
Distributed Computing with BEA WebLogic Server

Dean Jacobs

BEA Systems
235 Montgomery St

San Francisco, CA 94104
USA

dean@bea.com

Abstract
This paper surveys distributed computing tech-
niques used in the implementation of BEA Web-
Logic Server. It discusses how application serv-
ers provide a distributed transactional infrastruc-
ture that extends outward from backend data-
bases. The basic treatment of data is character-
ized in terms of four types of clustered services
that differ in the way they manage state in mem-
ory and on disk. This paper also discusses how
application servers support loosely-coupled cli-
ents, both at the transport level and at the higher
level of server-to-server Web Services. Finally,
this paper speculates about the development of a
new application server persistence layer and its
use in widely-distributed computing.

1. Introduction
Application servers provide a secure, transactional, and
manageable environment for building enterprise applica-
tions. Application servers are fundamentally distributed
systems both because they use clustering to meet enter-
prise scalability and availability requirements and because
they integrate physically distributed elements within and
across enterprises. BEA WebLogic Server™ [1] is a dis-
tributed implementation of the Java™ platform for appli-
cation servers, the Java™ 2 Enterprise Edition (J2EE™)
[2]. WebLogic Server supports a variety of application
programming interfaces, including ones for servlets, com-
ponents, messaging, database access, and naming.

This paper examines how application servers provide
a distributed transactional infrastructure that extends out-
ward from backend databases. It identifies four types of

clustered services - stateless, conversational, cached, and
singleton - that differ in the way they manage state in
memory and on disk. By using these services appropri-
ately, strict ACID properties of the data can be relaxed to
improve application performance, scalability, and avail-
ability [3]. This paper discusses how WebLogic Server
implements the J2EE in terms of these service types.

This paper also examines how application servers
support loosely-coupled clients, which communicate us-
ing simple, industry-standard protocols such as HTTP [4]
and SOAP [5]. At a transport level, such clients require
careful treatment of front-end load balancers and Web
Servers to provide routing and session management. Sev-
eral configurations supported by WebLogic Server are
discussed. At a higher level, such clients engender a con-
versational, server-to-server programming model that
unifies synchronous remote procedure calls with asyn-
chronous store-and-forward messaging. This paper dis-
cusses the formulation of this model in WSDL [6] and its
implementation in BEA WebLogic Workshop™ [7].

Finally, this paper speculates about the future relation-
ship between application servers and databases. Applica-
tion servers create and manage significant amounts of
data for which conventional relational databases are less
than ideal. This paper argues for the development of a
new persistence layer that is tightly integrated with the
application server. This persistence layer should be fun-
damentally distributed and should take into account issues
of data replication and consistency. This paper further
argues that, to increase the acceptance of widely-
distributed computing models within the enterprise, appli-
cation servers should be given their own copy of backend
data in the manner of data warehouses. This approach
isolates the operational system from the load- and error-
handling requirements of widely-distributed applications
and can eliminate the overhead of run-time data mapping,
e.g., from relations to objects or XML. Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 2003 CIDR Conference

This paper is organized as follows. Section 2 presents
an overview of multi-tier cluster architectures for enter-
prise computing systems and compares application serv-
ers to their predecessors, distributed TP Monitors. Sec-

mailto:dean@bea.com

tion 3 characterizes application server treatment of data in
terms of the four types of clustered services. Section 4
discusses ways in which the basic application server in-
frastructure needs to be enhanced to support the server-to-
server programming model. Section 5 speculates about
the new application server persistence layer and its use in
widely-distributed computing.

2. Enterprise Computing Systems
Enterprise computing systems are primarily used for
transaction processing, which entails fielding client re-
quests and coordinating their submission to backend data-
bases and other transactional subsystems. Typical trans-
action processing applications, such as those for banking,
transportation, and manufacturing, perform simple data
entry and retrieval. In contrast, typical non-transactional
applications, such as those for analytical processing [8]
and scientific computing, are more compute-intensive.

2.1 Multi-tier Cluster Architectures

Enterprise computing systems are organized into logical
tiers, each of which may contain multiple servers or other
processes, as illustrated in Figure 1. The client tier con-
tains personal devices such as workstations or handheld
units, embedded devices such as network appliances or
office machines, or servers in other enterprise systems.
The presentation tier manages interactions with these
clients over a variety of protocols. Processes in the pres-
entation tier, such as Web Servers, do not run application
code. The application tier contains application servers
that run application code formulated in terms of servlet,
component, connector, and messaging APIs. The applica-
tion tier may itself be divided, for example, into a servlet
tier and a transaction tier. The persistence tier provides
durable storage in the form of databases and file systems.

phy
are
out
acc

segregating server into tiers is to improve scalability by
providing session concentration. The idea here is to
place many smaller machines in the front end and multi-
plex socket connections to fewer, larger machines in the
back end. The limit here occurs at the persistence tier,
where a small number of powerful machines provide a
reliable, shared foundation for the rest of the system. In
practice, session concentration in the front end is required
only by systems that support tens of thousands of clients.

A cluster is a group of servers that coordinate their ac-
tions to provide scalable, highly-available services. Scal-
ability is provided by allowing servers to be dynamically
added to or removed from the cluster and by balancing the
load of requests across these servers. High-availability is
provided by ensuring that there is no single point of fail-
ure in the cluster and by migrating work off of failed
servers. Ideally, a cluster offers a single system image so
that clients remain unaware of whether they are commu-
nicating with one or many servers [9]. A cluster may be
contained in a tier or may span several tiers.

