
has been transferred into real products.

Retaining all runs in a single B-tree, using the run num-
ber as the artificial leading key column, addresses several
issues without introducing the need for a new data struc-
ture. Most immediately, the parent level about the B-tree’s
leaves is a natural storage container for precisely the keys
needed for accurate deep forecasting. In fact, it is possible
to forecast arbitrarily deeply, and to do so dynamically
while merging progresses, i.e., adapt the forecasting depth
to the current I/O delay as well as add or drop runs from
the forecasting logic. Moreover, a scan over the leaves’
immediate parent nodes is already implemented in some
database systems because it is also required for multi-page
read-ahead in an ordered key range retrieval, e.g., a large
“between” predicate.

The space and I/O overhead for using a B-tree for runs is
negligible: internal B-tree nodes of 8 KB have a fan-out of
at least 100, meaning that about 99% of all pages in the B-
tree are leaves. A B-tree fan-out of 100 is very conserva-
tive if prefix and suffix truncation are used and if the
space utilization is 100%, which is possible because the B-
tree is loaded sequentially by the merge step. Thus, a B-
tree fan-out of 400 seems realistic in many cases, meaning
about 0.25% of all pages are not leaves. Actually, since
the leaves’ immediate parents are equivalent to any other
data structure that captures the consumption sequence of
pages in merge input runs, only 1% of 1% of all pages (or
0.25% of 0.25%) in the B-tree is overhead due to using a
B-tree to store all runs.

Another benefit of using a B-tree to store all runs is that
parallel threads can be added or removed from the sort
effort at any time. A new thread can be put to good use

simply by choosing and assigning a set of runs to merge
and a key range within those runs. Even in an external sort
with a single merge step, the final merge can be parallel.
Inversely, a thread can stop its work at any time – the re-
maining B-tree is still a valid and consistent collection of
runs. No work already performed is wasted and no work is
performed twice. The operation to delete an entire key
range within a merge input run is precisely the same one
that deletes an entire run, and is already implemented in
B-tree implementations used in data warehousing, where
entire date ranges are regularly added and removed. Simi-
larly, memory can be added and removed from a sort op-
eration at any time, without loss in I/O efficiency, i.e.,
without the need to shrink the units of data transfer. The
merge process can add or drop runs at any time. In the
extreme case, a merge process can drop all its runs, mean-
ing that the entire sort operation is paused. With appropri-
ate transaction support, sort operations can be resumed
even after server restart. Note that it is quite straightfor-
ward to drop runs from the current merge step; adding a
run requires finding in an existing run precisely the right
key that matches the current merge progress. This search
is obvious and easy with runs in a B-tree, due to B-trees’
inherent support for “between” predicates, whereas it re-
quires expensive searching in traditional “flat” run files.

The resulting runs with partial key ranges enable optimi-
zations traditionally conceived for partially pre-sorted
inputs [H 77]. Two runs with disjoint key ranges can be
thought of as a single run, and can together, one after an-
other, serve as a single input in a future merge step, a
technique called “virtual concatenation” here. In addition
to the traditional use of this technique, a B-tree even per-
mits to rearrange key ranges within runs. Instead of merg-
ing or concatenating entire runs, fractions of runs defined
by key ranges could be merged or concatenated. When
reaching a given pre-planned key, one or multiple merge
inputs are removed from the merge logic and other runs
added. For example, consider an external merge sort with
memory for a fan-in of 10, and 18 runs remaining to be
merged with 1,000 records each. The keys are strings
starting with a character in the range ‘a’ to ‘z’. Presume
both these keys occur in all runs, so traditional virtual
concatenation does not apply. However, presume that in 9
of these 18 runs, the key ‘m’ appears in the 100th record;
while in the other runs, it appears in the 900th record. The
final merge step in all merge strategies will process all
18,000 records, with no savings possible. The required
intermediate merge step in the standard merge strategy
first chooses the smallest 9 runs (or 9 random runs, since
they all contain 1,000 records), and merge those at a cost
of 9,000 records read, merged, and written. The total
merge effort is 9,000 + 18,000 = 27,000 records. The al-
ternative strategy proposed here merges key ranges. In the
first merge step, 9 times 100 records with keys ‘a’ to ‘m’
are merged followed by 9 times 100 records with keys ‘m’

to ‘z’; all 1,800 records into a single output run. The final
merge step merges these 1,800 records with 9 times 900
records with keys ‘a’ to ‘m’ followed by another 9 times
900 records with keys ‘m’ to ‘z’. Thus, the total merge
effort is 19,800 records – a savings of about 25% in this
(artificial) example. Starting a merge at such a “given”
key within a run on disk is very inefficient with traditional
runs, but is no problem if runs are stored in a B-tree.

Given all these adaptive mechanisms1, one important de-
sign issue is management of information about runs, how
to determine efficiently and at any time which runs cur-
rently exist, their sizes and their key ranges. In an index
with only a few partitions, it is possible to enumerate the
partitions at the expense of one root-to-leaf probe per par-
tition, possibly saving the first and the last probe through
constraints on the artificial leading key column. In a large
external merge sort, one can determine the set of runs in
the same way. Even some of the interesting properties of
runs, e.g., run sizes, can be estimated quite accurately be-
cause all leaves and all interior nodes of the B-tree are
filled 100%. It is probably more efficient, however, to
employ a separate table with information about runs. De-
pending on the detail captured, e.g., information about
entire runs only or information about key distributions
within runs for virtual concatenation of key ranges, this
table might need to be stored on disk. One design allocates
a small amount of memory to run management, e.g., two
pages, and overflows all further run descriptors to disk.
Merge planning is based on those two pages, and only
when the number of runs has shrunk such that their de-
scriptors fit on one page, another page of run descriptors is
loaded. In an alternative design also using a small amount
of memory, intermediate merge steps are forced when the
number of runs exceeds a given threshold. Note that for
such forced intermediate merge steps, merge planning
should attempt to merge runs with the most similar sizes
rather than the smallest runs, which is the usual optimiza-
tion heuristic for merge planning.

