Deriving and Managing Data Products in an
Environmental Observation and Forecasting System

Laura Bright

David Maier

Computer Science Department
Portland State University
Portland, Oregon
{bright,maier}@cs.pdx.edu

Abstract

Large-scale scientific workflows can perform
many computationally intensive tasks and
generate large volumes of derived data prod-
ucts. These systems pose many challenges to
both creating and managing data products,
including efficiently executing tasks and track-
ing data product lineage and metadata. In
this paper we describe our experiences imple-
menting an experimental data-product man-
agement system to address these challenges for
the CORIE Environmental Observation and
Forecasting System. We present a novel ar-
chitecture to store both data products and
the tasks that create them. Our system in
addition supports tasks to automatically per-
form system maintenance, and enables data-
intensive tasks to execute on multiple nodes of
a Grid. We present several challenges to exe-
cuting existing scientific workflows on a Grid,
and propose several techniques to improve
task scheduling in this environment. Prelim-
inary performance results show the potential
benefits of these techniques.

1 Introduction

Large-scale scientific workflows are common in many
domains, including experimental physics, earth sci-
ences, life sciences, and environmental forecasting.
Such systems are characterized by data- intensive tasks
that generate a large number of derived data products.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 2005 CIDR Conference

These data products include datasets and images, and
may serve as inputs to subsequent tasks.

There are many challenges to successfully imple-
menting and executing large-scale scientific workflows.
One set of challenges relates to managing the creation
of data products. Simulation and analysis tasks that
generate these products are both time-intensive and
data-intensive, and many different tasks may compete
for limited resources. There may be opportunities to
speed up execution by running independent tasks on
different nodes of a Grid, but determining when and
where to execute each task is non-trivial. A second
set of challenges relates to managing the data prod-
ucts themselves. A single data product may contain
several hundred megabytes, and a single run can gen-
erate thousands of individual products. Efficient stor-
age and management of these products is needed to
reduce both search and data transfer overhead. In ad-
dition, tracking metadata and lineage information for
each data product is crucial for scientists who reference
these products after they are created.

In this paper we describe our experiences imple-
menting an experimental data-product management
system for an environmental observation and forecast-
ing system. Our motivation is the CORIE System
[4], which integrates real-time sensor data with nu-
merical simulations. CORIE includes multiple data-
intensive scientific workflows that generate large vol-
umes of data. Daily forecasts alone generate up to
5GB of data and over 30,000 derived data products,
including images, animations, aggregated results, and
datasets.

The existing CORIE workflow implementations
consist of a collection of programs in C, Fortran, and
Perl. Adding or modifying tasks and data products
requires manually editing the code, and there is no
easy way to track which programs and inputs gener-
ated which data products. Further, this collection of
programs does not allow us to execute independent
tasks on different nodes of a Grid, which could sig-
nificantly speed up execution. Thus, our goal was to

build a data-product management system to improve
the flexibility and scalability of the existing workflows.

We have implemented our system using
ThetusT™[13], a commercial product designed
for non-text data management common in many
scientific domains. Thetus provides facilities for
tracking metadata and lineage information about
data products. It also provides facilities to auto-
matically launch workflow tasks when appropriate
conditions are met, and enables executing workflows
on one or more nodes of a Grid.

When we initially started this project we had sev-
eral goals. Our first goal was to improve the scalability
of workflow execution, in terms of both ease of adding
and modifying tasks and data products, and speed of
task execution. A second goal was to improve our abil-
ity to track lineage information about data products,
and easily identify which executables and inputs gener-
ated each data product. Such information is useful for
regenerating data products from new inputs, and for
identifying which products are affected by changes in
inputs or executables. Finally, we wanted to reuse ex-
isting workflow code as much as possible. Reusing code
is important for two reasons. First, the existing work-
flows include a significant amount of code (over 10,000
lines for the forecasts alone). Implementing this exist-
ing functionality in a new language would be extremely
time consuming and could introduce new bugs. Sec-
ond, it allows programmers to continue programming
in their language of choice, which facilitates adding
new tasks to the current workflows.

We describe the steps we have taken towards meet-
ing the goals above for the CORIE workflow using
Thetus. In particular, we present specific features
we have implemented in our system to address the
challenges posed by the CORIE workflows. We have
implemented a novel architecture for managing both
data products and tasks. Owur architecture includes
two types of tasks: generation tasks that perform sim-
ulations or analysis to generate data products, and
management tasks that automatically perform system
maintenance to improve data product management
and task execution. We discuss our experiences incor-
porating the existing CORIE workflows into our ex-
perimental architecture, and show how we successfully
implemented a workflow with minimal modifications
to existing code. We also consider the challenges in ef-
fectively scheduling the execution of CORIE workflow
tasks on a Grid, and present preliminary results show-
ing the performance of the existing workflow on our
implementation. While we use CORIE as a motiva-
tion and testbed for our work, we believe that our so-
lutions are applicable to other scientific domains. For
example, the problems of lineage tracking, metadata
management, and Grid execution apply to many sci-
entific workflows.

We note that there is a considerable amount of

research in large-scale Grid computing systems, e.g.,
Globus [6]. While our research shares many goals with
such systems, including speeding up task execution
and exploiting available resources, there are several
key differences. Large-scale Grid-computing systems
typically provide computing resources to a large set of
geographically distributed users, who submit jobs to
the system and share resources with other users. In
contrast, the CORIE workflow is executed by a small
group of scientists using a set of dedicated machines
connected by a local area network. These machines
are unlikely to be committed to a larger Grid, as their
resources are generally completely consumed by regu-
larly scheduled production runs. We therefore focus on
speeding up individual workflow executions using mul-
tiple local computing nodes, rather than sharing glob-
ally distributed computing resources and data among
a large number of users. Thus, our task scheduling
and replica management solutions differ from those in
large scale Grid systems.
Our main contributions are as follows:

e We present a case study of our experiences imple-
menting a data product management system for
an existing scientific workflow.

e We present an architecture for managing both
data products and the tasks that generate them,
including facilities for tracking lineage and meta-
data and maintaining multiple versions of files.

e We identify key challenges to executing scientific
workflows on a Grid, and propose scheduling tech-
niques to address these challenges.

e We evaluate our scheduling techniques using our
prototype implementation.