The standard transaction-oriented workload consists of
many short-running requests. In this setting, parallelism is
exploited most efficiently by processing each request on
as few servers as possible, since the overhead for commu-
nication is relatively large. Consequently, it is preferable
to minimize the number of physical tiers in the system, up
to constraints such as firewalls, and to process a request
on only one server in each tier. In addition, simple round
robin or random load balancing schemes are particularly
effective and it is rarely worth the effort either to take
actual server load into account or to redistribute on-going
work when it occasionally becomes unbalanced. This is in
contrast to practices commonly employed for compute-
intensive applications [10].

One limitation to the scalability of an enterprise com-
puting system is its ability to concentrate data in an indi-
vidual place, such as a backend database or the memory
of a server. It is often possible to mitigate this problem by

 Client

Figure

A commo
sical tiers i

 typically u
side world
ess to the p

partitioning the data so that different elements are con-
Presentation
 1 Multi-Tier

n reason to a
s to place fire
sed to protec

, but may als
ersistence tier

centrated in different components of the system [11]. Par-
titioning requires data-dependent routing to ensure that n
Applicatio

 Cluster Arch

ctually separa
walls between
t the applicatio
o be used to
. Another com

each request is handled by the appropriate component. For
Persistence
itecture

te servers into
them. Firewalls
n tier from the
restrict internal
mon reason for

the transaction-oriented architecture described above,
such routing takes the form of data-dependent load bal-
ancing upon entry to a physical tier.

2.2 Tightly- and Loosely-Coupled Clients

The clients of an application server - personal devices,
network appliances, or servers in other enterprise comput-
ing systems - may be tightly or loosely coupled with it.

Tightly-coupled clients contain code from the appli-
cation server and communicate with it using proprietary
protocols. For this reason, they generally offer more func-
tionality and better performance. Load balancing and
failover for such clients is built into the application server
infrastructure.

WebLogic Server integrates load balancing and
failover for tightly-coupled clients into its implementation
of RMI, the basic Java API for remotely invoking meth-
ods of an object. The WebLogic RMI stub for a service
obtains information about which members of the cluster
are actively offering the service and uses it to make load
balancing and failover decisions. The algorithm for ob-
taining this information and making these decisions is
pluggable and is deployed along with the service.

WebLogic Server distinguishes between internal and
external tightly-coupled clients. Internal clients are ser-
vices that invoke other services from inside the applica-
tion tier. They obtain the information necessary to per-
form load-balancing and failover from the local server.
External clients run in a client-side environment that may
be more independently administered. They occasionally
contact a member of the cluster to obtain load-balancing
and failover information and cache it locally.

Loosely-coupled clients, consisting of applet-free
browsers and Web Services clients, do not contain code
from the application server and communicate with it using
only simple, industry-standard protocols such as HTTP
and SOAP. Such clients tolerate a wider variety of evolu-
tionary changes to the server side of an application and
are therefore easier to maintain. In addition, they may be
developed more independently and are therefore better to
use when crossing lines of administrative authority.

For loosely-coupled clients, load balancing and
failover must be performed by external IP-based mecha-
nisms, of which two are common. The first approach co-
lists the front-end servers under a single DNS name and
allows the client to make the choice. This provides only
coarse control over load balancing and failover. More-
over, it exposes details of the system so it is both less se-
cure and harder to reconfigure. The second approach uses
a load balancing appliance that exposes a single IP ad-
dress and routes to the front-end servers behind it [12].
Such appliances can perform sophisticated forms of load
balancing and failover, e.g., to support partitioning.

Note that tightly- and loosely-coupled clients use dif-
ferent protocols and therefore invoke services using dif-
ferent APIs.

2.3 Transaction Processing Monitors

Transaction processing monitors, or TP monitors, were
developed in the 1980s to provide an environment for
building transactional applications [13]. Distributed TP
monitors, such as BEA Tuxedo™ [14], run on a cluster of
mid-sized server machines rather than a mainframe. Dis-
tributed TP monitors have evolved into application serv-
ers as they are today largely in order to meet new de-
mands imposed by the Internet and by programming lan-
guages based on virtual machines.

TP monitors were originally designed to work with
tightly-coupled clients. Distributed TP monitors generally
provide special processes in the presentation tier for this

purpose. Tuxedo provides both workstation handlers,
which route requests from workstation clients to servers
in the application tier, and server gateways, which man-
age interactions between Tuxedo systems. Server gate-
ways control the import and export of services, concen-
trate traffic to improve scalability, and provide a locus for
interposed transactions. Application servers could use-
fully provide such features, however the expectation
nowadays is that most interactions with remote systems
will be loosely-coupled.

All of the widely-used application servers today are
built on virtual machines such as the Java™ VM. The
resulting systems are generally constructed out of small
numbers of large, homogeneous processes. Since it is
usually not safe to restart individual failed services within
a VM, such systems have a coarse granularity for failure.
In contrast, TP monitors like Tuxedo are constructed out
of large numbers of small, heterogeneous processes, such
as workstation handlers and server gateways, and have a
smaller granularity for failure. In particular, Tuxedo
maintains its execute queues in processes that do not con-
tain user code, decreasing the likelihood that failures will
result in the loss of pending requests. Technological ad-
vances to decrease the overhead of incrementally adding
VMs to a machine or to provide isolation within a VM
will improve the reliability of application servers.

TP Monitors are for the most part statically config-
ured, in keeping with a focus on stability and predictabil-
ity. This approach is suitable for “systematic” applica-
tions, which are carefully planned and rolled out. The
associated workloads are fairly steady, or at least well-
known, and peak loads can be handled by over-
provisioning together with an internal server policy of
“deny rather than degrade service”. The total cost of set-
ting up and tuning such a system may be high, but this is
offset by the fact that it will be in operation with only
small modifications for a long period of time.

