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Abstract

This papers presents XL, a new platform for
Web services. We have designed XL with three
main goals in mind: (a) increase application
developers productivity via high-level program-
ming constructs for Web Services routine pro-
gramming patterns, (b) achieve high scalabil-
ity, security, and availability for Web ser-
vices and (c) compliance with all W3C' stan-
dards (e.g., XML, SOAP, WSDL) such that
XL Web services can interact with any other
Web services written in, say, Java or C#. We
hope to achieve these objectives by providing
the new XL programming model based on a
simple core programming “algebra” that ex-
tends Milner’s PI-calculus [21)]. To optimize
XL programs, we employ techniques from the
design of database systems, compiler construc-
tion, and data flow machines, as well as tech-
niques specially designed for Web Services. A
demo of the platform has been shown at [17).

1 Introduction

Recently, Web services have been proposed as a new
model to develop new applications and to integrate
existing applications on the Internet. The basic
idea is that autonomous software components inter-
act by exchanging XML messages. This technol-
ogy is particularly useful to implement processes that
cross organization boundaries; examples are customer-
relationship management, supply-chain management,
e-procurement, portals, electronic market places, on-
line shops, and games. In addition to the XML-family
of standards, the W3C has established standards such
as XML Protocol (i.e., SOAP) and WSDL, and it has
started a working group on Web Service Architectures.
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To date, most Web services are defined using Java.
Analyzing the first experiences, it has become clear
that Java (or C# for that matter) are not always the
right programming languages for this purpose. One
of the most prominent reasons is that the XML type
system is incompatible with the Java type system; as
a result, a great deal of marshalling code needs to be
written in order to convert XML into Java objects and
vice versa; this code needs to be written in addition
to the marshalling code that is necessary in order to
bridge the (long-known) impedance mismatch between
Java and SQL [10].

Another deficiency of Java is that it is not always
appropriate to deal with failures or quality of service
requirements in a network-centric environment. Fur-
thermore, a great deal of functionality needed in most
Web services such as logging, database access, secu-
rity, authorization, transaction support is not part of
the basic Java developer’s kit. J2EE has been devel-
oped as an extension to Java that overcomes this lim-
itation [19]. Indeed, J2EE provides a great deal of ad-
ditional features, but the J2EE type system is still in-
compatible with the XML type system. Furthermore,
J2EE is a rather complicated programming model so
that it is significantly less popular than basic Java.

As an alternative, several other programming lan-
guages have recently been developed; examples are
WSFL (IBM), WSCL (HP), XLang (Microsoft), and
the WSCI developed by a consortium including BEA,
Intalio, SAP, and Sun [36], 85 32, [34]. These languages
directly support XML and the Web services paradigm,
but they are not as powerful and rich as Java.

This paper presents XL, a new programming lan-
guage, and its implementation. Like WSFL, WSCL,
XLang, and WSCI, XL directly supports XML, the
other W3C standards, and the Web services paradigm.
Like Java, it provides a very powerful programming
model; in fact, a great deal of syntax for imperative
constructs (e.g., loops) has been adopted from Java.
Since XL supports all W3C standards and communi-
cates with other Web services using messages, appli-
cations written in XL can communicate with applica-
tions written in other languages (e.g., Java) just as
well as with other XL applications. Furthermore, XL
is portable (like Java) and it provides high-level pro-



gramming constructs for routine work (e.g., logging
and security).

The implementation of XL combines techniques
from different fields of computer science; in particular,
database systems, compiler construction, distributed
systems, and data flow machines. XL programs are
translated into a core algebra which is in turn opti-
mized and then interpreted in a dynamic and flexible
way. We believe that only through such a high-level in-
terface as provided by XL, scalability, high availability,
security, and ultimately quality of service can be guar-
anteed. Using languages like Java and current middle-
ware architectures with many layers, such guarantees
cannot be given because the level of abstraction in the
programming model is too low and because calls to
library functions must be treated as black boxes and
cannot be optimized. In summary, we believe that
a high-level programming model like XL will not only
significantly increase the productivity of programmers,
it will also improve performance and reduce adminis-
tration and operational cost.

The XL project is still at the beginning. We have
a demo that is available on the WWW [I4], but both
the language and the current state of the implementa-
tion are still under development. In addition, we are
currently working on a debugger and tools to test Web
services. Testing Web services is particularly challeng-
ing because all tests must be side-effect free; for Web
services testing, a closed world or lab environment
assumption is unrealistic because Web services com-
municate with Web services from other organizations.
The debugger and test environment are not described
in this paper; these tools are described in [2§].

2 Relevant XML Technology

An important requirement in the design of XL is the
compatibility with the existing state of the art in the
XML and Web Services area. We detail the current
state of the art in this section.

2.1 XML Abstract Data Model.

A very popular wrong myth related to XML is that
“XML is just a syntax”. While it is true that the orig-
inal XML recommendation described only a syntax for
data and documents, and not a logical data model, the
W3C is currently in the process of standardizing such
a logical, abstract data model for XML. The purpose
of an abstract data model has been clear since the orig-
inal papers of Codd in the 70’s: it allows programs to
achieve logical/physical data independence. In other
words, programmers can concentrate on the abstract
representation of data and they can ignore the real
physical representation of the data. As a result, the
physical data representation can evolve without any
impact on the code of the applications itself. The huge
advantage of this concept has been validated in the last
30 years by the success of the database industry.

Fortunately, the XML standards did not ignore this
important database heritage. The semantics of the
current W3C’s XML related programming languages
(XSLT and XQuery) are described in terms of an XML
abstract data model [3] that serves the same purpose
as the relational data model for relational databases.