This paper is organized as follows: Section 2
presents an overview of the CORIE system, describes
some challenges posed by the existing CORIE work-
flows, and outlines the goals of our experimental imple-
mentation. Section 3 describes the details of our imple-
mentation, including special features we implemented
and our experiences with the CORIE workflows. We
discuss task scheduling challenges and present prelim-
inary results in Section 4. We survey related work in
Section 5, and conclude in Section 6.

2 CORIE Environmental Observation
and Forecasting System

CORIE [4] is an environmental observation and fore-
casting system for the Columbia River estuary. The
CORIE system both measures and simulates the phys-
ical properties of the estuary. Applications have ad-
dressed issues spanning salmon habitat and passage,
hydropower management, navigation improvements
and habitat restoration. The system includes both

forecast and hindcast simulations. Forecasts are used to
predict near-term conditions in the river, while hind-
casts are run retrospectively for specific time periods
using observed values. Hindcasts typically consist of
an extended set of simulations covering a year. They
may also include calibration runs to test the sensitivity
of the model to empirical parameters.

2.1 CORIE Workflows

The existing CORIE workflows consist of a collection
of executable programs written in Fortran, C, and
Perl. In some cases one program directly calls one
or more other programs. In other cases two programs
execute concurrently, one of which appends data to
files while the other periodically reads the files and
processes the newly appended data.

We first present a sample of the CORIE forecast
workflow and discuss some challenges for it, then
present the goals that we address in our implemen-
tation. In the remainder of this paper we focus on
the CORIE forecast workflow, but we note that the
hindcasts pose similar challenges.

start.pl

*_salt.63
*_temp.63
*"vert.63
master_process.pl * hvel .64
* elev.61
v *“wind.62
do_isolines.pl
do_transects.pl

compute_plumevol.c

plumevol* .dat

do_plumevol.pl
plot_plumevol.pl

>>‘ do_stationextraction.pl }—>>‘ extract_stationinfo_forecast.c ‘

Figure 1: A segment of the CORIE forecast workflow.
White boxes are tasks, shaded boxes are data files.

Figure 1 shows a segment of the forecast workflow.
We note that this is only a subset of the tasks, inputs,
and outputs in the CORIE workflow; however, this
subset illustrates the challenges posed by both the fore-
cast and hindcast workflows. For simplicity we omit
the final derived data products (e.g., datasets, images,
animations).

In this figure, white boxes represent executable
tasks, which may be written in Fortran (e.g., EL-
CIRC), C (e.g., compute_plumevol), or Perl (e.g.,
plot_plumevol). Shaded boxes represent data files.
Bold arrows show which data files are inputs to each
executable, while light arrows indicate that one ex-
ecutable calls another. Files with names ending in
.61, .62, .63, and .64 are generated by the EL-
CIRC simulation [17]. These files contain values of
different variables, such as salinity and velocity, com-
puted over a 3D finite-element grid at multiple time

steps. These files are used to generate many images
such as transects (vertical slices of the river) and iso-
line plots (horizontal slices). A single forecast run
generates several files of each type, e.g., 1_salt.63,
2_salt.63, etc. The program compute_plumevol.c
computes the volume of the plume, a region of wa-
ter beyond the mouth of the river with salinity below
a given threshold. It executes with several different
threshold values and generates a plumevol*.dat file
for each. These intermediate products are inputs to
plot_plumevol.pl, which generates a plot of the de-
rived data values.

Several Perl scripts start the simulation
run (we show two of these, start.pl and
master_process.pl, in Figure 1). The script

start.pl launches the ELCIRC simulation, while
the script master_process.pl executes several Perl
scripts including do_isolines.pl, do_transects.pl,
do_plumevol.pl and do_stationextraction.pl,
each of which reads one or more of the files gener-
ated by ELCIRC as input. These scripts execute
concurrently, as each Perl script is run periodically to
process any data appended to the ELCIRC outputs
since the script’s last execution.

The forecast workflow is executed daily. A single
forecast run generates about 5GB of data and over
30,000 individual files. Hindcasts are run as needed,
and a single run generates about 20GB of data and
over 10,000 individual files.

2.2 Challenges

We now consider specific challenges posed by this
workflow. The first challenge is executing the work-
flow on a Grid. The CORIE workflow is character-
ized by large files and data- and memory-intensive
tasks. The current workflow implementation runs on
a shared filesystem, which provides convenient access
to files across multiple nodes but poses several diffi-
culties. First, all tasks in a single run execute on a
single machine, which misses many opportunities for
concurrent execution. There is no easy way to coor-
dinate workflow execution among multiple machines.
Second, there are no facilities for concurrency control
or tracking changes to a file. Important files could po-
tentially be corrupted or overwritten if multiple users
execute tasks on them simultaneously. Third, storing
and locating relevant inputs and data products is non-
trivial. Earlier forecast runs may need to be archived
onto tertiary storage, which involves transferring large
volumes of data. The current workflow implementa-
tion relies on a hard-coded directory structure, so ex-
isting code may break if files are moved.

In contrast, executing these tasks on a Grid can
overcome some limitations of filesystems and poten-
tially reduce the overall execution time. However,
many tasks require one or more large files as input.
Transferring these files to a remote machine (hereafter

referred to as a node) may take over 30 seconds or
even several minutes, which may significantly increase
the task’s execution time. Thus, determining an op-
timal task scheduling strategy is non-trivial. Further,
the current workflow code does not easily lend itself
to Grid execution. In some cases a single executable
performs the same computation on multiple files. Dif-
ferent files could be processed concurrently at differ-
ent nodes to improve performance. However, in some
cases it is more efficient to execute a task on a sin-
gle node. Therefore, we must determine when split-
ting tasks into smaller tasks improves performance. A
related challenge is adding and removing nodes with
minimal overhead. Adding or removing nodes should
not affect other nodes in the system, and should not
require transferring large amounts of data.

Another challenge to executing this workflow is
adding and modifying tasks. Adding tasks to the
CORIE workflow requires manually editing several ex-
ecutables. Programmers must ensure the new task
does not interfere with other tasks. We would like
the addition of new tasks to be transparent to exist-
ing tasks. In addition, adding tasks should not require
changes to nodes, and modifications to a task (e.g.,
fixing a bug, using a new simulation model) should be
propagated to nodes in a scalable manner.

