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Abstract 

Advances in data acquisition and sensor 
technologies are leading towards the 
development of “high fan-in”  architectures: 
widely distributed systems whose edges consist 
of numerous receptors such as sensor networks, 
RFID readers, or probes, and whose interior 
nodes are traditional host computers organized 
using the principles of cascading streams and 
successive aggregation.  Examples include 
RFID-enabled supply chain management, large-
scale environmental monitoring, and various 
types of network and computing infrastructure 
monitoring.   In this paper, we identify the key 
characteristics and data management challenges 
presented by high fan-in systems, and argue for a 
uniform, query-based approach towards 
addressing them.  We then present our initial 
design concepts behind HiFi, the system we are 
building to embody these ideas, and describe a 
proof-of-concept prototype. 

1.  Introduction 
Organizations across a large spectrum of endeavors are 
becoming increasingly dependent on the availability of 
accurate, targeted, and up-to-the-minute information 
about the status of their operations.  This information 
provides real-time visibility into disparate phenomena, 
which can be used to monitor operations, detect problems, 
and support both short and long-term planning.  Such 

visibility is enabled by continuing improvements in 
computing (e.g., wireless smart sensors) and 
communications (e.g., increasingly ubiquitous network 
connectivity). 

1.1. Applications 

In many cases, the phenomena being monitored exist in 
the physical world.  For example, environmental 
monitoring using sensors is emerging as an area of great 
interest, where the phenomena being monitored include 
wildlife behavior, air and weather conditions, or seismic 
readings.   Other physical monitoring applications are 
more closely tied to human organizations, such as the 
monitoring and control of supply chains, logistics, traffic, 
factories, pipelines, or energy usage.   

In other cases, the phenomena being measured are 
virtual, such as network and computing infrastructure or 
application monitoring.   Many emerging applications 
combine data from both worlds to provide increasingly 
detailed real-time models of complex, widely-distributed 
organizations and environments. 

These applications span many different domains but 
they all share a dependence on a sophisticated computing 
and communications infrastructure to deliver data that 
will provide an accurate and actionable view of their 
domain. Such applications also vary widely in 
requirements, but in general, they all depend on the 
accuracy, timeliness, completeness, and relevance of data 
in order to support more effective decision making. 

1.2. High Fan-in Systems – The “ Bowtie”  

We envision systems in which a large number (many 
thousands or more) of receptors exist at the edges of the 
network to collect raw data readings.  For example, in a 
supply chain management deployment, collections of 
sensors and RFID readers on individual store shelves (in a 
retail scenario) or dock doors (in a 
warehouse/manufacturing scenario) continuously collect 
readings.  These readings include “beeps”  from low-
function passive RFID tags indicating the presence of 
particular tagged objects (such as cases of goods), as well 
as more content-rich information from smart sensors and 
higher-function tags such as temperature readings and 
shipping histories.  
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These “edge”  devices produce data that will be 
aggregated locally with data from other nearby devices.  
That data will be further aggregated within a larger area, 
and so on.    This arrangement results in a distinctive 
bowtie topology we refer to as a high fan-in system (see 
Figure 1).   A sophisticated system such as one supporting 
a nation-wide supply chain application may consist of 
many widely dispersed receptor devices and many levels 
of successively wider-scoped aggregation and storage.  
Such systems will comprise a disparate collection of 
heterogeneous resources, including inexpensive tags, 
wired and wireless sensing devices, low-power compute 
nodes and PDAs, and computers ranging from laptops to 
the largest mainframes and clusters. 

 

 
This hierarchical bowtie shape arises due to two main 

reasons.  First, the sheer volume of raw data produced at 
the edges of a large system could easily overwhelm a 
flatter architecture, in terms of both bandwidth and 
processing costs.  Data cleaning, filtering, and aggregation 
must be done as close to the edges as possible to minimize 
data handling requirements of the system as a whole.  The 
bowtie shape lends itself naturally to an approach where 
computation is pushed out to the lowest common ancestor 
(LCA) of the edge nodes that are producing data used in 
any particular computation. Second, organizational 
concerns stemming from the geographic-oriented nature 
of many of our target applications and from the structure 
of the organizations that deploy these systems lend 
themselves naturally to a hierarchical structure.1  

In many situations, of course, the topology will be 
much more complicated than that implied by Figure 1 
above.  For example, there will be cases where 
computations or data flows skip levels of the system, or 
there may be connections at various points in the network 
to external systems as would arise when multiple 
organizations choose to federate parts of their information 

                                                           
1 See the supply chain scenario described in Section 2 for an 
example of this. 

infrastructure.2  Nonetheless, our position is that the 
general notion of hierarchical structure and the ideas of 
successive aggregation and cascading streams (as 
presented in Section 3) that go with it are powerful 
concepts for organizing these complex systems, and 
where appropriate, can provide many advantages in 
programmability, ease of deployment, and efficiency. 