The W3C XML data model describes, in an E/R
fashion, a set of entities present in an XML document
and a set of relationships among them. The entities
describe the data itself (e.g. nodes, values, sequences).
The data is modeled using very general mathematical
structures, i.e. as ordered trees of nodes. The internal
nodes have node identity and they can be of several
kinds (e.g. document, element, attribute, comment,
processing instruction, namespace) while the leaves of
the trees, i.e. the values, can be values in the do-
mains of the XML Schema basic types (e.g. integer,
decimal, string, duration). Pivotal to the XML data
model is the notion of sequence. One important prop-
erty of the XML data model is that sequences are al-
ways flat; i.e., sequences of sequences are automati-
cally unnested. Another important property of the
XML data model is the ability to capture the topolog-
ical order in nodes of the document. This order can
be queried and exploited during the computation.

2.2 XML Schemas and the XML Type System

The data model describes only the basic composi-
tion of an ordered tree. The XML Schema [29] de-
scribes structural and content-based constraints on the
ordered trees. The XML Schema describes the simple
types (with their accepted domain values and the ac-
cepted basic operations) supported by the XML data
model, the definition of user-defined complex types
and gives a basic support for user-defined integrity
constraints (e.g. referential integrity constraints, lexi-
cal constraints).

The XML type system formally described in [30]
captures the essence of the structural information
present in the XML Schema. The goal of the type sys-
tem is threefold. First, it is possible to do type check-
ing: given an expression and the type of the input data
set, it is possible to detect statically if the expression
will return errors on all (or some of) the valid instances
of the input type. Second, it allows automatic type in-
ference: given an XML expression (as described in the
next paragraph) and the type of the input data set,
the type system is able to intentionally (i.e., without
executing the query on any particular data set) de-
rive the type of the result. Finally, the type system is
capable of testing the type subsumption. This is a use-
ful feature for the following scenario: given an XML
expression and the type of the input data set, detect
automatically if the result of the evaluation of the ex-
pression on all valid input data instances will be valid
instances of a predefined expected output data type.



More detailed information about the type system can
be found in [30].

2.3 XML Expressions and XQuery

A complementary W3C standard deals with XML ex-
pressions and XML queries [27]. XQuery is a func-
tional language. Like all functional languages, XQuery
expressions are constructed using first order and sec-
ond order function applications starting with variables
and constants. Examples of first order functions are:
logical, arithmetic, string manipulation, collection ori-
ented operations like union, intersection and differ-
ence. Examples of second order functions are map
and sort. Of particular importance are the second
order FLWR, expressions: they are XML expressions
constructed based on a pattern that is akin to SQL’s
SELECT-FROM-WHERE queries. Like SQL queries,
a FLWR expression has a special clause to define vari-
ables and their associated domains (the FOR clause
in XQuery corresponds to the FROM clause in SQL),
a special clause that filters variable bindings based on
predicates (the WHERE clause in both languages) and
a special clause that specifies how to construct the re-
sult (the RETURN clause in XQuery corresponds to
the SELECT clause in SQL). Special expressions called
path expressions are used in order to navigate in an
XML tree; the syntax and semantics of path expres-
sions are defined in the XPath standard [37].

XML queries [27] are declarative, side effect free
programs that manipulate XML data. A query is
composed of a preamble containing function defini-
tions, local type declarations, function declarations,
XML schema imports, plus a main expression to be
evaluated and returned as a result of the execution
of the program. Unfortunately, the logic of complex
Web services cannot be described using only declara-
tive programs, or using only side effect free XML query
expressions.

2.4 XML Protocol (SOAP)

An important standard for the Web Services area is
the XML Protocol [26]. The initial focus of the XML
Protocol (SOAP) standardization effort is to create
a simple XML-based messaging protocol that can be
ubiquitously deployed and easily programmed through
scripting languages, XML tools, interactive Web devel-
opment tools, etc. The goal is a Web enabled layered
system which will directly meet the needs of applica-
tions with simple interfaces (e.g. getStockQuote, vali-
dateCreditCard), and which can be incrementally ex-
tended to provide the security, scalability, and robust-
ness required for more complex application interfaces.

The XML Protocol is composed of the following four
components: (a) an envelope for encapsulating XML
data to be transferred in an interoperable manner that
allows for distributed extensibility and evolvability as
well as intermediaries, (b) a convention for the content

of the envelope when used for RPC (Remote Proce-
dure Call) applications, (¢) a mechanism for serializ-
ing data representing non-syntactic data models such
as object graphs and directed labeled graphs, based on
the datatypes of XML Schema and (d) a mechanism
for using HTTP transport in the context of an XML
Protocol.

2.5 Web Services Definition Language

Finally, one of the major requirements for the develop-
ment of Web services is the ability to describe their in-
terface, the boundary across which applications (Web
services user agents and Web services) communicate.
Applications can then interoperate using this interface.

The Web Services Description Working Group in-
side the W3C has the task of defining such an inter-
face. WSDL is composed of the following components:
(a) the message: a definition for the types and struc-
tures of the data being exchanged, (b) the message
exchange patterns: the descriptions of the sequence of
operations supported by a Web service, and (c) the
protocol binding: a mechanism for binding a protocol
used by a Web service, independently of its message
exchange patterns and its messages.