A third challenge is tracking lineage and metadata.
Lineage refers to information on other files used in the
generation of a data product, including both inputs
and executables. Metadata refers to other parameters
to describe the data including execution time and in-
put parameters, as well as information that can be ex-
tracted from file names or headers and may be known
only to task programmers. In earlier research [9] we
described a system to automatically extract and orga-
nize metadata from files. We use similar techniques in
our implementation as described in Section 3.3.3.

2.3 Goals

Based on the above challenges, we had several goals
for our experimental system. The first three relate to
the creation of data products, while the last two relate
to the management of the data products themselves.
We address each of these goals in Section 3.

1. Speeding up execution

2. Easily adding and modifying data products and
tasks

. Seamlessly adding nodes

. Storing metadata

5. Tracking lineage

=~

3 Implementation

We built our data product management system using
the Thetus Publisher [13]. Thetus provides data man-
agement facilities for non-text data common in many

scientific domains. We first present an overview of
Thetus, including a description of its capabilities and
architecture, along with terminology used in this pa-
per. We then present several unique data manage-
ment features we implemented using Thetus compo-
nents, and discuss our experiences implementing the
existing CORIE forecast workflow using Thetus.

3.1 Thetus Overview

Thetus consists of two main components, a publisher
and one or more task servers. The publisher pro-
vides storage and query facilities for data products
and their associated metadata. It also allows the def-
inition of multiple namespaces for different domains.
Finally, it provides storage for executable tasks and
facilities to launch each task on one of the available
task server nodes when appropriate launch conditions
are met. Executing tasks on multiple nodes can po-
tentially speed up workflow execution by allowing in-
dependent tasks to run concurrently. (We discuss per-
formance and scheduling issues in detail in Section 4.)
Thetus includes the following entities:

e Data Files: These are files that are uploaded
to Thetus and may be associated with a set of
properties (described below). The Thetus Pub-
lisher was designed to store data products and
their associated metadata properties. However,
in our implementation we used the publisher to
store other types of files as well (described in Sec-
tion 3.3.1).

e Properties: These are metadata attributes asso-
ciated with data files or descriptions (defined be-
low). Properties can be of any basic type such as
integer, float, or string. Properties can also be de-
fined “on the fly” when a file is uploaded, and will
be automatically created by the publisher with a
type of “undefined”. This capability means that
users need not define a schema in advance, and
can extend existing schemas to meet their needs.

e Descriptions: A Description is a set of property-
value pairs that describe an object or concept and
can be shared among multiple entities. Descrip-
tions can be used for many different purposes in
Thetus; we describe some uses later in this sec-
tion.

e Dictionaries: A Dictionary is a set of properties
for a domain (akin to a Namespace in XML).

e Profiles: Every data file is uploaded using one
or more data profiles. Profiles contain metadata
that identifies all data files associated with the
profile. A profile may also include one or more
tasks (described below) that are launched when
certain conditions are met, e.g., when one or more

files are uploaded, or the presence or absence of
certain properties.

e Tasks: Thetus tasks are Java programs that ex-
ecute on one or more data files as input and pro-
duce one or more data products as output. They
may execute on any available task server. Thetus
tasks may call programs written in any language.
Calling existing programs from Thetus tasks en-
ables programmers to reuse existing code as much
as possible, as described in Section 3.4.

Every object in Thetus (e.g., profiles, properties,
tasks, data files) is identified by a unique ID.

input files Publisher data stores
O~5=

-
/
data products

and executables

inputs and exec? —

—.F;

data products

=

|

—\

Task Servers

Figure 2: System Architecture

3.2 Architecture

We present our architecture in Figure 2. Data files
stored at the publisher hold all relevant entities: in-
puts, executables, and data products. The publisher
may be connected to one or more data stores, which
allows new storage to be added to the system as the
volume of data grows.

Set_Defaullt:

Description: prog.pl

File: prog.pl Profile:

Set_Default_Profile
1D:123 11— Task: > Tg: Defaul Properties:
Set_Default LIDEEUT Default_1D:123

Extract_Metadata:

File: 1 salt.63 Profile: Extract_Metadata Profile
,,,,,,,,,,,,,,, Task: Extract_Metadata
|| Properties:

AL Metadatal: 2.34 i !
Metadata2: abc | Task: Extract_Metadata

Figure 3: Execution process of two tasks

We illustrate the launching and execution of two
tasks in our system in Figure 3. We defer the de-
tails of these tasks to Section 3.3. When a data file
is uploaded (either by a user or by a task that gener-
ated it), it is associated with one or more profiles that
may trigger associated tasks. For example, in Figure

3, when the file prog.pl is uploaded to the profile
Set Default Profile, it launches the Set Default
task. A task may run on any of the available Task
Servers, and the selected task server downloads all re-
quired inputs and executables for the task. After the
task completes, the task server uploads the resulting
data products back to the publisher.

We note that a shared filesystem could also provide
transparent file access on a set of local nodes. However,
we believe our architecture provides several advantages
over this approach. In a shared filesystem, input files
still need to be transferred to the machine where a
task is executing. Since the CORIE workflow tasks
scan their entire input files, these files need to be trans-
ferred in their entirety to nodes. Thus, a shared filesys-
tem would incur a comparable data transfer overhead
to our architecture, without any of the other benefits
(described below) that our architecture provides. For
example, our architecture allows storage of data files
on local nodes (described in Section 3.3.4) to eliminate
redundant downloads, while a shared filesystem may
transfer a large file to a node multiple times if several
tasks operate on the file.

A novel feature our implementation is providing
storage and maintenance facilities for both data prod-
ucts and executables, which enables tracking their lin-
eage and update histories and provides access to the
actual executables that generated each product. Stor-
ing entire executable files is preferable to storing a path
name, since moving or renaming files could cause a loss
of lineage information.

Our implementation supports two types of tasks:
generation tasks to generate derived data products,
and management tasks to automatically maintain ex-
ecutables and data product metadata. Management
tasks perform needed data and task maintenance to
improve data-product management and task execu-
tion. Our implementation of management tasks ex-
ploits the workflow execution capabilities of Thetus;
these tasks are automatically launched by Thetus
when the needed conditions are met. Example man-
agement tasks include updating executable versions
and extracting relevant metadata from data products
when they are uploaded. We present detailed exam-
ples of management tasks in Section 3.3.

3.3 Features

We now discuss the details of several unique features
of our implementation that enable us to meet the goals
outlined in Section 2.3.