Along with systematic applications, application serv-
ers must handle “opportunistic” applications, which are
rolled out quickly and modified often during their life-
times. In addition, application servers must handle traffic
from unknown numbers of loosely-coupled clients across
the Internet. As a result, application servers have a greater
need to be self-tuning and to dynamically enlist comput-
ing resources to handle peak loads [15]. Such features can
significantly reduce total cost of ownership and increase
reliability by reducing the opportunity for operator errors
during reconfiguration.

3. Clustered Services
This section characterizes basic application server treat-
ment of data in terms of four types of clustered services -
stateless, conversational, cached, and singleton - that dif-
fer in the way they manage state in memory and on disk.
It describes the way in which WebLogic Server imple-
ments certain J2EE APIs in terms of these services.

3.1 Stateless Services

A stateless service does not maintain state in memory
between invocations. It may load state from a persistent
store into memory, but only for the duration of an indi-
vidual invocation. A stateless service can be made scal-
able and highly-available simply by deploying multiple
instances of it in a cluster. Load balancing and failover
between these instances is straight-forward because any
one of them is as good as any other.

For tightly-coupled clients, application servers provide
explicit stateless component APIs, such as EJB stateless
session beans. They also provide stateless factories for
accessing stateful components and connectors, such as
EJB Entity Beans, JDBC database connections, and JMS
messaging system connections. Finally, stateful compo-
nents such as EJB Entity Beans can be implemented in a
stateless manner by writing out the state to shared storage
between invocations.

WebLogic Server implements clustered stateless ser-
vices for tightly-coupled clients as follows. Recall from
section 2.2 that the RMI stub for a service obtains infor-
mation about which members of the cluster are actively
offering the service and uses it to make load balancing
and failover decisions. In the case of stateless services, the
members of the cluster disseminate this information using
a lightweight multicast protocol. To choose a server, the
default load balancing algorithm uses a round-robin
scheme with several important extensions. First, and this
applies only to internal clients, the algorithm always pre-
fers a local instance of the service in order to minimize
the number of servers involved in processing a request.
Second, if a local instance is not available but a transac-
tion is in progress, the algorithm gives preference to serv-
ers that are already involved so as to limit the spread of
the transaction. Finally, the default algorithm retries a
failed operation only if it can be guaranteed that the op-
eration did not have side-effects, for example, because the
request did not leave the server or the operation was de-
clared to be idempotent.

For loosely-coupled clients, the basic APIs are either
stateless or can be implemented in a stateless manner by
writing out internal state to shared storage between invo-
cations. These options apply to servlets as well as Web
Services. Load balancing and failover may be performed
by external IP-based mechanisms, as described in Section
2.2, or by application server code that resides in the pres-
entation tier. These issues are discussed in more detail in
the context of conversational services in Section 3.2.

3.2 Conversational Services

A conversational service is an instance that is earmarked
for processing only and all requests from a particular cli-
ent within a session. Conversational services maintain
state in memory, and this state is generally lost in the
event of failure. Conversational state may be paged out on
an as-needed basis to free up memory. Performance need

not be impacted in this case because updates are not ex-
pected to be individually written to the disk and the data is
not expected to survive failures. Conversational services
can be made scalable by distributing their instances across
a cluster; the application server infrastructure must route
all requests within a session to the appropriate instance.

For tightly-coupled clients, application servers provide
explicit conversational component APIs, such as EJB
stateful session beans. In the WebLogic Server implemen-
tation of this API, load balancing occurs when a (state-
less) EJB home is chosen to create a stateful session bean.
The associated RMI stub is hardwired to the chosen server
so requests are naturally routed to the right place.

To improve the availability of stateful session beans,
WebLogic Server offers primary/secondary replication
with the secondary instances also distributed across the
cluster. The stub keeps track of the secondary as well as
the primary and performs failover as required. The pri-
mary sends update deltas to the secondary on transaction
boundaries, a scheme originally developed for the Tan-
dem NonStop Kernel’s process pairs [16]. Its use in this
setting creates some anomalies because the internal state
of a stateful session bean is not transactional, thus failure
of the primary can result in unexpected roll back upon
failover to the secondary. Customers universally prefer
this behavior to the more expensive option of sending
deltas on every update.

For loosely-coupled clients, requests coming into an
application server are often grouped into sessions. This
practice applies to browser clients, which engage in
browser sessions, as well as Web Service clients, which
engage in conversations. A session is generally associated
with a piece of state that must be maintained between
requests: browser sessions are associated with servlet ses-
sion state and Web Services may be stateful.

Session state may be written out to shared storage be-
tween invocations, in which case the service is stateless. If
durability is not required however, then there are several
alternatives that can improve performance and scalability.
First, session state can be sent back and forth between the
client and server under the covers, again resulting in a
stateless service. This approach is not always feasible or
desirable, particularly if there are large amounts of data.
Second, and more commonly, session state may be left in
memory on the server-side between requests, resulting in
a conversational service.

Load balancing of conversational services for loosely-
coupled clients requires some care because the underlying
protocols assume everything is stateless. Load balancing
should occur only when the session is first created and all
subsequent requests should be routed to the chosen server.
Such session affinity can be provided by external IP-
based mechanisms, either by relying on a client to stick
with the first server it obtains from DNS or by appropri-
ately configuring a load balancer. Alternatively, it can be
provided by application server code that resides in the
presentation tier, as either a full client-handling process,

 such as a Web Server, or a plug-in for such a processes.
Common practice is to have the hosting server embed its
location in a session cookie that the client returns with
each new request. The application server code that resides
in the presentation tier inspects this cookie and then routes
the request to the appropriate place. Equivalent function-
ality can also be provided using URL rewriting.