All the pieces described above (XML abstract data
model, the XML schema and type system, the XML
expressions, the Web Services messaging protocol and
the Web Services abstract interface) constitute excel-
lent building blocks for a Web Service infrastructure.
Unfortunately, there is no real programming language
for Web Services in the current state of the art, and
we believe that the existing programming languages
(e.g. Java, C#) or platforms (e.g. J2EE) are not ap-
propriate for this task. We propose XL as an alter-
native programming language, specially designed for
Web Services.

3 XL Programming Model

In this section, we describe how Web services can be
defined using XL. We describe the fundamental design
principles of the proposed programming interface, the
notion of a Web service and how Web services interact
in conversations, and the syntax of the most important
programming constructs. An example is given in [I3].

3.1 Design Principles

In [13], we gave a list of 17 desiderata that we believe
to be important for a programming language that sup-
ports the definition and composition of Web services.
Here, we would like to reiterate the five most impor-
tant principles that drove the design of the XL pro-
gramming language.

e XL should support a unique data model and type
system: the standard XML one [27].



e XL should be expressive enough to describe the
logic of most Web services.

e XL should not just be complete with respect to
Web service specification, but also comfortable to
use. Hence, it should provide special constructs
for important Web services programming patterns
(e.g., logging, retry of actions, and periodic ac-
tions).

e With the help of XL, programmers should concen-
trate entirely on the logic of their application and
not on implementation or optimization issues.

e XL must be compliant with all W3C standards
and it must gracefully co-exist with the current
Web services and infrastructure.

3.2 Web Services in XL

From our perspective, a Web service is any au-
tonomous software component that is identified by a
unique URI, understands SOAP messages, and whose
actions can be described by WSDL. Every XL pro-
gram will naturally meet these requirements and will
take the burden from the application programmer to
worry about standards like URI, SOAP, or WSDL.
However, this definition of a Web service is very gen-
eral and does not imply any particular programming
model. In other words, a Web service could also be im-
plemented in Java or any other language. Also, Web
services written in different languages can communi-
cate using SOAP and independently from the way they
were defined.

Technically speaking, a Web service defined using
XL generalizes the notion of an XQuery entity. The
definition of a Web service in XL is composed of four
optional parts:

e Web Service Definitions: As in XQuery, local
functions and types can be defined as part of a
Web service definition. Furthermore, schemas and
namespaces can be imported. The syntax and
semantics are the same as for XQuery.

e Variable Declarations: This part declares the
internal data (state) of the Web service; in other
words, this part specifies the global variables
of a Web service. XL supports two kinds of
global variables: web-service instance variables
and conversation-instance variables. Both kinds
of variables have a global scope, i.e they are ac-
cessible in the entire XL program. Web-service
instance variables have a single instance per entire
Web Service. An example of this kind of variable
is the customer database of an online shop which
has to be accessed across all conversations.

Conversation-instance variables will have a differ-
ent instance per conversation which the Web ser-
vice participates in. These variables represent the

context of a conversation (Section . Instances
of these variables are created whenever a Web ser-
vice starts a new conversation with other Web ser-
vices. In an online shop each sales process would
be represented by a single conversation. A vari-
able in this context might reference for example
the specific customer and the terms of payment
which apply in this case.

In addition, XL supports local variables which can
be used in operations; these variables, however,
are not declared globally. Such (traditional) local
variables are instantiated for each block/action in-
vocation and destroyed when the execution of the
block/action is completed.

The values of all the variables in XL are XML
values, i.e. instances of the XML data model [3].
In other words, the value of an XL variable can
be an XML document or the content of a SOAP
message. The type of an XL value may (but
it is not required to) be constrained using XML
Schema [29]. However, it is also possible to deal
with untyped XML data or with XML data for
which the type is not known apriori.

e Declarative Web Service Clauses: This part
contains invariants (integrity constraints) and
other high-level, declarative directives that con-
trol the run-time behavior of the Web service; e.g.,
declarative error handling mechanisms, declar-
ative discretionary access control, default ac-
tions, periodic actions, and declarative conversa-
tion patterns (Section [3.3). Invariants will typi-
cally constrain the values of the global variables,
very much like database integrity constraints. In-
variants can also be used to implement certain
policies; e.g., for security. For instance, an invari-
ant could express that a Web service is not allowed
to interact with two different banks as part of the
same conversation.

e Operation Specifications: This part describes
the possible actions (or operations) supported by
the Web service. In object-oriented terminology,
the operations of a Web service correspond to the
methods of a class. The statements that can be
used in order to define the operations body are
summarized in Section [3.4

3.3 Conversations

As mentioned earlier, Web services communicate by
the means of messages. A conversation is defined as
a set of correlated messages exchanged between two
or more participants in order to achieve a certain goal
(e.g. business goal, information exchange). Conversa-
tions are uniquely identified by URIs; they are usually
implemented by carrying the conversation URI in the
envelop of each exchanged message.



A typical example for a conversation is a user ses-
sion in an online shop. First, the user logs onto the
system (the first message from the user to the sys-
tem plus answer from the system). After that, the
user buys something (the second message and answer),
and finally the user determines a payment method (the
third message and answer). Naturally, the third mes-
sage can only be understood in the context of the first
two messages.

Another example for conversations is an online auc-
tion. The auction site informs its customers about a
new product which is for sale; the customers reply by
sending bids; the auction site, in turn, informs cus-
tomers about new bids and the status of the auction.
Again, a bid can only be understood in the context
of a whole auction and the messages exchanged for a
particular auction are correlated. The auction exam-
ple shows that more than two Web services can be in-
volved in a conversation and that interaction patterns
can be quite complex. Obviously, not all participants
of a conversation are allowed to listen to all messages
that are exchanged as part of the conversation; for in-
stance, sealed bid auctions could also be implemented
as a conversation.