3.3.1 Storing Executables

The Thetus publisher provides useful facilities for stor-
ing and querying data products. We found that it was
also useful for storing executables. We use the term
executable to refer to any existing program in the work-
flow that takes one or more files as input and gener-

ates one or more data products. These include Perl
scripts and compiled C programs'. We also used the
Thetus publisher to store templates and header files
that serve as inputs to the executables. A key advan-
tage to storing executables as Thetus objects is that
they can have associated metadata, e.g., platform or
version information.

Storing executables in Thetus helps us meet several
of our goals described in Section 2.3. First, it helps
us meet Goal 2 of being able to easily add and mod-
ify tasks. When an executable is modified (e.g., a bug
fix or a new simulation model), the new version is up-
loaded to Thetus and assigned a unique Thetus ID.
Older versions of the same executable remain stored
in Thetus for historical purposes, i.e., to track the lin-
eage of older data products and regenerate them as
needed. (We discuss identifying the current or default
version of an executable in Section 3.3.2.)

Second, storing executables in Thetus helps us meet
Goal 3 of easily adding task server nodes. There is no
need to copy executables to new nodes (nodes need
only utilities such as Perl and JRE to ensure they
can run executables). Executables are downloaded on-
demand by nodes when tasks are executed.

Third, storing executables helps us meet Goal 5 of
tracking lineage information on data products. When
a newly generated data product is uploaded to the
task server, we set one of its properties to identify the
Thetus ID of the executable that generated it. We also
store the IDs of each input file as discussed in Section
3.4. Storing these values allows us to easily identify
which data products were generated by each version
of the executable, and associates each data product
with the actual file that generated it rather than a file
name or path. We note that the executable files are
small relative to the size of the derived data products,
so the storage overhead is negligible.

3.3.2 Storing Current Versions

Programmers may modify executables to fix bugs, try
new models,; or define new data products. We store all
versions of executables in Thetus to track lineage of
older data products and to enable regenerating prod-
ucts or providing similar runs. However, a challenge
is identifying which version to download for a particu-
lar execution. Identifying an executable explicitly by
its Thetus ID is not a good option, as it would require
modifying all tasks that use this executable every time
a new version is uploaded to the publisher.

Our solution to this problem is to implement a man-
agement task to track the “current” version of a file.
Tracking the current version helps us meet Goal 2 of
easily adding and modifying tasks. Our implementa-

1We note that in our current implementation all nodes have
the same platform. However, our implementation can easily
be extended to store different compiled programs for different
platforms, or to compile the source code locally at the node.

tion enables any task to reference an executable by
name without any knowledge of which version is cur-
rently in use. Thus, new versions of executables can
be seamlessly incorporated into existing workflows.

In our implementation (task Set Default, shown
in Figure 3), we create a description associated with
each executable file name (e.g., prog.pl), and assign
a property to this description with the Thetus ID of
the current version of the file. When a new prog.pl
is uploaded to Set Default Profile, Thetus launches
the Set_Default task, which assigns the ID of the new
file to the DefaultID property of description prog.pl.
Storing the ID of the current version provides two key
benefits: First, it allows Thetus tasks to refer to exe-
cutables by name without knowing a Thetus ID. Sec-
ond, it makes changes in executables transparent to
any Thetus task that uses them, so existing Thetus
tasks do not need to be modified when an executable
changes.

This feature also allows us to revert to a previous
version of an executable. For example, if a new simula-
tion model turns out to be less accurate than an earlier
model, we can change the default version of the exe-
cutable back to the earlier model. We can also store
multiple implementations of executables (e.g., serial
and parallel, versions for different platforms) and we
plan to use management tasks to support this func-
tionality.

3.3.3 Metadata Tracking and Extraction

A key benefit to using the Thetus publisher is that
metadata can be associated with a data product when
it is uploaded, which facilitates tracking information
about the file such as lineage, input parameters, and
time and date of execution. Our implementation
builds on this capability by automatically executing
management tasks to extract metadata from files when
they are uploaded, using scripts written by task pro-
grammers as described in previous work [9]. We
show an example in Figure 3. When a file with a
name ending in .63 (e.g., 1_salt.63) is uploaded to
the Extract Metadata profile, Thetus launches the
Extract Metadata task and assigns the metadata as
properties of the data file. Automatically extracting
metadata enables users to immediately query the file’s
metadata properties, and helps us meet Goal 4.

3.3.4 Storing data at nodes

Many input files, data products, and executables are
used multiple times in the same workflow. Recall from
Section 2 that input files in the CORIE workflow may
be 300MB or larger. Transferring these files takes 30
seconds or longer on our local area network, and data
products generated at a given node may serve as input
to subsequent tasks. In these cases it is wasteful to
repeatedly download a file from the publisher, as this
consumes large amounts of bandwidth and could add

several minutes to a task’s execution time. However,
we want to ensure that the local copy of a data product
or executable is the correct version for a given task.

Our solution is to implement a local data store at
each node that stores all files downloaded from the
publisher along with their Thetus IDs. Local data
stores reduce the number of files downloaded from the
publisher and can significantly reduce the running time
of a task, thus helping achieve Goal 1 of speeding up
task execution. When a task needs an input file or exe-
cutable from the Thetus publisher, it first contacts the
publisher to get the ID of the current version. Since
contacting the publisher requires a small data transfer
over a local network, it has negligible overhead com-
pared to the cost of downloading large files. If the
ID matches the ID of the local version, the task does
not need to download the file. If the IDs do not match,
the new version of the file is downloaded from the pub-
lisher. Checking file IDs ensures that nodes always use
the current version of a file with minimal overhead at
the nodes and the publisher.

We are currently investigating replacement poli-
cies when local data stores are full; however, we be-
lieve that Least Recently Used (LRU) or existing web
caching policies may work well in many cases.

3.3.5 Scheduling at Multiple Nodes

Scheduling independent tasks at multiple nodes is an-
other way to meet Goal 1 of speeding up workflow ex-
ecution. However, simply adding nodes to the system
without intelligent task scheduling does not guarantee
significant performance improvements. Tasks vary in
both their running time and the size of their inputs and
outputs, and data transfer overhead may be high. Task
execution times vary from under 30 seconds to several
hours. As we will show in Section 4, it is important to
consider both the size of the input and the expected
running time of a task when scheduling task execution
on the available nodes. Poor scheduling decisions may
result in performance worse than executing the entire
workflow on a single machine.