To improve the availability of in-memory servlet ses-
sion state, WebLogic Server offers primary/secondary
replication with the secondary instances also distributed
across the cluster. Requests are handled by the primary,
which synchronously transmits a delta for any updates to
the secondary before returning the response to the client.
To support failover from the primary to the secondary, the
identity of both the primary and secondary are embedded
in the cookie.

Figure 2 illustrates the case where the Web Server or
its plug-in inspects the cookie and routes to the primary.
If the primary is not reachable, it routes to the secondary,
which then becomes the primary, creates a new secon-
dary, and rewrites the cookie. Figure 3 illustrates the case
where routing is performed externally. The primary is
initially created on the server where affinity has been set
up. If the primary becomes unreachable, the external
mechanisms switch affinity to some arbitrary member of
the cluster. When the first request arrives there the servlet
engine inspects the cookie, contacts the secondary to ob-
tain a copy of the state, becomes the primary, and then
rewrites the cookie leaving the secondary unchanged. In
both cases, establishment of a new primary and secondary
after a failure are delayed until a new request arrives. This
approach distributes the recovery work over time without
reducing availability, since the new pair is effectively
useless until the cookie can be rewritten.

Fig

primary

secondary

e

Web Server
Servlet Engines

cookie
A B

r

e

Web Server
Servlet Engines

secondary

primary

cookie
C B

r

Figure 3 Replication with External Routing

WebLogic uses a sophisticated algorithm to place sec-

ondaries in the cluster. As part of the configuration of a
cluster, it is possible to tag servers as being in named rep-
lication groups and to specify preferred groups to use for
hosting secondaries. This allows the administrator to fa-
vor replication pairs being either independent, e.g., on
different power grids, or dependent, e.g., on the same
high-speed LAN. Each server chooses one preferred
server to host its secondaries. This reduces the intercon-
nectedness of the cluster and facilitates bulk, asynchro-
nous replication. The algorithm for choosing the secon-s r
Browse
ure 2 Replicat

cookie
A B

cookie
B C

r
Web Servers

ion with Routi

e

Servlet Engine

dary server organizes the candidates into a logical ring
and looks for the first one in the desired replication group
that is on a different machine.

B
secondary

primary

The treatment of in-memory conversational state for
Web Services is related to the above, however it is com-
plicated by the peer-to-peer nature of the interaction. This
issue is discussed in more detail in Section 4.

Before Failur
ng in th

se
A

C

3.3 Cached Services

s A cached service maintains data in memory and uses it to
Browse
 Web Servers
 Servlet Engine
B
primary

condary

process requests from multiple clients. The cached data
may be directly drawn from a backend store or it may be
the result of application-level processing of backend data.
For example, the cache might contain relational rows or
those rows might first be transformed into objects,
HTML, or XML. Updates of data from a backend store
are always written to disk; the cache is used only to sat-
isfy read requests. Cached data may be written to local

 After Failure
C

A

e Web Server
disks in the
ated after a f
Browse
mi
ai
Before Failur
ddle tier so it does no
lure. Like a stateless s
A

B

C

Browse
 After Failur
B

C

A

t need to be regener-
ervice, a cached ser-

vice can be made scalable and highly-available simply by
deploying multiple instances of it in a cluster. Load bal-
ancing and failover between these instances is straight-
forward since any one of them is as good as any other.

Implementations of cached services differ in the extent
to which they ensure that the copies of cached data are
consistent with each other and with the backend store.
Increased consistency generally comes at the expense of
scalability, performance, and/or functionality, and a vari-
ety of options should be provided to meet the needs of
different applications.

The simplest approach is to have each cache flush it-
self at regular intervals according to a configured time-to-
live value. This does not require any communication be-
tween the servers, so it scales well, but requires that the
application tolerate a given window of staleness and in-
consistency. This approach is attractive when the backend
data is frequently updated, e.g., from a real-time data
stream, in which case keeping up with the changes would
be tantamount to not caching at all. A step beyond this is
to flush the caches after each update completes, but not
within the updating transaction so a window of staleness
and inconsistency will still exist. This approach is attrac-
tive when the backend data is infrequently updated, in
which case the overhead for signalling the flushes will be
insignificant.

A third approach is to keep all copies of the data con-
sistent with the backend store using some form of concur-
rency control in the caches. If optimistic concurrency is
used, the system should flush the caches after updates to
reduce the possibility of concurrency exceptions. The use
of pessimistic locking in this context is discussed in more
detail in Section 3.4.

An alternative to flushing the caches is to initially pre-
load them with specified slices of data and then to refresh
the slices as updates occur. As with flushing, refreshing
can occur at regular intervals, after updates but outside the
transaction, or consistently with a backend store. Since
the set of data in memory is known at all times, this ap-
proach facilitates querying through the cache in the man-
ner of in-memory databases [17]. The notion of storing
slices of backend data on local disks in the middle tier is
discussed in Section 5.

Flush- and refresh-on-update both require identifying
which pieces of data in the backend store are used to com-
pute which pieces of data in the cache. There is a trade off
here associated with the granularity of tracking of the
backend data: finer granularity results in longer caching
but is harder to implement efficiently. If the associated
queries are known in advance, then database view main-
tenance techniques [18] can be used. This problem is
compounded in the presence of ad-hoc queries, particu-
larly if application-level processing of the backend data
makes it unclear which queries are relevant.

Flush- or refresh-on-update also require identifying
when relevant data in the backend store has been updated.
This is straight-forward if the updates go through the ap-

plication server itself. If the updates go through the
“backdoor”, meaning other applications that share the
data, then either triggers or log-sniffing must be used.

Caching can occur in any tier of an enterprise comput-
ing system. As it moves closer to clients, the benefits of a
cache hit increase in that round-trip times are reduced and
a lighter load is placed on the backend infrastructure. On
the other hand, the data may become tailored to the needs
of particular clients so that it can be less-generally shared.
More importantly, it becomes increasingly difficult to
ensure the integrity of the data and to keep it consistent
with the copy of record in the backend. For anything other
than largely static files, it is probably best not to place
caches beyond the firewall.