XL supports the definition of Web services that
participate in conversations in two ways. First, XL
frees the programmer from manually managing the
contextual data associated to a conversation via the
conversation-instance variables. For example, for the
auction site, the context of a particular auction is the
product specification, the customer who wants to sell
the product, the highest bid, the name of the customer
who made the highest bid, and the list of customers
that participate in a particular auction and would like
to be informed about the status of the auction. Obvi-
ously, many auctions can be carried out concurrently
at the auction site so that many instances of these vari-
ables need to be kept: one instance of each variable for
each auction. When the auction site receives a mes-
sage that is related to auction X and that involves the
execution of the closeAuction operation, then the right
instance of, say, the highest bid variable is automati-
cally loaded and can be used in the definition of the
closeAuction operation. For a customer, the context
of an auction might simply be the highest bid and the
information whether this bid was issued by the cus-
tomer herself; this information might be need in, say,
a react operation that can be defined at a customer’s
Web service.

The second way in which XL facilitates the conver-
sation implementation is the declarative definition of
the conversation patterns. It would be a great deal of
work and error-prone if the programmers would have
to manually handle the conversations and their URIs.
Fortunately, in practice, there are only a handful of
different patterns that define the way Web services
participate in conversations. XL has a set of pre-

defined patterns, and allows programmers to declare
them; actions are performed automatically to imple-
ment them. For instance, if the implementor chooses
a Mandatory conversation pattern, then each incom-
ing message must contain a conversation URI (i.e., be
part of a conversation); otherwise, an error is returned.
Also, the mandatory pattern implies that the conversa-
tion URI of an outgoing messages (electronic payment)
is the same as the conversation URI of the correspond-
ing inbound message (a purchase order) that triggered
the payment; in other words, the inbound and outgo-
ing messages are part of the same conversation. More
about XL conversation patterns can be found in [I5].

3.4 XL Statements and Combinators

The body of an XL operation is described by
statements, which are extensions of XQuery expres-
sions [27]. In addition to classic imperative state-
ments like variable assignment, conditional state-
ments, loops, error handling and return statements,
XL supports some XML specific update statements
and some Web services specific statements (e.g., Web
services invocation, logging, sleep). Finally, in addi-
tion to the classic imperative statement combinator
(sequencing), XL supports other statement combina-
tors borrowed from the workflow and dataflow theory
(e.g., dataflow, parallelism, choice). In the following,
we will briefly describe the most important statements.
The full set of statements and statement combinators
of the current design of XL is described in [13].

In the expressions of an XL statement all global
variables declared in the wvariable declaration part of
the Web service are in scope, as well as all the local
variables defined in the current operation. Finally, for
each operation, two local variables are implicitly de-
fined: $input that is automatically bound to the body
of the SOAP message that triggered the current op-
eration execution and $output whose value implicitly
constitutes the body of the response message.

Variable Assignment

The simplest statement is the assignment of a (global
or local) variable. The syntax is as follows:

let [type] variable := expression

Any expression defined by the W3C XQuery pro-
posal [27] can be used on the left side of an assignment.
Local variables need not be declared before being used.
The type or XML Schema of a local variable can op-
tionally be set as part of the first assignment to this
variable. (Global variables must be declared; the type
of a global variable can optionally be set when the
variable is declared.) As in Java, the scope of a local
variable is the block where the variable is defined.



Update Statements

Unfortunately, XQuery does not yet provide expres-
sions to manipulate XML data. Don Chamberlain et
al. setup a working draft to extend XQuery in this
respect [11] and once a recommendation has been re-
leased by the W3C, XL is going to adopt the syntax
and semantics of these expressions. In the meantime,
we will use the following statements to manipulate
XML data:

e insert in order to add new nodes to the XML hi-
erarchy (e.g., an additional credit card element)

insert <creditcard>...</creditcard>
into $client

o delete in order to delete nodes from the XML hi-
erarchy (e.g., the Visa card)

delete $client/creditcard [type="Visa”]

e replace in order to adjust elements (e.g., the tele-
phone number)

replace $client/telephone with
<telephone>(408)8901—23</telephone>

e rename in order to rename certain nodes (element
or attributes )

rename $client /name as ” fullname”

e move in order to move some XML nodes to a dif-
ferent location in the XML tree, while still pre-
serving the internal structure and the node iden-
tifiers.

move $client/telephone
after $client/city

Service Invocation Statements

Probably the most relevant atomic statements in XL
are those used for invoking other Web services; i.e.,
sending a message to another Web service. Often, the
other Web service will be written in XL, but messages
can be sent to any service that has a URI and responds
to SOAP messages [26]. Web services are invoked in-
dependently of the specific way they are implemented.
We propose two ways to invoke a Web service as part
of an XL program: synchronous and asynchronous.

The syntax of a synchronous call is as follows:

<expression> —> <uri> [ ::<operation> ]

[ —> <variable> ]

The semantics are straightforward. A message with
the value of expression is sent to the Web service iden-
tified by wri. If a specific operation of that Web ser-
vice should be called, then the name of the operation
can also be specified; otherwise, the recipient is ex-
pected to understand the message without an opera-
tion specification. In a synchronous call, the execution

is halted until the called Web service finishes its execu-
tion and returns the result or an error which are both
also wrapped in SOAP messages. If a variable is given
as part of the call, then the body of the message re-
turned by the called service is copied into this variable.
The message is sent exactly once and in a best effort
way.