We are currently developing an intelligent scheduler
that considers the size and current locations of input
files in addition to the capacity of each node and task
execution times. We discuss scheduling challenges and
present preliminary performance results in Section 4.

3.4 Implementing CORIE Workflows

We now describe our experiences implementing the ex-
isting CORIE workflow using Thetus. We first present
our implementation and schema. We then discuss how
we ran the existing executables as Thetus tasks.

3.4.1 Workflow Implementation

We have implemented a large portion of the CORIE
forecast workflow using Thetus, including the tasks

do_plumevol, do_intrusionlength, do_isolines,
and do_transects. Recall from Figure 1 that all of
these files take a subset of the .61, .62, .63, .64 EL-
CIRC files as inputs. We describe how the details of
each of these tasks and how we implemented them in
Thetus below.

The plume volume and intrusion length tasks each
take the files 1_salt.63 and 2_salt .63 as inputs, and
generate a set of intermediate data files, which are then
used to generate images. To implement the plume vol-
ume and intrusion length tasks in Thetus, we created
two profiles. We describe the implementation of the
plume volume tasks, the implementation of intrusion
length is comparable. The first profile, do_plumevol,
launches the do_plumevol.pl task when the needed
ELCIRC files are present. This task generates the in-
termediate data files and uploads them to the pub-
lisher. The second profile, plot_plumevol, launches a
task after all of the intermediate data files are uploaded
to the publisher. This task generates the final images
and uploads them to the publisher.

The isolines and transects tasks generate images for
multiple ELCIRC input files, each of which is inde-
pendent of the other input files and takes unique in-
put parameters. In our implementation we created a
separate profile for each of the ELCIRC input files,
each of which launches the isolines (resp. transects)
task with the appropriate input parameters for the file.
Note that uploading a single file, e.g., 1_salt.63, may
launch tasks from multiple profiles.

The CORIE forecast workflow depends on the ar-
rival of several inputs, including observations and data
from other models. In our current implementation we
initiate tasks manually by uploading all needed files.
Initiation of workflows is an area of ongoing work.

3.4.2 Schema

We created two dictionaries, one for CORIE-specific
metadata properties such as temperature, salinity, and
depth, and one for workflow-specific properties. Work-
flow properties of particular interest are Generated-
FromFEzecutable, which contains the Thetus ID of the
stored executable file that generated the data product,
and GeneratedFromInput, which contains the Thetus
ID of an input file to the executable that generated the
data product. A single data item may contain multi-
ple occurrences of the GeneratedFromInput property,
one for each input file. Another workflow property
is dateString, a unique string identifying the forecast
run for a particular day that labels a set of data prod-
ucts generated from the same run. Thetus includes
additional built-in task metadata properties, such as
the time executed, user, and the node where the task
executed, that are recorded automatically whenever a
task executes.

3.4.3 Incorporating Existing Code

One of our goals was to design a system that could effi-
ciently execute existing workflows with minimal modi-
fications to the existing code. Clearly, rewriting exist-
ing scripts would require excessive overhead and would
be difficult to convince programmers to adopt. In-
stead, we implemented Thetus tasks in Java to call
the existing executables.

We faced several practical challenges to running
existing CORIE executables as Thetus tasks. First,
many tasks require a variety of inputs including tem-
plate and header files in addition to the uploaded files
that trigger the task execution. Thus, Thetus tasks
that run executables must also download all additional
required inputs. Second, existing C programs and Perl
scripts in the CORIE forecast workflow rely on a pre-
defined directory hierarchy. These tasks expect input
files located at hard-coded paths and generate data
products in other hard-coded directories. A challenge
to implementing the CORIE workflow was enabling
such tasks to run on any node without requiring mod-
ifications to the node’s local directory structure, and
with minimal modifications to the existing code.

Our solution to this problem is to have the Thetus
tasks create local directories in /tmp as needed, corre-
sponding to the directories specified in the executable
code, before running the executable. The Thetus task
deletes the directories when the executable completes.
This solution makes no assumptions about the direc-
tory structure on the nodes, which allows new nodes
to be added seamlessly and does not interfere with a
node’s local filesystem.

We also modified several tasks, e.g.,
do_transects.pl and do_isolines.pl, to en-
able task splitting (i.e., breaking a larger task into
smaller tasks, described in Section 4). In the existing
CORIE workflow code both of these tasks iterate over
multiple files, generating transect or isoline images
and animations for each. In our implementation, we
modified this code to generate a single transect or
isoline image, given the appropriate file name and
parameters as input. This change required modifying
only a few lines of the existing Perl code, so the
programming overhead was minimal.

For some workflow tasks, the execution time is small
and there may be little or no benefit to task splitting.
We discuss this point further in Section 4. The CORIE
workflow also includes several incremental tasks, where
one tasks periodically appends data to a file that an-
other task reads. We are developing techniques to in-
corporate such tasks into our implementation.

4 Task Scheduling

In this section we describe the current status of our
task-server nodes and scheduler. We then discuss the
several issues to be considered by a scheduler, and

Node OS Memory Speed
1 Fedora Core 1 1GB 2.80GHz
2 Redhat Linux 9 1GB 2.60GHz
3 Redhat Linux 8 3GB 2.40GHz

Table 1: Node Properties

present preliminary performance results showing the
potential benefits of using an intelligent scheduler.

4.1 Current Implementation

We currently have three task server nodes, labelled 1,
2, and 3. We summarize information on each of these
machines in Table 1. Node 1 runs on the same ma-
chine as the publisher, although the publisher treats
the node as a remote machine in our current imple-
mentation. Nodes 2 and 3 run on two remote machines
connected to the publisher by a local area network.

A task scheduler runs on the Publisher at Node 1.
When a task is ready to execute, the scheduler as-
signs it to one of the available nodes. By default, the
scheduler chooses among nodes 1, 2, and 3 in a round-
robin manner, without considering current load on the
node or the location of large files on any of the three
nodes. Clearly this naive scheduling could potentially
perform poorly. In the next section, we discuss issues
to be considered by the scheduler that we are currently
incorporating into our implementation. We present
preliminary performance results in Section 4.3.