WebLogic Server caches the HTML results of JSPs at
either the whole page or fragment level. Fragment-level
caching is useful when components of a page may be per-
sonalized for different users. A page or fragment may be
tagged as being for an individual user or a group of users.
Each page or fragment is assigned a time-to-live, after
which it is flushed from the cache.

WebLogic Server provides a full range of consistency
options for cached EJB entity beans. An entity bean may
be given a time-to-live in memory after it is loaded, dur-
ing which it can be freely used to satisfy read requests in
subsequent transactions. The EJB container can also be
configured to send out a bean-level cache flush signal
using a light-weight multicast protocol. An instance of the
container (a node in the cluster) sends this signal auto-
matically after it commits a transaction that contains up-
dates. In addition, an API is provided to allow application
code to trigger a cache flush manually, e.g., in the event
that the application observes a backdoor update.

WebLogic Server also provides an option to keep
cached entity beans consistent with the backend store us-
ing optimistic concurrency, but only for transactions that
include writes. In addition to being used across transac-
tions, this option can be used within a single transaction to
increase database concurrency, since no database locks
are held. In either case, during a transaction, the container
keeps track of the initial values of certain fields, either
application-level version fields or actual data fields. At
commit time, these values are compared with those in the
database using an additional WHERE clause in the
UPDATE statement, and a concurrency exception is
thrown if they don’t match. The container then sends a
bean-level cache flush signal to minimize the likelihood
of subsequent concurrency exceptions. Overall, although
this approach does not ensure serializability, its behavior
may be desirable in that it increases concurrency in ac-
ceptable ways.

WebLogic Server also provides optimistic concur-
rency for disconnected RowSets, which are the table-
oriented results of relational database queries. A RowSet
may be serialized into binary or XML format, sent across
the network to a client, updated on that client, sent back to
the server, and then submitted to the database.

3.4 Singleton Services

A singleton service is active on only one server in the
cluster at a time and processes requests from multiple
clients. A singleton service is usually backed by private,
persistent data, which it caches in memory. It may also
maintain transient state in memory, and this state is lost in
the event of failure. The clustering infrastructure is re-
sponsible for creating and activating singleton services.
After a singleton service is activated, it must establish its
own internal state by accessing the backend store.

A continuous singleton service is active on exactly
one server at all times. As examples, continuous singleton
services can be used to implement message queues, trans-
action managers, and administrative servers. Upon failure,
a continuous singleton service must be pro-actively either
restarted on the same server or migrated to a new server.
Typically, an administrator specifies a list of possible
servers for a continuous singleton service and the cluster-
ing infrastructure keeps it on the most-preferred server
that is currently active. Clients of a continuous singleton
service access it remotely.

An on-demand singleton service is active on at most
one server at a time. It may be activated on, or migrated
to, the server where it is going to be used, or it may be
accessed remotely. On-demand singleton services tend to
be lighter in weight and greater in number than continu-
ous singleton service. As examples, on-demand singleton
services can be used to implement shared conversational
services, consistently-cached persistent components such
as EJB entity beans, and information about users such as
profile data and message subscriber data. The ability to
adjust the location of on-demand singleton services al-
lows the clustering infrastructure to adapt to meet the de-
mands of the workload.

A large singleton service may be made more scalable
by partitioning it into multiple instances, each of which
handles a different slice of the backend data and its asso-
ciated requests. For example, a message queue might be
partitioned along the lines of message producers or con-
sumers [19]. In this particular case, partitioning also im-
proves availability in that messages can continue to flow
through the system after an instance of the queue has
failed, although certain messages or users may be stalled
until recovery occurs. Partitioning is not always appropri-
ate in that it may result in individual requests being proc-
essed on different servers, so there is a loss of co-locality.
Moreover, it may not even be possible to arrange because
there are no natural places to create the partitions.

A group of singleton services may be aggregated into
one singleton service to simplify administration and re-
duce bookkeeping overhead. For example, instead of im-
plementing each entity bean as its own on-demand single-
ton service, the entire EJB home might be implemented as
a single continuous singleton service. The overall key
space might then be partitioned among several such
homes to improve scalability. This approach is attractive

for applications that can be end-to-end partitioned, e.g.,
by user ID number, so co-locality is not lost.

Implementations of singleton services must avoid the
classic distributed computing problem of “split-brain syn-
drome” during migration. Suppose a target server estab-
lishes ownership of a singleton service and initiates some
associated operation in its own thread. Then suppose the
target server temporarily freezes or is isolated from the
cluster, and management servers migrate ownership of the
service. Even if the target server immediately notices the
ownership change, there is little it can do about the on-
going operation. Distributed consensus protocols [20] can
ensure that other servers ignore subsequent messages
from the target server, but don’t prevent it from sending
messages to clients or updating a database.

The general solution to this problem has the following
form. The target server establishes its continuing avail-
ability with the management servers by performing some
action, such as sending a heartbeat or responding to a
health monitoring query, at regular intervals. If the man-
agement servers do not observe this action within some
grace period, they (may) migrate ownership of the ser-
vice. The target server attempts to ensure that all of its
operations associated with the service complete within the
grace period, so that split-brain does not occur even if it
loses contact with the management servers. Finally, if
possible, the management servers physically isolate the
target server from clients and disks upon migration of the
service. Such isolation greatly reduces the potential for
errors if operations do not complete within the grace pe-
riod. It therefore allows the grace period to be smaller,
speeding up migration. Note that such isolation can be
accomplished only in platform-dependent ways.