To summarize this section on sorting, capturing runs in
an external merge sort opens new opportunities, princi-
pally in two directions. First, it enables more efficient sort-
ing due to accurate deep forecasting and to virtual con-
catenation of key ranges. Second, it enables mechanisms
that enable large sort operations to adapt to the current
system load quickly and over a wide range of resource
levels. In other words, it enables mechanisms required in
self-tuning database management systems.

1 For memory adjustment during run generation, Zhang and Lar-
son proposed a method that is both adaptive and cache-efficient
[ZL 97]: Sort each incoming data page into a mini-run, and
merge mini-runs (and remove records from memory) as required
to free space for incoming data pages or competing memory
users. Techniques from [LG 98] can be adapted to manage space
for individual records, including variable-length records.

Index operations
Database system use sorting for many purposes, not the

least among them is efficient construction of B-tree in-
dexes. All the sorting techniques discussed above apply to
index creation operations, including pause and resume
without loosing or wasting work, e.g., after a load spike or
server shutdown. In addition, online index creation can
exploit B-tree indexes with an artificial leading key col-
umn in an interesting way, as follows. At the end of the
run generation phase, a single B-tree contains all future
index records, albeit not yet in the final order. Nonethe-
less, the records are already sufficiently organized to per-
mit reasonably efficient searches. Thus, concurrent queries
may start exploiting the new index after only a single pass
over the data, even before the start of the merge phase. If
the index creation requires only a single merge step (the
usual case nowadays), this means that the index is avail-
able for querying in half the time of traditional index crea-
tion. For a very large index, the reduction in latency might
even be a factor 3 (for a two-level merge sort).

When searching indexes that are not fully merged and
optimized yet, there is a compromise in search efficiency
but, unless the initial runs are very small, it is faster to
probe into each run using a root-to-leaf B-tree traversal
than to scan the new B-tree in its entirety. For example,
presume that all nodes above the leaves or at least above
the leaves’ immediate parent nodes will fit in the buffer
and therefore will not incur I/O during a probe. Thus, each
root-to-leaf traversal will incur at most two random I/Os,
which takes about 12 ms using contemporary fast disks.
Recall that two root-to-leaf passes may be required for
each run or partition within the B-tree, or about 24 ms per
distinct value in the artificial leading key column. During
that time, today’s fast disk drives can deliver about 8 MB
at their nominal (ideal) speed of 320 MB/s. Thus, if the
average initial run is longer than 8 MB, queries will per-
form better by probing the new index than by scanning the
old storage structures. Note that a file scan at full speed
puts much more load on the system’s CPUs, memory, and
bus than repeated index probes; thus, index probes are
even more preferable in a multi-user environment.

For correct transactional behavior, the transaction creat-
ing the index should commit after the initial runs are com-
plete. Concurrent transactions should not query the new
index when its creation might still roll back; in fact, the
query optimizer should not create execution plans that
search an index whose existence is not yet committed.
After the initial index is committed, subsequent merge
steps may be part of the original statement execution but
should not be part of the original transaction. Instead,
since they only modify the internal index structure but not
database or index contents, they can be system transac-
tions that commit independently, rather similar to system
transactions used routinely today, for example during a
node split in a B-tree index. While concurrent queries

search and update the index, concurrent merge steps
should have excellent online behavior. Specifically, when
conflicting with a lock held or requested by a concurrent
user transaction, the merge step should let the concurrent
transaction proceed. Fortunately, as discussed in the sec-
tion above on sorting, small ranges can be merged indi-
vidually, even concurrently by multiple independent
threads, and a merge step can commit and terminate at any
time, and resume later without any work being wasted.

For correct durability after a new index has been com-
mitted in its initial format, all further modifications of the
index must be fully logged, including the merge actions.
Changes may be logged per page in order to avoid per-
record overheads, and it may be possible to combine log
records for page deletion (in the merge input) and page
creation (in the merge output). The initial data transfer
(prior to committing the initial index) may omit data log-
ging, similar to today’s techniques that require flushing
the new index to disk and capturing the index contents
when backing up the log, as optional in [MS 98]. Further
reductions in logging volume may be possible but require
further research, and they may introduce new tradeoffs
and compromises, e.g., retaining rather than reclaiming
data pages of merge input runs.

If concurrent transactions update the indexed table
(view, etc.) while the initial runs are created, these updates
must be applied to the future index before it may be que-
ried or updated. There are two well-known methods to do
so [MN 92]: either a log-driven “catch up” phase applies
these updates to the index after the index builder com-
pletes, or the concurrent transactions apply their updates
immediately to the index, which in the present proposal
consists of initial runs. Given that the recovery log typi-
cally cannot be searched by key value, the latter technique
is more interesting here. Thus, a new index must be tagged
“in construction” such that updates but not queries con-
sider the index. Deletions of records not yet in the index
insert some special markers or “anti-matter” that will be
applied and cleared out later by the index builder. Trans-
actions searching the index before the merge phase com-
pletes must search not only for valid records but also for
anti-matter, very similar to searching in a differential file
[SL 76]. Fortunately, all insertions, deletions, and anti-
matter insertions by concurrent transactions can be col-
lected in a single partition, i.e., a single, constant, well-
known value for the artificial leading key column. Assum-
ing record-level or key value locking, the level of lock
contention among concurrent transactions should not be
greater than lock contention will be in the final index, and
thus may be presumed to be acceptable. In order to reduce
lock and latch contention between concurrent transactions
and run generation within the index builder, it is advanta-
geous to separate this B-tree partition from the runs, e.g.,
use value 0 in the artificial leading key column for inser-

tions and deletions by concurrent transactions and start run
generation with run number 1.