As an example, consider the following synchronous
service invocation that asks the online broker to buy
1000 SAP for at most €140.00; the result is stored in
the $receipt variable:

<order> <stock> SAP </stock>
<limit> 140 </limit>
<currency> Euro </currency>
<amount> 1000 </amount>
—> http://www. Broker.com::buy
—> $receipt

</order>

The syntax of an asynchronous call is similar to the
synchronous one:

<expression> =—> <uri> [ ::<operation> ]
[ => <operation> |

In terms of the semantics: in this case, the execution
will not block and the program will immediately con-
tinue executing the next statement after the message
to the called service has been sent. If the output (reply
or error message) needs to be processed, then the name
of the operation that will process the asynchronous re-
sult can be given as part of the call; this operation has
to be a member of the Web service that originated the
asynchronous call. Again, the message is sent exactly
once and in a best effort way.

Currently, XL provides no way of setting the en-
velop of a SOAP message explicitly. Such constructs
could be useful in order to implement certain kinds
of conversations, quality of service guarantees, and/or
to implement distributed transactions and secure mes-
sages. We plan to extend XL in this way once SOAP
and the emerging XML Protocol recommendation [22]
have stabilized.

Conditional statements and Iterations

Just like most other programming languages, XL pro-
vides IF-THEN-ELSE statement, WHILE- and DO-
WHILE loops (not shown here). The semantics are
straightforward and the same as in other impera-
tive programming languages. As for example the IF-
THEN-ELSE listing below shows:
if ( <booleanExpression> )
then
<statement>
endif else
<statement>
endelse

In addition to these common control statements XL
supports a FOR-LET-WHERE-DO loop, with the fol-
lowing syntax:



for <variable> in <expression>
let <variable> in <expression>
where <booleanExpression>

do <statement>

The FOR-LET-WHERE-DO loop corresponds to
FLWR expressions in XQuery [27], but it executes
statements (with potential side effects) instead of eval-
uating side-effect free expressions.

Exception handling statements

Web services implemented using XL signal failure by
throwing exceptions - just as in Java or C4++. The
syntax of the XL statement that raises an exception is
as follows:

throw <expression>

Here, expression can be any kind of XQuery expres-
sion. If the exception is not handled locally (see be-
low), the execution of the operation terminates and
the value of the expression (instead of the value of the
$output variable) is returned as a SOAP message to
the caller of the service. Just like variables and any
other expression, the exceptions can be strongly typed
optionally.

XL also adopts the Java syntax for catching excep-
tions. TRY is used to indicate a statement (or se-
quence of statements) in which an exception might be
raised; CATCH is used to write code that reacts to
exceptions. The syntax is as follows:

try <statement>

endtry

catch <variable> do
<statement>

endcatch

The variable in the CATCH statement is bound to
the value of the data carried by the exception that is
raised while executing the statement(s) of the TRY
statement. As in Java, a caught exception will trigger
the execution of the associated statement.

3.5 XL statement Combinators

Obviously, the body of an XL program can contain
more than one atomic statement. There are several
ways to combine statements. In the following “state-
mentl” and “statement2” can refer to any atomic
statement as the ones described in the previous sec-
tions or to any combination of statements[33].

The typical way to combine statements is by us-
ing the “” symbol, like in C4++ or Java. Thus, the
following means that “statementl” is executed before

“statement2”.
<statementl> ; <statement2>

Furthermore XL provides a set of additional combina-
tors

? Simple error handling. If “statementl” fails, exe-
cute “statement2.”.

| Nondeterministic choice. Execute either “state-
mentl” or “statement2,” but not both

|| Parallelism. Execute “statementl” and “state-
ment2” in parallel.

& Dependency. Considering existing dependencies
betweeen the statements an execution order is
choosen by the system itself.

Block

As in C++ and Java, we use the following syntax to
identify a block of statements. The body of an XL pro-
gram, for instance, is formed as a block of statements.
The scope of a variable is the block of statements in
which the variable is used for the first time.

begin

<statement>
end

4 Optimization and Execution of Web
Services

Having described the basic features of the XL pro-
gramming model, we would like to turn to a presen-
tation of the design of our platform to execute Web
services. The XL platform has been designed with
four major goals in mind: (a) high performance, (b)
high reliability, (c) high security level and finally (d)
very low or inexistent administration costs (i.e auto-
matic optimization). We believe that the high level,
declarative programming model of XL will enable us to
achieve these goals, while they are very hard to achieve
in an environment entirely based on a lower level im-
perative programming language like Java or C#.

Implementing such a platform for Web services in-
volve combining techniques from different disciplines;
most importantly, database systems, compiler con-
struction, distributed systems, networking, and data
flow processing. From database systems, we adopt the
approach to transform programs in equivalent algebra
expressions and to carry out transformations / opti-
mizations on these expressions. From compiler con-
struction, we adopt techniques such as dead code elim-
ination and peephole optimization. Furthermore, an
efficient platform for Web services will employ tech-
niques like caching and process migration in a cluster
of servers in order to achieve scalability. Finally, we
advocate the use of pipelining and of data flow process-
ing as much as possible; data flow processing has been
studied, e.g., in projects like Ptolemy [25]. Exploiting
data flow processing is one of many differences between
our XL implementation and typical implementations
for, say, Java.

We present in this section a couple of techniques
that will lead us to achieving the four desiderata listed
above. We note that not all the techniques presented
in the following have been implemented and integrated



into our prototype. However, we are currently work-
ing on adding these techniques to the system and we
hope that we will be able to carry out performance
experiments soon.