4.2 Issues
4.2.1 Task Splitting

The first issue relates to determining when to split
an existing task into smaller tasks. As mentioned in
Section 3.4, some existing workflow tasks perform the
same computation sequentially on multiple files, and
can easily be executed concurrently. For example, the
tasks do_isolines.pl and do_transects.pl (here-
after referred to as isolines and transects) generate im-
ages and animations of horizontal and vertical cross-
sections of different conditions of the river for variables
such as salinity (salt), temperature (temp), and hori-
zontal and vertical velocity (hvel and vert). Execut-
ing isolines and transects on some of these files can take
several minutes (see Figure 4 below). The task execu-
tion time is significantly longer than the time needed
to transfer files to the execution nodes. Thus, splitting
isolines and transects into smaller tasks, one for each
file, may be beneficial. Splitting the tasks allows them
to execute simultaneously at separate nodes. We use
this example in the results presented in Section 4.3.
However, some tasks do not significantly benefit
from this increased concurrency and should be left in-
tact. For example, the task do_intrusionlength.pl
operates on the files 1_salt.63 and 2_salt.63 (334
MB each). For a single salt.63 file, the task gener-
ates data products for 5 different input parameters,

each of which takes about 10 seconds. Thus, for a
single salt.63 file the running time is about 50 sec-
onds, and the total running time for both files is about
100 seconds. Recall that downloading a salt.63 file
to a node takes up to 40 seconds in our implementa-
tion. Thus, running the entire task on a single node
takes about 40+40+4100 = 180 seconds, while execut-
ing the 1_salt.63 and 2_salt.63 tasks on separate
nodes takes about 90 seconds at each node. In the
best case, executing on separate nodes would speed up
execution by 90 seconds, but in practice the speedup
is likely to be less due to both file transfer delays and
waiting for nodes to become available (i.e., waiting for
currently executing tasks to complete). Further, if the
salt.63 files are already stored locally at one or more
nodes, splitting would speed up execution by only 50
seconds in the best case.

Splitting small tasks may also delay the execution of
other ready tasks that could use some of the available
nodes, and in the worst case could increase total run-
ning time. We are currently investigating heuristics to
determine when task splitting is beneficial.

4.2.2 Data Location

The second issue relates to choosing nodes based on
the location of input files. We refer to this as data-
aware scheduling. Data-aware scheduling aims to as-
sign tasks to nodes to minimize the volume of data
downloaded to each node. For example, consider a
task requiring one or more large inputs. If two nodes
are available, the node that has more of the required
input files stored locally may be the best choice be-
cause it can significantly reduce the data transfer time.
We note that the optimal choice depends on other fac-
tors as well including the load and available bandwidth
at each node. Another approach we plan to investigate
is proactively downloading files to nodes to reduce data
transfer times.

4.2.3 Global Workflow Information

A third issue relates to incorporating global work-
flow information into scheduling decisions. We refer
to incorporating global information as workflow-aware
scheduling. Workflow-aware scheduling considers both
currently ready tasks and future tasks when assigning
tasks to nodes and aims to find the optimal grouping
of tasks among available nodes. For example, consider
a set of several short tasks and one long task executing
on two nodes. If the short tasks become ready before
the long task, a naive scheduler may divide short tasks
evenly among both available nodes. However, if the
long task is expected to be ready soon, it may be more
efficient to assign all the small tasks to the same node,
leaving the other node free to execute the long task
when it becomes ready. We note that Thetus meta-
data tracking facilities enable us to store task statistics

such as running times and nodes where tasks executed,
which facilitates workflow-aware scheduling.

4.3 Results

We now present preliminary performance results on
our implementation that show the potential benefits of
task splitting, and data and workflow-aware schedul-
ing. We are developing a scheduler that will incorpo-
rate this information into scheduling decisions. As our
example we use do_isolines and do_transects tasks
described in Section 4.2. Running the existing scripts
on a single machine with 1GB of memory and a speed
of 2.60GHz (Node 2 from Table 1) together takes 19-20
minutes on average, assuming all input files and exe-
cutables reside on the machine. In a single forecast
run, these tasks are run on four different sets of inputs
for a total running time of up to 80 minutes.

350 T
transects

. .
isolines

Il execution time
[data transfer time

300

250

100

50

temp salt hvel vert vert salt flsu temp radd airt fllu radu srad hvel pres

task

Figure 4: Data Transfer and Execution Times of
do_isolines and do_transects on task server nodes
for each input file

Figure 4 shows the average execution times and
data transfer times for the transects and isolines tasks
on each file when we ran them in our implementa-
tion. These values are the averages over several runs
on all three nodes. We note that the data transfer
overhead was slightly lower on Node 1 since it runs
on the same machine as the publisher, but the overall
performance of the three nodes was comparable. For
these experiments we did not use any local file storage,
so all needed inputs and executables were downloaded
once per task. The upper portion of each bar shows
the amount of time to download all needed files to
a node, including both inputs and executables. The
lower portion of each bar shows the total time to exe-
cute the task at the node, including the time to upload
any data products generated by the task.

The file transfer overhead is largest for tasks that
run on hvel.64 files (about 655MB each), and is also
significant on the temp.63, salt.63, and vert.63
files (about 334MB each). The remaining files that the

isolines task runs on (flsu.61, radd.61, airt.61,
f1llu.61, radu.61, srad.61, pres.61) are about
23MB each. While these smaller files have a much
lower data transfer overhead, it is significant compared
to the total task execution time. Transects tasks have
slightly higher data transfer overhead than the isolines
tasks because they take several header and template
files as inputs in addition to the larger files. The ex-
ecution time is largest for the transects task on the
temp, salt and hvel files. The execution time is also
significant for the isolines task on these files.

4.4 Assigning tasks to nodes

We now consider two possible assignments of the tasks
above to the three available nodes, to illustrate both
potential pitfalls and potential benefits of executing
the existing workflow on a Grid.

In the first assignment, we used the scheduler’s de-
fault settings and allowed it to arbitrarily assign tasks
to nodes in a round-robin manner. Table 2 shows
which files and tasks the scheduler assigned to each
node. The first letter (i or t) indicates the task (iso-
lines or transects), followed by the name of the file pro-
cessed by the task. We note that in this experiment
we did not store data files locally at any nodes. How-
ever, the scheduler assigned the isolines and transects
tasks on each of the large files (salt, temp, vert,
hvel) to two different nodes, so there was no benefit
to storing these files locally at the nodes.