A specific practical solution to this problem might
have the following two-level form. First, continuous sin-
gleton services are directly implemented using either an
HA framework [21] or some kind of distributed consensus
protocol. The latter approach can be used in conjunction
with SNMP-based router-level fencing to provide isola-
tion. In any case, such a solution will be fairly heavy-
weight and should be used for only a handful of services.
Second, these baseline services are used to bootstrap a
highly-available lease manager which grants leases to
own services [22]. Lease owners must regularly perform a
handshake with the lease manager to renew their leases.
In the general terms presented above, this handshake es-
tablishes the target server’s availability and the lease pe-
riod corresponds to the grace period. The lease manager
should support “push” leases for continuous singleton
services and “pull” leases for on-demand singleton ser-
vices. The lease table should be persistent, so it survive
failures, in order to ensure that creation of a service oc-
curs only once. Leasing may also be used in conjunction
with router-based fencing.

WebLogic Server takes a multi-faceted approach to
ensuring the availability of singleton services, work that is
on-going. The first line of defence is to harden individual

servers against failures. This is done, for example, by al-
lowing each server to have multiple network adapters to
guard against network failures. Second, health monitoring
and lifecycle APIs are provided to allow detection and
restart of failed and ailing servers. Through these APIs, a
server may be placed under the control of a WebLogic
node manager process or a platform-specific HA frame-
work. Third, it is possible to do software upgrades without
interrupting services; this applies to rolling upgrades of
server software as well as hot redeploy of application
software. Finally, it is possible to migrate singleton ser-
vices. Services may be deployed into named targets, each
of which is migrated as a unit so that service co-location
can be maintained.

4. Cluster-to-Cluster Interactions

This section discusses interactions between application
clusters. A fundamental issue here is the degree to which
the system as a whole has a centralized architectural and
administrative authority. As control becomes more cen-
tralized, it becomes more feasible for the clusters to
communicate using proprietary protocols, which generally
offer more functionality and better performance.

At one end of the spectrum, a single authority within
an enterprise might create a collection of tightly-coupled
clusters that communicate using only proprietary proto-
cols. This configuration might exist to distribute a single
application across different branches of the company or to
scale up a collection of tightly-coupled applications
within one branch. For this purpose, Tuxedo offers clus-
ter-to-cluster gateways as described in section 2.3. Web-
Logic Server supports the notion of an administrative
domain - the unit of startup, shutdown, configuration, and
monitoring - which can contain multiple clusters. As an
example, Weblogic domains might be used to set up a
multi-tiered system in which each tier is its own cluster.

At the other end of the spectrum, the clusters might be
in different enterprises with no coordination between
them. This configuration might occur when trading part-
ners are being dynamically discovered and linked into
business processes and workflows. In this case, industry-
standard Web Services protocols, such as SOAP over
HTTP, are essential to ensure interoperability between the
systems. SOAP uses XML to provide self-describing,
extensible payloads, which make it easier to modify one
system without effecting others. Perhaps more impor-
tantly, since it is low in functionality, SOAP is simple. As
the protocol is extended to include more sophisticated
features, such as transactions and transport independence,
interoperability may well suffer.

Between these two extremes, there might be a central
authority that mandates the use of certain proprietary
communication technologies, such as a messaging bus,
over which XML messages flow. This authority might
exist between departments in the same enterprise or be-
tween close EDI-style trading partners.

Regardless of the degree of coupling, the server-to-
server programming model has several unique character-
istics. First, asynchronous communication is essential to
support long-running business operations that flow back
and forth between clusters. In particular, store-and-
forward messaging provides an attractive way of buffer-
ing work to handle temporarily disconnected or over-
loaded systems. In addition, store-and-forward messaging
can be made reliable using simple ACKing protocols that
are appropriate even for loosely-coupled systems. The
alternative, transactional RPCs, is less attractive not only
because the wire protocols are more complicated, but be-
cause it tightly couples resources on both sides. Note
store-and-forward messaging is distinct from client/server
messaging, where producer and consumer clients interact
with a central server using transactional RPCs. For store-
and-forward messaging, the consumer of a message is
often a process on the server itself.

A second unique characteristic of the server-to-server
programming model is the organization of work into peer-
to-peer conversations. Either participant can contact the
other within a conversation and both must maintain state
on its behalf. In order to centralize the interface specify-
ing the methods that may be called within a conversation,
a notion of callbacks is required.

The server-to-server programming model is well char-
acterized by WSDL, the Web Services Description Lan-
guage. WSDL supports four types of operations, thereby
providing a unified model for synchronous RPC and
asynchronous messaging along with an explicit notion of
callbacks.

1. One-way Receive a message
2. Request-response Receive a message and send a

correlated message
3. Solicit-response Send a message and receive a

correlated message
4. Notification Send a message

A server offers a WSDL service and a client (of the
service) initiates a one-on-one conversation with the
server. All methods invoked as part of the conversation
must be named in the server's WSDL. In particular, within
the conversation, the server may asynchronously contact
the client using one of the specified callbacks, but not by
invoking a new service on the client. The server may ini-
tiate subordinate conversations with other servers, in-
cluding the client, but these are distinct conversations in
which the server acts as a client. Note that this model is
evolving and may ultimately support a higher-level notion
of conversations that span multiple parties and multiple
basic services.