4.1 Architectural Overview

The XL platform has two main components: (a) the
XL compiler, and (b) the XL virtual machine. The
role of the XL compiler is to translate the textual rep-
resentation of an XL program into a statement graph.
The statement graph is an abstract representation of
the definition of an XL Web service, analogous to a
database query execution plan, but adapted to state-
ments and programs instead of queries. The statement
graph uses a core “algebra”, i.e. a set of simple, ba-
sic statements that are able to support the entire XL
semantics.

The compilation is done in two steps. First, the tex-
tual representation of an XL program is translated by
the XL parser into a naive (usually suboptimal) state-
ment graph. Second, the XL optimizer transforms this
naive statement graph into an equivalent but more ef-
ficient statement graph. The equivalence of statement
graphs is defined in terms of the equivalence of their
returned results, but also in terms of the equivalence of
their impact on the context of the conversation where
they are executed (e.g. variable updates, messages
sent). If we think of a distributed conversation with
different participating servers the context is not just
the locally represented state of a single server but a
conjunction of the states of all participating servers.

Furthermore, the optimizer adds annotations to the
statement graph in order to specify precisely how each
statement should be executed.

The statement graph produced by the optimizer is
interpreted by the XL virtual machine whenever trig-
gered by an incoming message. This process can be
described as follows.

First, each incoming message is processed by a mes-
sage handler. The XL message handlers correspond
to the various modes of interaction with the XL vir-
tual machine. Examples of such modes of interaction
are: (a) normal action will invoke an operation of the
Web service in the standard operation mode; (b) error
which deals with inbound messages which are not un-
derstood; (c¢) debug which processes messages invoked
by the XL debugger; and (d) test which simulates the
actions of the Web service without any side-effects in
order to test a Web service that invokes operations of
another Web service [1]

Next, when the normal action message handler
passes a SOAP message to the virtual machine, the
virtual machine loads (if not cached already) the state-
ment graph of the called operation from the database
and executes it. The execution is done in a certain

1Debugging and testing are not subject of this paper; our
initial design is covered in [2§]
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Figure 1: The architecture of the XL Runtime-System

context that contains all the information needed for
the execution. The data produced as the result of the
execution of the statement graph is sent back to the
caller as another SOAP message. Figure [I] gives an
impression of the XL architecture.

We would like to high-light three important features
of the XL virtual machine. First, in order to execute
statements in parallel, the virtual machine is multi-
threaded. Second, the virtual machine is designed to
be able to stream the intermediate data between state-
ments; pipelining is a very important feature of our
design. Third, in order to achieve scalability and high
reliability, the XL virtual machine has been designed
to support the migration of processes from one ma-
chine to another machine in a cluster (we expect that
the platform will be installed on a cluster of servers).

Some statements and actions change the values of
global variables; such statements involve interaction
with an XML database that stores the values of these
variables. Furthermore, the XML database stores all
context information and an XML representation of the
statement graph for each XL operation. Currently,
we rely on a third-party database vendor for this pur-
pose. In fact, at the moment, even a standard rela-
tional database system could be used for our purposes.
In order to achieve very good performance, however,
there must be a tighter coordination between the XL
compiler, the VM and the database backend. This co-
ordination is necessary to carry out certain kinds of
optimizations (see Section , to exploit indexes of
the database, and to operate efficiently in a distributed
environment (e.g., in a cluster).

The right internal XML data representation is cru-
cial for good performance in the virtual machine. Re-



call that all XL programs only manipulate XML data
(the values of variables are XML documents) and that
XL programs (i.e., statement graphs) and contexts are
represented in XML. In the XL platform all XML
data is represented as a vector of tokens; the XML
parser generates a sequence of tokens for each XML
document, in a similar way as a SAX parser gener-
ates event{’} Representing XML data as vectors of
tokens allows a very compact internal representation
and it allows the processing of data in a stream-based
way (Section . In many cases, such a vector never
needs to be materialized; instead, the statements are
implemented as iterators [17] and consume tokens in a
pull-based manner. XML data lives through the entire
process inside the XL virtual machine in this internal
format, and the data is serialized back into an XML
string only at the end of the execution of an opera-
tion when the result/answer is sent back as a SOAP
message.

In the remainder of this section, we will first de-
scribe the algebra (i.e., the core XL statements, Sec-
tion , the statement graph (Section and the
execution context (Section . Then, we will briefly
sketch possible optimizations (Section and the
two most prominent features of the runtime system:
stream-based processing (Section and process mi-
gration in a cluster (Section .

4.2 XL Core “Algebra”

Although XL is a fairly powerful programming lan-
guage, all constructs are supported by a very simple
core algebra composed of six statements. This sim-
plicity makes XL easy to optimize and to build highly
reliant and secure platforms for XL. In some sense,
these six statements can be seen as the pendant to
the operators of the relational algebra that is used in
order to implement SQL queries. As the operators
of the relational algebra, these core statements can
be implemented in different ways (e.g., pipelined and
non-pipelined) and it is the responsibility of the XL
optimizer to determine the best way to execute them.

e Assignment: As mentioned in Section [3.4] as-
signments bind an XL variable to an arbitrary
XQuery expression.

e Send: This core statement evaluates an expres-
sion and sends the result to the target URI.

e Receive: This statement blocks and waits until
it has received a specific message.

e Wait: This statement blocks until a certain event
(e.g., an update to a variable) takes place.