The total data transfer times and execution times
of the tasks listed in Table 2 are shown in Figure 5 for
each of the three nodes. Node 1 has the smallest total
data transfer and execution overhead (about 400 sec-
onds, just under 7 minutes). It runs tasks on three of
the largest input files (temp, salt, vert) each about
334 MB for a total of about 1GB. It runs the isolines
task on temp and salt (i-temp and i-salt), which to-
gether take under 200 seconds, as well as three tasks
with execution times around 20 seconds, transects on
vert (t-vert), i-flsu, and i-srad.

In contrast, Node 2 has significantly higher data
transfer times and execution times. It executes tasks
on temp, hvel and vert, which have a combined size
of over 1.3GB, and runs two tasks with high execu-
tion times, (t-temp and i-hvel, together just under 400
seconds) as well as i-vert (about 50 seconds) and two
smaller isolines tasks.

Finally, two of the three tasks with the longest ex-
ecution times (t-hvel and t-salt, over 450 seconds to-
gether) both run on Node 3, which explains its large
execution time. The two largest input files, hvel and
salt together are about 1GB. We note that the data
transfer time at Node 3 is higher than Node 1 partly
because the transects task contains larger inputs and
executables than isolines, and partly because Node 1
runs on the same machine as the Publisher.

Node 3 has a total data transfer and task execution

1 2 3
i-temp | t-temp | t-salt
i-salt i-hvel t-hvel
t-vert i-vert i-fllu
i-flsu i-radd | i-radu
i-srad i-airt i-pres

Table 2: A (suboptimal) grouping of tasks among the
three available nodes

1 2 3
t-vert t-temp i-radd | t-salt | t-hvel
i-vert i-temp i-radu | i-salt | i-hvel
i-airt i-pres i-srad i-fllu i-flsu

Table 3: An improved grouping of tasks among the
three available nodes

time of over 800 seconds (over 13 minutes), which is a
the maximum execution time for the entire workflow
with this grouping. While this grouping improves on
the original 20 minute execution time, it does not fully
exploit the potential benefits of our system.

1000
Il execution time
[data transfer time

800

600

Time (sec)

400

200

2
Node

Figure 5: Data transfer times and execution times for
the task grouping in Table 2

Next, we consider an improved grouping of the tasks
that uses both data and workflow-aware scheduling.
We manually assigned tasks to each node as shown in
Table 3. We describe our optimizations below.

We first performed data-aware scheduling by assign-
ing isolines and transects tasks that operate on the
same inputs (temp, salt, vert, hvel) to the same
node. We next performed workflow-aware scheduling.
Observe from Figure 4 that the combined execution
times of isolines and transects on hvel and salt are
comparable, and the combined execution time of iso-
lines and transects on temp and vert together is com-
parable to both of these (in all cases, 370-400 seconds).
Thus, we assigned both temp and vert tasks to Node
1, both salt tasks to Node 2, and both hvel tasks to
Node 3. Since Node 1 has a slightly lower file transfer
overhead than Nodes 2 and 3, we assigned five of the
smaller isolines tasks to this node as well, and assigned
the remaining two tasks to Nodes 2 and 3.

The data transfer times and execution times are

1000
Il execution time
[data transfer time

800

o
=3
S

Time (sec)

IS
S
S

200

2
Node

Figure 6: Data transfer times and execution times for
the task grouping in Table 3

shown in Figure 6. In this case, all three nodes
have comparable combined data transfer and execu-
tion times. Using this schedule, the total data transfer
and execution time at each node is under 10 minutes,
so we have reduced the running time of isolines and
transects by half. Since these two tasks are run 4 times
in each forecast, we can reduce the total running time
from 80 minutes to under 40 minutes. Thus, intelligent
scheduling can significantly speed up existing work-
flows. Naive scheduling algorithms do not guarantee
significant benefits, and in pathological cases may per-
form worse than running the tasks on a single node.
We are extending our implementation to attain similar
benefits for other workflow tasks.

5 Related Work
5.1 Grid Computing

There is a significant amount of interest in using Grid
computing resources to execute large scale scientific
workflows. Systems such as Globus [6] and Condor [10]
provide facilities to submit jobs for execution on a set
of distributed nodes. However, these systems do not
consider workflow management. Further, they are de-
signed for a large number of globally distributed users
and nodes, and are not suited to efficiently executing
a single workflow on a set of dedicated nodes.

JOSH [15] provides load-aware and data-aware
multi-site scheduling, and shares our goal of efficiently
executing a set of tasks on a Grid. In this system,
clients can submit tasks for execution on one or more
nodes. The system chooses a node to execute the task
based on both the cost of transferring the required files
to the node and the current load at the node. It does
not consider storing files locally or global workflow in-
formation, so it may make poor scheduling decisions.

The problem of replica management in Grid envi-
ronments has also received a considerable amount of
attention [2, 5, 16]. However, the emphasis of this
research is on improving global data availability, and
does not consider storing data products at nodes or
data-aware scheduling. Research on replica selection

for Grid applications [16] does not consider storing
local data copies to reduce workflow execution time
or considering replica location when scheduling tasks
as we do. It also does not track which replica is the
“original” copy and does not provide strict consistency
guarantees among replicas. Weak replica consistency
is well-suited to the large scale distributed environ-
ment considered in Grid replica management services
[2], but is inappropriate for our applications.

5.2 Scientific workflows

Several tools [1, 3, 7, 11] provide facilities for the spec-
ification and execution of scientific workflows.

Chimera [7] provides a virtual data system that
stores procedures to derive data products, enabling
users to track lineage or regenerate data products.
It also considers replica selection and task schedul-
ing, but does not address task splitting or data and
workflow-aware scheduling. Zoo [1] facilitates scientific
workflow execution by defining workflows as object-
oriented database schemas. The emphasis is on easily
specifying workflows by exploiting DBMS functional-
ity, and this work does not consider the challenges of
executing tasks on a Grid or managing data products
discussed in this paper.

More recently, GridDB [11] provides a data-centric
overlay for Grid data analysis. As in Zoo, this work
exploits DBMS functionality for specifying and run-
ning scientific workflows. In addition, it supports task
execution on a Grid and presents several services to
improve performance. Specifically, it supports inter-
active query processing, allowing users to prioritize
task execution on a data subset of interest; and mem-
oization, allowing reuse of previously generated data
products. While these features are useful for many
scientific workflows, GridDB does not address many
of the challenges we face. For example, the authors do
not consider the problems of determinining where to
execute tasks, instead relying on existing middleware
[6, 10]. They also do not explicitly address the chal-
lenges of task splitting and managing large files and
data products.