The possibility of creating a new index in a single pass
over the data, to the point of making the index usable to
retrieval queries even if it is not immediately optimal, can
be extended even further. If the data source during the
index creation is ordered, e.g., if it is a primary index, key
ranges in the source will approximately correspond to ini-
tial runs in the index being built. Specifically, if run gen-
eration repeats read-sort-write cycles (as many sort im-
plementations based on quicksort do), initial runs in the
new index will precisely correspond to key ranges in the
old index. If run generation streams data from the input to
the initial runs (as many sort implementation based on
replacement selection do), the steady pipeline can be inter-
rupted and flushed every now and then, or at least the as-
signment of run numbers to records entering the priority
heap in replacement selection can be modified to flush
input records into the new index. After all records with
key values in the old index within a certain range have
been flushed into the new index (albeit in multiple runs),
the set of records already captured in the new index can be
described with simple range predicates in both the data
source and the new index being built. In the scanned data
source, the predicate uses the search key of that index, and
in the new index, the predicate uses the run number, i.e.,
the artificial leading key column. Such simple range
predicates are, of course, fully supported in all implemen-
tations of indexed (materialized) views; thus, even such a
partial index [S 89b] can be made available to the opti-
mizer, very similar to an index on a (materialized) selec-
tion view.

For views of this type, optimizers can construct dynamic
execution plans with two branches for each table access,
one branch exploiting the new index for a query predicate
subsumed by the predicate describing the range of rows
already indexed, and one branch to process the query
without the new index. Note that some query executions
may employ both the old and the new indexes, relying on
two mutually exclusive range predicates for the two in-
dexes to find each qualifying row exactly once. Thus, a
new B-tree index can be considered by the query opti-
mizer immediately after index creation begins, and it be-
comes more and more useful for query processing as index
constructions proceeds, both during initial run generation
(range by range) and during the subsequent merge phase
(fewer and fewer partitions or runs within the new B-tree).
In the extreme case, a new index can be committed in-
stantly without moving any data at all and independently
of the size of the data source and of the new index. In
other words, the initial user transaction verifies schema
and permissions, reserves sufficient disk space for the
entire future index, creates initial catalog entries including
a boundary predicate and a boundary not satisfied by any
data currently in the database, and then commits and re-

ports success to the user. Thus, it leaves all data move-
ment and sort work to asynchronous system transactions
that will run later. The price of this flexibility is that even
the initial data insertions must be fully logged, like all data
movement after the existence of the index has been com-
mitted, although further research may be able to reduce
the logging volume.

An index can be populated not only for one continuous
range, as proposed above, but for multiple ranges that may
or may not be contiguous, called “inclusion ranges” else-
where [SS 95]. These ranges are maintained in a control
table very similar to control tables (also called “tables of
contents”) commonly used today for selective replication
or caching. Despite describing the contents of an index,
these control tables are data, not meta data. Therefore, a
change in a control table does not trigger plan invalidation
or query recompilation. Note that a single control table
may suffice for an entire database with all its tables and
indexes if normalized keys are used, i.e., in some sense all
indexes only have one search column, which is a binary
string. While an additional range is being populated, con-
current updates (by concurrent transactions) must be ap-
plied to the new index, including anti-matter, as discussed
above for online index creation without ranges. Thus, in-
dividual ranges must be tagged as “fully operational” or
“in construction,” and branch selection in dynamic execu-
tion plans for updating a table are controlled slightly dif-
ferently than in dynamic plans for selecting from a table.

Partial indexes also open a door for another promising
technique. If the query optimizer cannot find a suitable
index for a query and must thus plan a table scan, it can
determine the most useful possible index and then prepare
a dynamic plan with two alternative branches. One branch
exploits this index if it already exists; the other branch
performs the table scan but leaves behind a B-tree that
contains the initial runs for this index, leaving it to an
asynchronous utility operation to optimize this index by
merging those runs into a single traditional B-tree. Actu-
ally, there must be three branches in the query plan, the
third one simply performing the table scan without leaving
anything behind, to be used if the empty initial index can-
not be created when the query plan needs to start, e.g., due
to space constraints or due to locks held by concurrent
transactions. Note that run generation using a replacement
selection does not substantially alter the flow behavior of
the file scan. One of the issues that need to be resolved is
how the file scan produces records for two different trans-
action contexts, the user query and the index builder. For-
tunately, using “insert” and “delete” tags familiar from
maintenance plans for indexed (materialized) views can
readily be adapted for this purpose.

Unique indexes, or indexes built for efficient mainte-
nance of uniqueness constraints, pose an additional chal-
lenge for online index creation. The traditional approach
has been to fail concurrent transactions or the index

builder when a uniqueness violation is detected [MN 92].
Thus, index creation may be aborted hours or even days
after it starts and minutes before it completes due to a sin-
gle committed insertion by a concurrent transaction, even
if another concurrent transaction is about to delete one of
the duplicate keys and commit it before the index builder
will complete. Fortunately, a useful technique exists that
also extends “soft constraints” [GSZ 01] from single-row
“check” constraints to uniqueness and key constraints. Its
essence is to maintain a counter of uniqueness violations
for each possibly desirable uniqueness constraint, in the
minimal case only one but in the maximal case for all pre-
fixes of the B-tree’s search key. Thus, whenever a B-tree
entry is inserted or deleted, it must be compared with one
or both of its neighbors, and counters must be incremented
or decremented appropriately. It is important to maintain
these counters accurately and with correct transaction se-
mantics. While escrow locks [O 86] might prove helpful
for such counters, some systems maintain such counters
apparently without them [CAB 93], possibly by using
transaction-internal counters made globally visible only
during commit processing. When a counter for a specific
prefix is zero, this set of leading columns is unique and a
uniqueness constraint can be enabled instantly without
further validation. If such counters are maintained during
index construction, neither concurrent transactions nor the
index builder must be aborted due to uniqueness viola-
tions, and the index structure may be retained even if the
uniqueness constraint is not satisfied at the time the index
builder completes. Note that this separation of indexes and
uniqueness is entirely consistent with the physical nature
of indexes (they are an issue of database representation,
not of database contents) and the logical nature of con-
straints (which limit and describe the database contents,
not the data representation), and is also reflected appropri-
ately in the SQL standards, which include syntax and se-
mantics for constraints but not for indexes.