2The major difference between our token stream and SAX is
the fact that SAX events are propagated in a push fashion while
our tokens are consumed in a pull mode.

let $_x :=expr()

| let $_p := ($_i It count($_x)) |

$_p)

for $x in expr do
stmtl || stmt2

| stmt1 || stmt2 |

let$_i:=$_i+1

Figure 2: Statement Graph for a FWD- loop

e Sync: This statement is used to synchronize the
parallel execution of statements.

e Update: We provide native support for the XML
update statements described in Section

4.3 Statement Graph

Each operation of an XL, Web service is abstractly rep-
resented by a statement graph, similar in spirit to the
statement graphs used for data flow analysis and code
optimization (see [4]). The nodes of this statement
graph are the core statements described above and
the edges in the graph encode the order in which the
statements are to be executed. An edge from state-
ment S; to statement S indicates that S; must be
executed before Sy. The graph need not be fully con-
nected; statements that are not ordered in the graph
can be executed in parallel. Edges can be annotated
by Boolean variables that indicate under which condi-
tion a statement is executed after another statement.
This way, the statement graph encodes if statements
and loops. Figure |2 gives a small example. The nodes
of the statement graph are also annotated with addi-
tional information like the specific algorithm that has
to be used to implement the statement and the esti-
mated cost of the statement [

4.4 Execution Context

Each XL statement is compiled and executed in a con-
text; the context contains the values of variables (e.g.,
local variables and conversation-specific variables) and
it contains all other information needed to evaluate ex-
pressions (e.g., connections and pre-compiled queries).
The XL statements may need to evaluate XQuery
expressions; such expressions also need an evaluation
context that contains information like the imported
schemas, namespace definitions, local functions and so
n [27]. Such contexts can be generated dynamically

3not shown in figure



and are organized in a hierarchy. In such a hierarchy of
contexts, an XQuery expression is executed in a partic-
ular context; if this context does not contain a specific
definition used in the expression, then the parent con-
text is inspected. The root of the context hierarchy,
the base context, contains the definition of all built-in
XQuery types, namespaces and functions [2]. This fea-
ture is exploited in the XL virtual machine in order to
implement scopes of variables and conversations (i.e.,
organize the conversational context).

4.5 Optimization

The purpose of the optimizer is to transform the state-
ment graph into a more efficient statement graph and
to annotate the statement graph so that it can directly
be executed. Some of the transformations applied by
the optimizer are standard techniques from compiler
construction (e.g., dead code elimination and detec-
tion of common subexpressions), some of these trans-
formations are known techniques from the database
camp (e.g., reordering of statements, parallelization,
and control of data flow and materialization of inter-
mediate results), and some of these transformations
are specific to XL and our particular domain.

We are currently experimenting with the following
techniques:

e Common subexpressions: Identify (sub-) ex-
pressions in different statements that are guaran-
teed to produce the same value. This is a classic
technique studied in compiler construction and in-
volves data flow analysis [4].

e Reorder statements: Identify statements
which could be executed in parallel because they
do not have any data dependencies. Furthermore,
identify statements that operate on the same data
in order to improve the temporal locality of the
application.

e Multi-query optimization: In certain situa-
tions, it might be better to evaluate two expres-
sions simultaneously rather than each expression
individually.  Such situations can be detected
in XL because the compiler has a more global
perspective on the application than a traditional
database compiler (i.e. the entire program is anal-
ysed, not only an isolated query).

e Batched updates: Often updates to the same
(or even different) variables can be batched and
executed in one go, thereby saving round-trip
messages to the database.

e Identify local service invocations: For such
invocations, we could eliminate the (very high)
overhead of the SOAP protocol. Moreover, the
caller and the callee Web services can be opti-
mized together in order to achieve better perfor-
mance.

e Identify local side-effect free service invo-
cations: If side-effect-free invocations are part of
expressions, it might be possible to avoid these in-
vocations altogether. Furthermore, the result of
such an invocation can be cached.

e If-then-else optimization: First, if the condi-
tions of nested if-then-else statements are disjoint,
the order in which these conditions are evaluated
can be tuned depending on the selectivities and
cost of these conditions [20]. Furthermore, ma-
terialization and hashing can be applied to save
costs to find the right branch of deeply nested
if-then-else or switch statements. We expect that
evaluating the conditions of swich and if-then-else
will take up a substantial part of the cost to ex-
ecute a Web service, considering trends like the
personalization of Web services.

This is only an initial, incomplete list of possible
techniques. Moreover, all of the techniques above have
in some way or the other been discussed in the con-
text of compiler construction, persistent programming
languages, or database systems — which optimizations
are particularly amenable and how they interact in our
specific domain is still subject to future work. All these
optimizations can be carried out very well in XL due to
the high level of abstraction of the programming lan-
guage and the very simple core algebra and statement
graph that is used to implement the language.

4.6 Streaming Execution

Since XL was designed for data-intensive applica-
tions, the XL virtual machine makes excessive use of
pipelined processing. In fact, the XL virtual machine
can be characterized as a data flow machine. This
approach is in the database tradition, but it is quite
different from the way that, e.g., typical Java VMs are
designed. Pipelining means that the “results” of one
statement are passed piece by piece (i.e., token by to-
ken) to other statements. For this purpose, each state-
ment is implemented as an iterator, as proposed in [17].
In order to understand what pipelining means in XL,
we would like to interpret an edge between statements
Sy and Sy as a set of pipelines (one for each variable)
through which the values of each variable are passed
token by token from statement S; to S;. Statement
Sy consumes these tokens (if needed) one by one in
its expressions, and pipes them (if unchanged) to the
next statement(s) in the pipeline.