Kepler [3] provides interfaces and tools to specify
and execute scientific workflows. The emphasis is on
formalizing workflows and providing access to hetero-
geneous data. Kepler provides a set of predefined
Java actors that can perform computations on data,
and provides facilities to implement new actors. How-
ever, support for calling external programs in other
languages is limited, and the system does not provide
storage or lineage tracking facilities for data products.

5.3 Lineage Tracking

Recently there has been considerable interest in track-
ing the lineage or provenance of data products [12].
PASOA [14] provides a system for automatically track-
ing data lineage during workflow execution. This work

addresses many of the same challenges we do includ-
ing identifying which tasks generated a data product
and reproducing results. However, this system requires
modifications to the workflow execution engine, and
recording lineage may require excessive communica-
tions between clients and servers. The Earth Sys-
tem Science Workbench (ESSW) [8] provides a non-
intrusive data management infrastructure for tracking
data product lineage. ESSW uses wrappers around
existing scripts to log lineage information and stores
lineage in XML files. As in our work, their approach
requires minimal modifications to existing code. How-
ever, this work does not track versions of files and does
not provide workflow management facilities.

6 Conclusions and Future Work

There has recently been considerable interest in im-
proving the management and execution of large-scale
scientific workflows. However, little attention has been
given to managing workflow execution locally on a set
of dedicated nodes, where multiple workflow tasks ex-
ecute on the same files and data transfer costs may
consume a large percentage of total execution time.
In this paper we have described our experience im-
plementing a data product management system for an
existing scientific workflow, and presented several data
management challenges and solutions in this environ-
ment. We have presented a novel architecture for stor-
ing both data products and executables. Our system
supports generation tasks to derive data products and
management tasks that create and maintain executa-
bles and metadata. We have shown how this system
can execute tasks on multiple nodes of a Grid, and
illustrated the benefits of incorporating data location
and global workflow information into task scheduling.
We are considering several areas of future work:
Data-Aware and Workflow-Aware Scheduling:
We are developing heuristics to implement data and
workflow aware scheduling as described in Section 4.
We plan to store statistics on execution times and data
transfer times, and use heuristics based on global work-
flow information to assign tasks to nodes.
Task Sets: We plan to support task sets, grouping a
set of related tasks into a workflow. Identifying related
tasks is useful for workflow-aware scheduling, and can
identify failures if some tasks in a set fail to execute.
System Monitoring: We are developing an interface
for clients to monitor task execution, including what
tasks are currently running, what has completed, and
status of tasks, e.g., error messages, if any. An inter-
face can also highlight tasks that have failed to launch,
and identify problems with workflow execution.
Production Planning: We plan to provide facilities
for production planning. Production planning allows
users to predefine a workflow or set of workflows for
future execution. For example, a user may specify a
year’s worth of hindcast runs and schedule them to

begin at pre-specified times.

7 Acknowledgments

We thank everyone at Thetus, especially Danielle
Forsyth, Roy Hall, Tyler Nugent, Philip Pridmore-
Brown, Cory Riddell, and Dan Weston, for providing
software and technical support. We also thank Bill
Howe and David Hansen for helpful discussions, Philip
Little for programming support, and the members of
the CORIE group for their cooperation. This research
is supported by NSF grant CCF-0121475.

References

[1] A. Ailamaki, Y. Ioannidis, and M. Livny. Scientific work-
flow management by database management. Proc. SSDBM,
1998.

[2] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Fos-
ter, et al. Data management and transfer in high-
performance computational grid environments. Parallel
Computing Journal, 28(5), 2002.

[3] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludaescher,
and S. Mock. Kepler: Towards a grid-enabled system for
scientific workflows. Proc. GGF10 Workshop on Workflow
in Grid Systems, 2004.

[4] A. Baptista, M. Wilkin, P. Pearson, P. Turner, and P. Bar-
rett. Coastal and estuarine forecast systems: A multi-
purpose infrastructure for the columbia river. Earth System
Monitor, NOAA, 9(3), 1999.

[5] A. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and
R. Schwartzkopf. Performance and scalability of a replica
location service. Proc. IEEE Symposium on High Perfor-
mance Distributed Computing (HPDC-13), 2004.

[6] 1. Foster et al. Globus: A metacomputing infrastructure
toolkit. Int’l Journal of Supercomputer Applications and
High Performance Computing, 11(2):115-128, 1997.

[7] 1. Foster, J. Vockler, Michael Wilde, and Y. Zhao. Chimera:
A virtual data system for representing, querying, and au-
tomating data derivation. Proc. SSDBM, 2002.

[8] J. Frew and R. Bose. Earth system science workbench: A
data management infrastructure for earth science products.
Proc. SSDBM, 2001.

[9] B. Howe, K. Tanna, P. Turner, and D. Maier. Emergent se-
mantics: Towards self-organizing scientific metadata. Proc.
Int’l Conf. on Semantics for a Networked World, 2004.

[10] M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter
of idle workstations. Proc. Int’l Conf. on Distributed Com-
puting Systems, 1988.

[11] D. Liu and M. Franklin. Griddb: A data-centric overlay
for scientific grids. Proc. VLDB, 2004.

[12] Data provenance/derivation workshop.
http://people.cs.uchicago.edu/jongzh/position_papers.html.

[13] Thetus Publisher. http://www.thetuscorp.com.

[14] M. Szomszor and L. Moreau. Recording and reasoning over
data provenance in web and grid services. Proc. ODBASE,
2003.

[15] JOSH V1.1. http://gridengine.sunsource.net/project/ gri-
dengine/josh.html.

[16] S. Vazhkudai, S. Tuecke, and I. Foster. Replica selection
in the globus data grid. Proc IEEE/ACM Int’l Conference
on Cluster Computing and the Grid (CCGRID), 2001.

[17] Y. Zhang, A. Baptista, and E. Myers. A cross-scale model
for 3d baroclinic circulation in estuary-plume-shelf systems:
I. formulation and skill assessment. Cont. Shelf Res., (ac-
cepted for publication).