It might seem that an artificial leading key column inhib-
its using this technique. Indeed, while there are multiple
distinct values for this column, it is impossible to activate
a uniqueness constraint instantly. Instead, the existing
partitions of the index B-tree must be merged to verify
uniqueness. The result of this merge step can be material-
ized, in which case this merge step is precisely the final
step of sorting or of index creation. Alternatively, the
merge result can be ignored, leaving the final optimization
of the index to a subsequent online reorganization. Notice,
however, as mentioned earlier, that enforcing a uniqueness
constraint using an index with multiple partitions is more
expensive than using one with only a single partition.
Thus, finalizing the B-tree index before activating a
uniqueness constraint based on the new index seems like
the right approach in general. Nonetheless, there are also
situations in which multiple partitions in persistent in-
dexes are extremely useful, e.g., when importing large

amounts of data into a pre-existing large and fully indexed
database.

To summarize this section, a new index can be available
for queries substantially earlier than in traditional methods
if initial sort runs are collected in a single B-tree, and
online index construction can even be incremental. More-
over, self-tuning query plans as briefly outlined here
would represent a great step forward compared to the tun-
ing capabilities found in most database systems today;
maybe B-tree indexes with an artificial leading key col-
umn will turn out an important step in this direction due to
the single-pass construction of the initial index. Rather
than relying on “wizards” or “advisors” that run outside
the query processor [ACN 00, VZZ 00], creating and
populating useful indexes can become a native and inte-
gral part of query optimization and query execution. Inci-
dentally, query optimizers routinely decide on index crea-
tion and have the query execution plan populate such in-
dexes; the main difference is that those temporary indexes
today are created, populated, used, and destroyed within a
single query plan and transaction context rather than main-
tained during database updates and then amortized over
multiple invocations of the same (possibly parameterized)
query.

B-tree loading
While we may hope that indexed (materialized) views

substantially alleviate the response time in relational
OLAP (online analytical processing), one issue that will
remain is importing new data into existing large, popu-
lated, and indexed data warehouses. In a very common
scenario, at the end of every month, another month’s
worth of data is added to the detail data. The key difficulty
is that the largest table typically has multiple indexes, all
on different columns, and only one index on time. Tradi-
tional solutions have been to keep separate tables and their
indexes for each time period, equivalent solutions using
partitioning and “local” indexes (i.e., secondary indexes
are partitioned precisely like the primary index or the base
table), dropping all indexes during data import and re-
building them afterwards, or special “update execution
plans” that merge an ordered scan of the old index with a
sorted set of index insertions into an entirely new index. It
appears that partitioning with local indexes has shown the
most desirable properties, namely fast data import and
short delay until queries can exploit new indexes on the
new data. The unfortunate aspect of partitioning is that
many individual partitions must be managed for each in-
dex, with additional catalog tables, catalog entries, catalog
look-ups, etc.; the other very unfortunate aspect is, of
course, that each partition must be searched when the
query predicate does not restrict the query to a single time
period.

B-tree indexes with an artificial leading key column of-
fer an attractive combination of features in these situa-

tions. In effect, the artificial leading key column defines
partitions; however, it does so within the structure of a
single index, single B-tree, and single partition as far as
the catalogs and the query optimizer are concerned. More-
over, the partitions within the B-tree are temporary, to be
removed by online reorganization at the earliest conven-
ient time. This perspective, using the artificial leading key
column as a form of partitioning, immediately leads to a
very efficient bulk insert strategy: let each large insert
define a new partition, and then let incremental index re-
organization re-optimize the B-tree structure at a conven-
ient time. In the best case, this reorganization is incre-
mental, online, and responsive to the current system load.
Note that multiple batches of bulk insertions can be in-
serted into a B-tree before reorganization takes place, that
reorganization may proceed incrementally range by range,
that a reorganization step does not necessarily affect all
existing partitions, and that reorganization can proceed
even while another batch is being imported. Note also that
multiple batches can be inserted concurrently, even by
multiple users; contention for locks and latches should be
negligible if page splits optimize the key distribution for
maximal prefix truncation [BU 77] rather than assign pre-
cisely half the data to each resulting page.

Letting each large insert operation create a single new
partition implies that the insert operation pre-sorts the new
data appropriately for each index. Following the discus-
sion earlier in the paper, this sort operation might employ
a B-tree to hold intermediate runs. Rather than using a
separate, temporary B-tree, however, the bulk import op-
eration can immediately use the import target. Thus, when
importing into a B-tree index, the incoming data is proc-
essed into runs, and runs are added immediately as indi-
vidual partitions to the permanent B-tree. When importing
data into a table with multiple B-tree indexes, each of
those forms its own new partitions, which are independent
of the new partitions in the other B-trees. Thus, runs for all
B-trees can be formed concurrently, such that incoming
data is never written to any temporary structures, meaning
that it is processed in memory only once before it can be-
come available for retrieval queries. Both load-sort-store
and replacement selection can be used for run generation.
The expected size of the runs relative to the memory size
depends on the choice of algorithms, but runs should be at
least as large as the allocated memory in all cases. As dis-
cussed for index creation, parts of the data can be commit-
ted and made available for queries at any time; of course,
in this case, all participating indexes must be flushed in
order to ensure transactional consistency among them.