Both the client and server sides of a conversation must
maintain state on its behalf. Unlike servlet session state,
Web Service conversations are generally long-lived and
support (per-method, server-demarcated) transactions.
More significantly, the server side of a conversation must
be linked to the client side of any subordinate conversa-
tions and this must be done in a way that isolates the dif-

ferent interfaces. As an example, illustrated in Figure 4,
suppose that client A has a conversation with server B,
which then acts as a client in a subordinate conversation
with server C. If B were to naively use the same object
to handle requests for both conversations, then callbacks
from C would be accessible as call-ins from A. Moreover,
it would be problematic for B to create subordinate con-
versations with other services of the same type as C, since
the source of callbacks would be ambiguous. Thus, either
the object on B needs to handle callbacks differently from
call-ins, or B must create a separate but dependent object
for each subordinate conversation. In either case, a con-
versation may have several simultaneous users. This is
again in contrast to servlet session state, where each ses-
sion has only one user.

Figure 4 Subordinate Web Service Conversations and
State Management

While Web Service conversations will generally be

long-running and durable, there are circumstances where
it is acceptable to leave them in memory. Examples here
include read-only applications, shopping-cart-style appli-
cations where only the last fulfilment step is crucial, and
forwarding applications where reliability is provided by
the external end-points. Any in-bound or out-bound asyn-
chronous messages for an in-memory conversation should
be queued in-memory along with it. This approach pro-
vides a nice unit of failure in that the conversation and its
messages are lost together.

The hard part about implementing in-memory conver-
sations is locating them within a cluster. The current
HTTP-based Internet infrastructure sets up session affin-
ity on the first request going into a cluster, but never on
responses. Thus affinity will be set up for requests going
from the client into the server but not for callbacks from
the server to the client. In particular, affinity will be set up
the first time such a callback occurs, and the chosen
server may not match the location chosen by the client.
Enhancements to load balancers may eventually handle
this case. The other alternative for implementing in-
memory conversations is to embed the location of a con-
versation in its ID, the Web Service equivalent of servlet
session cookies. It is possible that standards for managing
Web Service conversations will eventually support the
notion of a general-purpose “biscuit” that each side is
expected to echo to the other. Short of this, location em-
bedding will be possible only at the point the conversation

ID is created, which will generally occur on the client.
The miracle here is that these two techniques can be used
together to solve the problem: session affinity can be used
to reach conversations on the server and conversation IDs
can be used to locate and route to conversations on the
client.

The above approach does not allow a conversation to
be moved after it has been established. Conversation mi-
gration is needed to support primary/secondary replication
as well as to optimize the overall system around its most
active participants. Since a conversation may have several
simultaneous users, migration requires that conversations
be implemented as on-demand singleton services, as dis-
cussed in section 3.4.

While they can be directly implemented in terms of
the J2EE, Web Services can benefit greatly from special
packaging and optimizations, many of which are provided
by BEA WebLogic Workshop. The J2EE has radically
different models for synchronous programming (typed
EJB) and asynchronous programming (untyped JMS),
which does not match well with WSDL. It is more con-
venient for queuing to occur under the covers for void-
return methods of beans. The underlying implementation
should support store-and-forward messaging as well as
client/server messaging. Another useful feature is to pro-
vide a special bean variant for in-memory conversations.
Such conversation beans should act partly like stateful
session beans, in that they are kept in memory and paged
out as needed, and partly like entity beans, in that they
have transactional internal state and may be shared by
multiple users.

→ intoB()
← fromB()

→ intoC()
← fromC()

A B C

Client side Server side

5. Future Directions

5.1 A Middle-Tier Persistence Layer

Application servers create and manage significant
amounts of data for which conventional relational data-
bases are less than ideal. This data is often in object or
XML form and is accessed only in limited ways, e.g., by
key or through a sequential scan. And it is often accessed
only by clustered servers that coordinate their actions,
obviating the need for further concurrency control. This
suggests that a new persistence layer be developed with
the specific needs of application servers in mind.

A crucial requirement of this new persistence layer is
that it be distributed across the middle tier so data is kept
close to its use. Ideally, the persistence engine should be
part of the application server itself to decrease communi-
cation costs and simplify administration. These considera-
tions argue against constructing the middle-tier persis-
tence layer out of conventional relational databases [23],
which are heavyweight and physically separate from the
application server.

Messages, both in-bound and out-bound, are one of
the most significant categories of middle-tier data. Gray
argues that databases should be enhanced with TP-

 monitor-like features to handle messaging; for example,
triggers and stored procedures should evolve into worker
thread/process pools for servicing queue entries [24]. The
counter-argument is that application servers should be
enhanced with persistence, since they also provide much
of the required infrastructure, including security, configu-
ration, monitoring, recovery, and logging.

 Specialized file-based message stores are in fact

common, for all of the reasons described above, and the
important point is that these stores should be opened up to
include other kinds of middle-tier data. Significant per-
formance gains can be realized by having these stores
include the data needed to process in-bound messages, in
particular, the conversational state associated with long-
running, cluster-to-cluster workflows. Co-location of this
data can eliminate the need to perform two-phase commit
between the messaging system and the database. Two-
phase commit is otherwise required even if the messaging
system keeps all of its data in the database, because the
messaging system needs to be made aware of the outcome
of each transaction in order to adjust its internal data
structures.

Presentation
Cluster

Remote
Transaction

Cluster
Data extraction
transformation

and loading

Operational
Transaction

Cluster

Analytics
Cluster

Figure 5 Multi-Cluster Architecture for Transactional
and Analytic Applications

This approach isolates the operational system from the

distribution, load-handling, and error-handling require-
ments of remote applications. And the extraction, trans-
formation, and loading process can optimize the data for
the needs of these applications. For example, relational
data might be pre-digested into object or XML form to
avoid runtime mapping. The middle-tier copies will in
general be less up to date than the copy of record in the
backend, and this might require changing the way certain
business processes work. For example, this approach fits
naturally with the airline reservation / shopping cart
model, where a series of best-effort operations lead to a
single critical fulfilment step which may fail. Optimistic
concurrency techniques are ideal here. Not all business
processes can be formulated in these terms, but those that
can have the greatest chance of being successfully distrib-
uted.