Almost all the core statements described in Sec-
tion |4.2| can be implemented in such a pipelined fash-
ion. The assignment statement, for instance, can be
implemented by pipelining the results of the expression
on the right side to the next statements and by car-
rying out successive inserts if the variable on the left
side is persistent. The only exceptions from this rule
are event and sync which require special attention.



The reasons for pipelining in the XL platform are
essentially the same as in commercial database sys-
tems. First, pipelining provides faster initial response
times; i.e., the system returns the first answers earlier.
Second, pipelining reduces the main memory require-
ments and reduces costs to materialize intermediate
results (e.g., on main memory or on disk) and/or the
unfortunate swapping. Third, pipelining is a form of
parallelism and therefore, potentially reduces the to-
tal response time. Fourth, pipelining is particularly
important in the presence of bursts in the network: a
service can start processing the first inputs while it is
waiting for the rest of the input. Finally, pipelining is
very helpful to avoid wasted work or even ensure that
certain operations terminate in a similar way as lazy
evaluation does for functional programming.

As an example, consider, the following code frag-
ment:

Il infinite input from a sensor
let $a := (1, 0, 1, 0, 1, 0, ...
if ( some $b in $a satisfies $b = 1) then

let $output := ”at least one ’1°7;
endif

Without pipelining, the execution of the first let
statement would not terminate. With pipelining, the
first 1 will be piped into the if statement which in
turn immediately evaluates to true. As a result this
operation will simply return the output at least one 1’
(Existential qualification is very frequent in XQuery
because it is implicit in almost all comparisons. For the
purpose of clarity, we made it explicit in this example.)

Of course, pipelining is not always the best execu-
tion model and pipelining sometimes comes at an ad-
ditional cost: overheads for handling individual tokens
and synchronization if several statements consume the
results of a statement. In particular, pipelining must
be used with great care across iterations of a loop.

4.7 Process Migration Inside a Cluster

In order to achieve scalability and high reliability, we
expect that the platform will be installed on a clus-
ter of servers. In such a cluster, each server will run
a separate XL virtual machine. The XL virtual ma-
chine has been designed to support the migration of
processes. To migrate a process (i.e., conversation),
simply the context of that conversation needs to be
shipped to a different server because the context con-
tains all the relevant information. Process migration
is particularly important in this environment because
interacting with external, autonomous Web services
(and users) can result in message round-trip times and
waiting times of several days. For complex operations,
the virtual machine can also be instrumented to exe-
cute different portions of an activity on different ma-
chines in parallel, thereby exploiting pipelined and in-
dependent parallelism within an operation. Again, we
believe that it is going to be easier to parallelize oper-

ations and to achieve scalability and high availability
in a cluster using XL than using Java or J2EE due
to the very simple and clean semantics (core algebra)
of the XL programming model. This observation fol-
lows the tradition of relational databases that can be
parallelized very well based on the relational algebra.
However, we still need to prove our intuition.

5 Related Work

The development and composition of Web services (or
e-services) is currently a very active area in both in-
dustry and academic research. Very good resources
that address various aspects of this area are the W3C
workshop on Web services [9] and the latest issue of
the IEEE Data Engineering Bulletin on e-services [I].

In the industry, there have been a number of con-
crete proposals for new languages and frameworks re-
lated to our programming language proposal—most
prominently, SUN’s J2EE [I9] and SunOne [31], and
Microsoft’s .NET initiative [24]. Compaq has devel-
oped the WebL language [33]; HP has developed the
eFlow and eSpeak systems [7, [12], IBM is working on a
language called Web Service Flow Language [36], and
Microsoft has recently released their BizTalk Server
2000 [5] and XLang [32]. As mentioned in the intro-
duction, these proposals either fall short to provide
a full programming environment or they are too low-
level and too complex in order to achieve our main
objectives: increase the productivity of programmers
and achieve better (automatic) optimization.

Web services are intimately related to workflow sys-
tems. There is of course an extensive literature on
workflow systems (e.g., [23, [8 [16]). A great deal of
the work already done in the area of workflow systems
is applicable here, but has to be adapted to the par-
ticularities of the Web services context.

In the academic world, the notion of a service com-
position is based on a solid theoretical background con-
sisting on the calculi developed first by Hoare [18], Mil-
ner [2I] and more recently by Cardelli [6]. However,
none of those languages and frameworks are consistent
with the current XML and Web services state of the
art, and the proposed approaches to implement those
calculi are not designed for data-intensive and scalable
applications.

6 Conclusion

We presented the design of XL, a new platform for
Web services. XL provides a complete programming
language that is fully compliant with the Web ser-
vices paradigm and all related W3C standards (i.e.,
the XML family of standards, SOAP, and WSDL).
One of the main principles is to provide a very high-
level and mostly declarative programming model and
to reduce complexity and the number of software lay-
ers (i.e., tiers) in a typical application system. This



way, we hope to increase the productivity of program-
mers, make optimization automatic, improve the per-
formance and scalability of application systems. Al-
though this has not been the focus of our work so far,
we also hope to make it easier to obtain high availabil-
ity and security / safety using our programming model
and platform.

The project is still at the beginning. We are cur-
rently seeking for feedback on the design of the pro-
gramming language. Furthermore, important concepts
such as the transaction model are still open. We plan
to fill in these holes as soon as some of the W3C stan-
dards (e.g., XML Protocol) have further stabilized.
We have a prototype implementation of the platform
(see [14]), but a great deal of engineering and exper-
imentation is still necessary in order to achieve high
performance and scalability. We are also planning to
carry out pilot projects with customers and their ap-
plications using the XL platform.
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