It might be interesting to compare the effort in a tradi-
tional bulk insert with the effort in the scheme proposed
here, i.e., the combined effort of appending partitions and
merging them into the main partition. The traditional bulk
insert strategy for a single large batch sorts its entire insert
set and then merges the sorted set into the B-tree [MS 98,

GKK 01]. Sorting the insert batch typically relies on an
external merge sort. If there are multiple batches, each of
them is sorted and each of them requires updating many or
even all leaf pages in the index. The proposed method, on
the other hand, works efficiently independent of the num-
ber and size of batches, unless batches are much smaller
than the memory that can be dedicated to run generation.
Runs are formed and merged using the same amount of
memory and effort in the traditional and in the proposed
strategies; the main difference is that the merge strategy
can be optimized ignoring which batch generated which
runs.

The proposed bulk insert strategy offers further benefits.
Maybe most importantly, newly imported data are avail-
able for queries much faster than in traditional strategies,
even if multiple indexes need to be maintained. Thus, the
proposed strategy is suitable for indexing and querying
continuous data streams. Moreover, the proposed algo-
rithm reduces the number of index pages that are modified
and thus will participate in a transaction rollback (should
that be necessary) or in an incremental backup immedi-
ately following the data import. In addition, this strategy
effectively eliminates lock conflicts between the import
transaction and any concurrent transactions. Finally, many
fewer log records are required during bulk insertion be-
cause each actual log record can describe an entire new
page, rather than an individual record insertion. Note that
index entries in secondary indexes are often much smaller
than the fixed space overhead for log records, including
previous LSN, next undo LSN, etc. [MHL 92]. An index
entry of 20 bytes might result in a log record of 80 bytes –
thus, paying the overhead of a log record once per page
rather than per index entry substantially reduces the log
volume during the insert operation. If, on the other hand,
bulk insertions are not logged but only flushed to disk at
the end of the insert operation, to be made truly durable
only by a backup, partitioning within a B-tree substantially
reduces both the flush effort and the backup volume.

Unfortunately, there are also some concerns during data
loading. If enforcement of a uniqueness constraint relies
on a B-tree index, duplicate search keys may be located
not only in immediately neighboring B-tree entries but
also in other partitions. In other words, if it is truly im-
perative that the B-tree at no time and under no circum-
stances contain duplicate entries, bulk loading has to
search in all partitions for all search keys. Note that each
such search can be leveraged for multiple new records; the
resulting algorithm resembles a merge join with each prior
partition (actually a merge-based anti-semi-join). If, on the
other hand, it is sufficient that the uniqueness constraint
holds only for the B-tree entries in the default partition
(say value 0 for the artificial leading key column), bulk
insert into other partitions can proceed at full speed, and
verification of the uniqueness constraint can be left to the
B-tree reorganization performed later. For example, the

reorganization might simply skip over duplicate keys;
when reorganization is complete, only duplicate keys are
left in those partitions. In fact, most implementers and
administrators of data warehouses prefer a tolerant data
loading process, because typically only a small minority of
records violates any constraints and it is not worthwhile to
disrupt a high-speed loading process for a few violations
that can be identified and resolved later.

A related issue is the generation of “uniquifiers” in pri-
mary indexes. One design lets entries in secondary indexes
“point” to entries in the primary index by means of search
keys – the advantage of this design is that page splits in
the primary index do not affect the secondary indexes
[O 93]. If the search keys in the primary index are not
unique, an artificial uniquifier column is added as a trail-
ing column to each clustering key. (In efficient implemen-
tations, one instance per unique search key may have a
NULL uniquifier value, which like other NULL values is
stored very compressed in the primary index and in any
secondary index.) If multiple partitions may hide actual
duplicate search keys in the primary index, either the as-
signment of uniquifiers must search all partitions or the
“pointer” from a secondary index into the primary index
must include the value of the artificial leading key column
in the primary index. Moreover, any reorganization of the
primary index may need to assign new uniquifier values
and thus require expensive updates in all secondary in-
dexes.

Perhaps a better design that requires less reorganization
of secondary indexes adopts an additional artificial trailing
key column in the primary index, and a slowly increasing
boundary value indicating which values for the artificial
leading key column have already been used and reorgan-
ized into the main part of the primary index. If a value for
the artificial leading column is found in an entry in a sec-
ondary index that is higher than this boundary value, it is
interpreted as the artificial leading key column in the pri-
mary index as described above. If, however, a value is
found that is lower than the boundary value, the pointer
into the secondary index is dereferenced using the default
value for the artificial leading key column in the primary
index and the old low partition number is interpreted as
the value for the new trailing key column. Thus, a table’s
row and all its representations in the primary and all sec-
ondary indexes will retain the initial partition number for-
ever, but the interpretation of that number changes over
time when the primary index is reorganized.

To summarize this section, B-tree indexes with parti-
tions defined by an artificial leading key column transfer
the advantages of partitioning without some of the
disadvantages. In particular, a large data insert operation
or bulk insert can append runs or partitions to all B-tree
indexes in a table, whether or not the load file and the in-
dexes are sorted on the same columns, and it does so
without lock conflicts and with minimal log volume. It is

even possible to append runs to multiple indexes, which is
particularly attractive for capturing and indexing non-
repeatable data streams.

Other applications
B-tree indexes with artificial leading key columns can

improve not only large inserts but also small ones. Other
researchers have proposed constructing multiple coordi-
nated structures, e.g., the log-structured adaptations of B-
trees [MOP 98, OCG 96], or employing new structures
with new algorithms, tuning parameters, etc., e.g., buffer
trees [A 95, V 01] or the Y-tree [JDO 99]. Instead, a single
traditional B-tree can be used, with multiple partitions
based on an artificial leading key column, with one parti-
tion small enough to fit in memory. Inserts are directed to
this partition, and online reorganization in the background
merges its records into the main partition of the B-tree.
Note that this idea works for both updates and retrievals. If
certain values are searched more often than others, those
can be gathered into one small partition, such that those
searches can be performed always entirely within the
buffer pool. In a way, this design creates a self-organizing
search structure.