Another important category of middle-tier data is the
internal information needed to administer the application
server. Deployment, configuration, and security informa-
tion need to be distributed across servers in the cluster.
Servers can start more rapidly and more autonomously if
this information is stored on local disks. Monitoring, test-
ing, tracing, and auditing logs need to be collected from
servers in the cluster and integrated together.

5.2 Widely-Distributed Computing Acknowledgements
The majority of enterprise computing systems today are
integrated with the Internet only though web browsers.
Application servers are used primarily to support this
functionality, and they do so as relatively stand-alone
“stovepipes” at the front end of the data center. Web Ser-
vices are intended to make Internet technologies suitable
for more fundamental business processing, tying together
backend systems within and across data centers. Web
Services can also provide a basis for integrating the enter-
prise with application and storage service providers, peer-
to-peer computing technologies [25], and computational
grids [26].

This paper reports on work that was carried out or influ-
enced by many talented people at BEA, in particular Juan
Andrade, David Bau, Adam Bosworth, Rod Chavez, Ed
Felt, Steve Felts, Eric Halpern, Anno Langen, Kyle
Marvin, Adam Messinger, Prasad Peddada, Sam Pullara,
Seth White, Rob Woollen, and Stephan Zachwieja. This
paper is dedicated to the memory of Ed Felt.

References

[1] BEA Systems. The WebLogic Application Server.
http://www.bea.com/products/ weblogic/
server/index.shtml.

The acceptance of such widely-distributed computing
models within the enterprise has been hampered by the
requirement to tightly control access to critical business
data. One possible solution is to provide a separate mid-
dle-tier copy of the backend data, in the manner of a data
warehouse, for the use of widely-distributed applications.
This approach leads to a multi-cluster architecture, illus-
trated in Figure 5, in which a remote transaction cluster
and an analytics cluster are fronted by a presentation clus-
ter and backed by an operational transaction cluster.

[2] Sun Microsystems. Java™ 2 Platform, Enterprise Edi-
tion (J2EE™). http:// java.sun.com/ j2ee.

[3] J. Gray. The Transaction Concept: Virtues and Limi-
tations. Proceedings of VLDB. Cannes, France, September
1981.

 [4] Hypertext Transfer Protocol -- HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt

[5] Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/SOAP.

[6] Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl.html.

[7] BEA Systems. WebLogic Workshop.
http://www.bea.com/products/weblogic/workshop/ in-
dex.shtml.

[8] E. Thomsen. OLAP Solutions: Building Multidimen-
sional Information Systems, Second Edition. Wiley. 2002.

[9] G. F. Pfister. In Search of Clusters, 2nd Edition. Pren-
tice Hall, 1998.

[10] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adap-
tive load sharing in homogeneous distributed systems.
IEEE Transactions on Software Engineering. Vol. 12,
1986.

[11] B. Devlin, J. Gray, B. Laing, G. Spix. Scalability
Terminology: Farms, Clones, Partitions, and Packs:
RACS and RAPS. Microsoft Technical Report MS-TR-
99-85, December 1999.

[12] T. Bourke. Server Load Balancing. O'Reilly & Asso-
ciates, August 2001.

[13] J. Gray, A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufman, 1993.

[14] J. Andrade, M. Carges, T. Dwyer, and S. Felts. The
Tuxedo System - Software for Constructing and Managing
Distributed Business Applications. Addison-Wesley Pub-
lishing, 1996.

[15] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, and P.
Gauthier. Cluster-Based Scalable Network Services. Pro-
ceedings of ACM Symposium on Operating Systems Prin-
ciples. Vol. 31, October 1997.

[16] J.F. Bartlett. A NonStop Kernel. Proceedings 8th
Symposium on Operating Systems Principles. Pacific
Grove, CA, December 1981.

[17] The TimesTen Team. High Performance and Scal-
ability through Application-Tier, In-Memory Data M
agement. Proceedings of VLDB. 2000.

an-

[18] A. Gupta, I. S. Mumick (Editors). Materialized
Views: Techniques, Implementations, and Applications.
The MIT Press, 1999.

[19] S. Grant, M. P. Kovacs, M. Kunnumpurath, S. Maf-
feis, K. S. Morrison, G. S. Raj, P. Giotta. Professional
JMS Programming. Wrox Press, March 2001.

[20] B. Lampson. How to Build a Highly Available Sys-
tem Using Consensus. In Distributed Algorithms, Lecture
Notes in Computer Science 1151, (ed. Babaoglu and
Marzullo), Springer, 1996.

[21] E. Marcus, H. Stern. Blueprints for High Availabil-
ity: Designing Resilient Distributed Systems. Wiley, Janu-
ary 2000.

[22] C. Gray, D. Cheriton. Lease: An efficient fault-
tolerant mechanism for distributed file cache consistency.
Proceedings 12th ACM Symposium on Operating Systems
Principles, 1989.

[23] Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh,
H. Woo, B. G. Lindsay, J. F. Naughton. Middle-tier Data-
base Caching for e-Business. SIGMOD Conference. 2002.

[24] J. Gray. Queues are Databases. Proceedings 7th High
Performance Transaction Processing Workshop. Asilo-
mar CA, Sept 1995.

[25] D. P. Anderson, J. Kubiatowicz. The Worldwide
Computer. Scientific American. March 2002.

[26] I. Foster, C. Kesselman, and S. Tuecke. The Anat-
omy of the Grid: Enabling Scalable Virtual Organizations.
International Journal of Supercomputer Applications.
2001.

	Figure 1 Multi-Tier Cluster Architecture
	Figure 2 Replication with Routing in the Web Server
	Figure 3 Replication with External Routing