Large deletions, on the other hand, can greatly benefit
from a preparatory online reorganization. First, all index
entries to be deleted are assigned to a single B-tree parti-
tion, i.e., are assigned a new value of the artificial leading
key column. When this is complete, a large and efficient
range deletion can remove all those entries from the B-
trees very efficiently. The reorganization is about as fast
as the bulk deletion techniques described in [GKK 01],
whereas the actual deletion should be an order of magni-
tude faster. A special application of this technique is data
migration in a parallel database or any other partitioned
data store, e.g., when adjusting the boundary between two
partitions: first prepare all source indexes for a large dele-
tion using small online steps, then move data using the
bulk delete and bulk insertion strategies proposed in this
paper, and finally optimize the destination indexes in
small online steps. Note that the transactions performing
the initial and final reorganizations are local transactions;
therefore, multi-node commit processing is needed only
for the actual data movement.

Another promising application combining insertions and
deletions is capturing and holding a window within a con-
tinuous stream of incoming data, e.g., sensor data. The
insertions may be grouped, sorted, and inserted as a batch
similar to traditional bulk data import; or random inser-
tions can always focus on the latest, smallest, most active,
and therefore memory-resident partition. If only a window
of recent data is to be retained and items older than a pre-
set threshold are to be deleted, e.g., in order to analyze
auto-correlations or periodic phenomena within a stream,
deletions can similarly either be batched or focused within
a single, small and thus memory-resident partition.

Incremental index maintenance over continuous input
streams also enables a symmetric dataflow join that mir-
rors the benefits of earlier proposals [DST 02, WA 91] –
two indexes are built on the two join inputs, input from
either join input is accepted at any time and matched
against the currently existing index on the other input.
This strategy closely mirrors earlier prototypes of symmet-
ric hash join; the difference is that the in-memory hash
table and hash table overflow are replaced by a B-tree and
the standard buffer manager support for B-tree indexes.

Presuming incremental online index reorganization is
available, the techniques discussed above for creating B-
tree indexes can be extended to other index operations,
e.g., changing the schema of the records stored and in-
dexed. A typical example is changing an existing col-
umn’s type, length, or precision, e.g., from an integer or a
decimal numeric to a floating point type. If all records in
the index are modified immediately as part of the change
statement, such a simple statement may run a long time,
typically with an exclusive lock on the entire index or
even the entire table. Incremental online reorganization is
an attractive alternative, although it implies that the index
contains both old and new records for a while, and that the
index must support both queries and updates for this mix-
ture of record formats, which introduces new complexity.
If records and their keys are not normalized, records of old
and new formats can be compared correctly, albeit quite
expensively – every single comparison must consider the
formats of the two records currently being compared. If
records and keys are normalized, and in particular if the
normalized form is compressed, normalization of the old
and new record formats might not permit correct compari-
sons. In that case, defining two partitions within a B-tree
index is a simple and effective solution, with different
normalizations in the separate partitions. It permits instant
completion of the user’s request as well as efficient nor-
malization and incremental online reorganization.

Not only different schemas and their normalization but
also different validity status can be assigned to different
partitions. For example, online index creation “without
side file” [MN 92] requires that concurrent transactions
insert a deletion marker (“anti matter”) into an index if
they cannot delete an entry because the index builder has
not inserted it yet. If, for some reason, it is desirable to
keep a large part of an index stable, e.g., in order to limit
the size of incremental backups, insertions and deletions
may all be inserted into a separate partition, using anti
matter to represent deletions. Of course, this is very simi-
lar to differential files [SL 76], but applied specifically
within B-tree indexes in database systems. In a variation
of this technique, if insertions and deletions are marked
with time stamps, multiple partitions can serve as main B-
tree and its associated version store in multi-version con-
currency control and snapshot isolation. The required
query execution techniques are very similar to those re-

quired in some execution plans for large updates, namely
those that merge a pre-existing index with the delta stream
into an entirely new index. The only difference is that the
merge result is not stored in a new index structure but
pipelined to the next operation in the query evaluation
plan.

To summarize, there seems to be a large variety of situa-
tions in which partitioned B-tree indexes using an artificial
leading key column can enable or at least simplify imple-
mentation of online changes of schema and data in large
databases.

Implementation notes
B-tree indexes with artificial leading key columns can be

implemented at two levels. If B-tree indexes with artificial
leading key columns are not a native feature in a database
management system, a database administrator can create
those columns, one per index, and adjust various com-
mands to take advantage of the resulting flexibility. For
example, bulk insert commands must assign suitable val-
ues to these columns, constraints must restrict these col-
umns to a single constant value at most times, and histo-
grams must exist for the columns beyond the artificial
leading key column. Online index reorganization can be
achieved using scripts that search for indexes with multi-
ple values in the artificial leading key column and, when
found, assign new values to some rows selected by ranges
of the trailing index columns. While this method is more
cumbersome and less efficient than a native implementa-
tion, it achieves many of the desired benefits.

If, on the other hand, the vendor deems the advantages
discussed so far important enough, the artificial leading
key column can be a hidden implementation feature of B-
tree indexes. Whether a customer wants them or not, they
are always there. Prefix truncation ensures that their space
usage and their overhead in individual comparisons are
negligible, soft constraints ensure that they do not intro-
duce additional root-to-leaf B-tree searches (i.e., in most
cases the optimizer can exploit that there is only a single
value), and a suitable histogram implementation ensures
that the artificial leading key column does not confuse
selectivity estimation in the query optimizer. Online index
reorganization is a great advantage in this implementation
strategy.

In order to ensure correct transaction semantics, tradi-
tional locking mechanisms suffice. For example, index
reorganization today employs many small system transac-
tions – these transactions do not change database contents,
only data representation, and therefore can commit even if
the invoking transaction might roll back, and they can
commit without forcing the commit record to stable stor-
age. If system transactions are small, e.g., B-tree page
splits or small reorganizations, a “no steal” buffer policy
permits omitting “undo” log records [HR 83]. Commercial
database management systems already employ various

techniques to avoid “redo” log records for index creation.
During run generation in online index creation, each trans-
action scans a range of input data, produces as many runs
as necessary, inserts run descriptors into the auxiliary ta-
ble, updates the boundary value in the predicate describing
the coverage of the new index, and then commits. Concur-
rent user transactions retain ordinary locks in the auxiliary
table and thus prevent runs from vanishing during a user
transaction; this is the reason why concurrent user transac-
tions should be small and short, and one of the ways in
which large concurrent transactions reduce the efficiency
of online index creation.

Summary and conclusions
The purpose of this paper has been to re-think tech-

niques that might have seemed completely understood. It
turns out that a fairly simple and maybe surprising tech-
nique can substantially increase the performance and ca-
pabilities of sorting and indexing, in particular in the in-
creasingly important aspects of self-tuning and self-
management as well as online operations for continuous
availability. Levels of resource allocation in a multi-user
server must adapt fast to be truly useful, and online index
operations are an important feature for both low-end and
high-end database installations: At the high end, online
operations improve service availability, and at the low
end, they are a crucial enabler of automatic index tuning,
because automatically dropping and creating an index is
only acceptable and is only invisible if all applications and
all data remain available at all times without “random”
interruptions of service due to automatically initiated tun-
ing or maintenance.

The central idea of this paper is to employ ordinary B-
trees in a slightly unusual way, namely by introducing an
artificial leading key column and thus, effectively,
partitioning within a single B-tree. Earlier sections
reviewed possible concerns and overheads, most of which
can be overcome or reduced to a truly negligible level, as
well as the many benefits of the proposed change.
Supporting multiple partitions in a single B-tree index is
an extraordinarily powerful concept, in particular if
combined with incremental online reorganization using
the merge logic well known from external sorting. It
permits using a single B-tree to store all runs in an
external merge sort, which in turn enables relatively
straightforward implementations of important dynamic
sorting techniques, including deep forecasting when
merging runs from many disk drives as well as dynamic
memory management even to the extremes of running
multiple merge steps for separate ranges concurrently and
of pausing a merge step at any point to resume it later
without wasting any work. Partitioning within a single B-
tree also enables practically useful advances in online in-
dex operations, e.g., index creation or schema modifica-
tion. The most exciting among those is that a new index
can be made available to queries in half the time of the

the time of the traditional method, and even less if partial
indexes are exploited by the query optimizer. Finally, par-
titioning within a single B-tree can be exploited for speed-
ier updates and retrievals, most importantly bulk insertion,
which can proceed with the speed of index creation even
when adding new records within the preexisting key
ranges of multiple populated B-tree indexes.

Acknowledgements
Several friends and colleagues have made a number of
interesting and helpful suggestions on earlier drafts of this
paper or its contents, including David Campbell, John
Carlis, César Galindo Legaria, Jim Gray, James Hamilton,
Joe Hellerstein, Tengiz Kharatishvili, Per-Åke Larson,
Steve Lindell, and Florian Waas.

References
[A 95] Lars Arge: The Buffer Tree: A New Technique for
Optimal I/O-Algorithms. Workshop on Algorithms and
Data Structures, Lecture Notes in Computer Science 955,
Springer Verlag, 1995: 334-345.
[ACN 00] Sanjay Agrawal, Surajit Chaudhuri, Vivek R.
Narasayya: Automated Selection of Materialized Views
and Indexes in SQL Databases. VLDB Conf. 2000: 496-
505.
[AON 96] Kiran J. Achyutuni, Edward Omiecinski, Sham-
kant B. Navathe: Two Techniques for On-line Index
Modification in Shared Nothing Parallel Databases.
SIGMOD Conf. 1996: 125-136.
[CAB 88] George P. Copeland, William Alexander, Ellen
E. Boughter, Tom W. Keller: Data Placement In Bubba.
SIGMOD Conf. 1988: 99-108.
[CAB 93] Richard L. Cole, Mark J. Anderson, Robert J.
Bestgen: Query Processing in the IBM Application Sys-
tem/400. IEEE Data Eng. Bull. 16(4): 19-28 (1993).
[BM 72] Rudolf Bayer, Edward M. McCreight: Organiza-
tion and Maintenance of Large Ordered Indices. Acta
Informatica 1: 173-189 (1972).
[BU 77] Rudolf Bayer, Karl Unterauer: Prefix B-Trees.
ACM TODS 2(1): 11-26 (1977).
[DR 01] Kurt W. Deschler, Elke A. Rundersteiner: B+
Retake: Sustaining High Volume Inserts into Large Data
Pages, ACM Fourth Int’l Workshop on Data Warehousing
and OLAP, Atlanta, GA, 2001.
[DST 02] Jens-Peter Dittrich, Bernhard Seeger, David
Scot Taylor, Peter Widmayer: Progressive Merge Join: A
Generic and Non-blocking Sort-based Join Algorithm.
VLDB Conf. 2002.
[GKK 01] Andreas Gärtner, Alfons Kemper, Donald
Kossmann, Bernhard Zeller: Efficient Bulk Deletes in
Relational Databases. ICDE 2001: 183-192.
[GL 01] Goetz Graefe, Per-Åke Larson: B-Tree Indexes
and CPU Caches. ICDE 2001: 349-358.

[GSZ 01] Jarek Gryz, K. Bernhard Schiefer, Jian Zheng,
Calisto Zuzarte: Discovery and Application of Check Con-
straints in DB2. ICDE 2001: 551-556.
[H 77] Theo Härder: A Scan-Driven Sort Facility for a
Relational Database System. VLDB Conf. 1977: 236-244.
[H 81] Wilfred J. Hansen: A Cost Model for the Internal
Organization of B+-Tree Nodes. ACM TOPLAS 3(4):
508-532 (1981).
[HD 91] Hui-I Hsiao, David J. DeWitt: A Performance
Study of Three High Availability Data Replication Strate-
gies. PDIS 1991: 18-28.
[HR 83] Theo Härder, Andreas Reuter: Principles of
Transaction-Oriented Database Recovery. ACM Comput-
ing Surveys 15(4): 287-317 (1983).
[JDO 99] Chris Jermaine, Anindya Datta, Edward
Omiecinski: A Novel Index Supporting High Volume
Data Warehouse Insertion. VLDB Conf. 1999: 235-246.
[JNS 97] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S.
Sudarshan, Rama Kanneganti: Incremental Organization
for Data Recording and Warehousing. VLDB Conf. 1997:
16-25.
[JOY 02] Chris Jermaine, Edward Omiecinski, Wai-Gen
Yee: Out From Under the Trees. Technical Report, Geor-
gia Inst. of Technology, 2002.
[K 73] Donald E. Knuth: The Art of Computer Program-
ming, Volume III: Sorting and Searching. Addison-
Wesley 1973.
[L 95] David Lomet, personal communication, 1995.
[L 98] Per-Åke Larson, personal communication, 1998.
[LG 98] Per-Åke Larson, Goetz Graefe: Memory Man-
agement during Run Generation in External Sorting.
SIGMOD Conf. 1998: 472-483.
[LKO 00] Mong-Li Lee, Masaru Kitsuregawa, Beng Chin
Ooi, Kian-Lee Tan, Anirban Mondal: Towards Self-
Tuning Data Placement in Parallel Database Systems.
SIGMOD Conf. 2000: 225-236.
[MHL 92] C. Mohan, Donald J. Haderle, Bruce G. Lind-
say, Hamid Pirahesh, Peter Schwarz: ARIES: A Transac-
tion Recovery Method Supporting Fine-Granularity Lock-
ing and Partial Rollbacks Using Write-Ahead Logging.
ACM TODS 17(1): 94-162 (1992).
[MN 92] C. Mohan, Inderpal Narang: Algorithms for Cre-
ating Indexes for Very Large Tables Without Quiescing
Updates. SIGMOD Conf. 1992: 361-370.
[MOP 98] Peter Muth, Patrick E. O'Neil, Achim Pick,
Gerhard Weikum: Design, Implementation, and Perform-
ance of the LHAM Log-Structured History Data Access
Method. VLDB Conf. 1998: 452-463.

[MS 98] Microsoft Corp., SQL Server 7.0, product docu-
mentation, 1998.
[O 86] Patrick E. O'Neil: The Escrow Transactional
Method. ACM TODS 11(4): 405-430 (1986).
[O 93] Edward Omiecinski: An analytical comparison of
two secondary index schemes: physical versus logical
addresses. Inform. Sys. 18(5): 319-328 (1993).
[OCG 96] Patrick E. O'Neil, Edward Cheng, Dieter
Gawlick, Elizabeth J. O'Neil: The Log-Structured Merge-
Tree (LSM-Tree). Acta Informatica 33(4): 351-385
(1996).
[PCL 93] HweeHwa Pang, Michael J. Carey, Miron
Livny: Memory-Adaptive External Sorting. VLDB Conf.
1993: 618-629.
[RMF 00] Frank Ramsak, Volker Markl, Robert Fenk,
Martin Zirkel, Klaus Elhardt, Rudolf Bayer: Integrating
the UB-Tree into a Database System Kernel. VLDB Conf.
2000: 263-272.
[S 89a] Betty Salzberg: Merging Sorted Runs Using Large
Main Memory. Acta Informatica 27(3): 195-215 (1989).
[S 89b] Michael Stonebraker: The Case for Partial In-
dexes. SIGMOD Record 18(4): 4-11 (1989).
[S 94] Leonard D. Shapiro, personal communication,
1994.
[SC 92] V. Srinivasan, Michael J. Carey: Performance of
On-Line Index Construction Algorithms. EDBT Conf.
1992: 293-309.
[SL 76] Dennis G. Severance, Guy M. Lohman: Differen-
tial Files: Their Application to the Maintenance of Large
Databases. ACM TODS 1(3): 256-267 (1976).
[SS 95] Praveen Seshadri, Arun N. Swami: Generalized
Partial Indexes. ICDE 1995: 420-427.
[V 01] Jeffrey Scott Vitter: External memory algorithms
and data structures. ACM Computing Surveys 33(2): 209-
271 (2001).
[VZZ 00] Gary Valentin, Michael Zuliani, Daniel C. Zilio,
Guy M. Lohman, Alan Skelley: DB2 Advisor: An Opti-
mizer Smart Enough to Recommend Its Own Indexes.
ICDE 2000: 101-110.
[WA 91] Annita N. Wilschut, Peter M. G. Apers: Data-
flow Query Execution in a Parallel Main-Memory Envi-
ronment. PDIS 1991: 68-77.
[ZL 97] Weiye Zhang, Per-Åke Larson: Dynamic Memory
Adjustment for External Mergesort. VLDB Conf. 1997:
376-385.
[ZL 98] Weiye Zhang, Per-Åke Larson: Buffering and
Read-Ahead Strategies for External Mergesort. VLDB
Conf. 1998: 523-533.