1.3. Towards a Unified High Fan-in Framework  

Today, the state-of-the-art in building high fan-in 
information systems is a piecemeal approach — a device-
specific programming environment is used to task the 
edge receptors, a separate transport or information bus is 
used to route the acquired readings, and a database system 
or other data manager is used to collect and process the 
them.   As a result, high fan-in deployments have tended 
to be costly, difficult, and inflexible. 

In contrast, our work is based on the notion that 
stream query processing and streaming views can serve as 
a unified declarative framework for data access across an 
entire high fan-in environment.   As we discuss in Section 
3, stream-oriented queries can be used to accomplish 
many of the data manipulation tasks required in a high 
fan-in system, including data cleaning, event monitoring, 
data  stream correlation, outlier detection, and of course, 
aggregation. 

Our work builds on the growing body of work in the 
areas of data stream processing, sensor network databases, 
and data integration, but it also addresses a number of 
challenges that arise from the unique properties of high 
fan-in architectures and the applications they support. 
From a data management perspective, the most 
challenging new aspect that high fan-in systems bring to 
the table is the wide range they span in terms of three key 
characteristics:  time, space, and resources. 

Time – Timescales of interest in a high fan-in system 
can range from seconds or less at the edges, to years in the 
interior of the system.  At the edges of a high fan-in 
system are receptor devices that repeatedly measure some 
aspect of the world.  These devices are typically 
concerned with fairly short time scales, perhaps on the 
order of seconds or less.    

As one moves away from the edges, the timescales of 
interest increase.  For example, in a retail RFID scenario, 
individual readers on shelves may read several times a 
second, while the manager of a store may be concerned 
with how sales of particular items are going over the 
course of a morning, and planners at regional and 
corporate centers may be more concerned with longer-
term sales trends over a season or several seasons. 
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Figure 1 - The high fan-in bowtie 



Space - As with time, the area of geographic interest 
grows significantly as one moves from the edges of a high 
fan-in system to the interior.  Again using the retail RFID 
scenario, individual readers are concerned with a space of 
a few square meters, aggregation points within the store 
would be concerned with entire departments or perhaps 
the store as a whole, and regional and national centers are 
concerned with those much larger geographical areas. 

Resources – Finally, the range of computing resources 
available at various levels of a high fan-in system also 
vary considerably, from small, cheap sensor motes on the 
edges, up to mainframes or clusters in the interior of the 
system.  Communication resources also can range from 
low-power, lossy radios at the edges, to dedicated high-
speed fiber in the interior. 

In addition to the fundamental issues that arise from 
the issues of scale along these three dimensions, there are 
many other technical challenges to be addressed.  These 
include fundamental questions about how best to optimize 
and run queries in the network; how to process queries 
using views over streaming data that involve aggregation, 
hierarchies, and time windows; how to archive detail data 
at various points in the system; and how to build an 
infrastructure that is easy to deploy, manage, and adapt. 

1.4. Paper  Overview 

In the remainder of this paper, we present a current snapshot 
of our work on high fan-in systems.   Specifically, we 
describe the design considerations for the HiFi system, 
which is currently under development at UC Berkeley.  We 
present the overall philosophy behind HiFi, detail our initial 
system’s architecture and query processing approach, discuss 
some of the open issues we are beginning to address, and 
give an overview of our initial proof-of-concept prototype 
built using the TelegraphCQ adaptive data stream processor 
[12] and the TinyDB sensor network database system [28].  
First, however, we describe an example high fan-in 
environment in more detail. 

2. A Motivating Scenar io: Supply Chain 
Management 

As stated in the introduction, there are numerous 
application scenarios that exhibit a high fan-in topology.   
In this section, we briefly describe one such application, 
Supply Chain Management (SCM).  SCM presents a 
particularly compelling case for high fan-in systems for 
several reasons.  First, emerging SCM systems are large-
scale systems that can span national or even global 
distribution networks.  These systems have natural 
aggregation points resulting in the characteristic 
hierarchical, high fan-in structure.  Second, there is now 
widespread recognition in industry of the cost savings and 
efficiency gains to be had by exploiting accurate, up-to-
the-minute information throughout the supply chain.   
Third, the impending availability of RFID and related 

technology along with mandates from large organizations 
including Wal-Mart, the DoD, and the FDA are driving 
tremendous interest in real-time SCM solutions. 

The promise of RFID-enabled supply chains is that 
organizations will have complete, accurate, and timely 
visibility into all aspects of their supply chain, from 
suppliers, manufacturing, distribution, sales, and even 
return of goods.  Such visibility can enable a wide range 
of applications, including “ track and trace”  of individual 
sales units (e.g., cases or cans of soft drinks, vials of pills, 
etc.), accurate replenishment scheduling, and more 
efficient shipping and receiving.  Accurate information 
can also greatly enhance planning and monitoring at all 
levels of an organization and across organizations. 

At the base of an RFID-enabled supply chain are 
passive EPC (Electronic Product Code) tags attached to 
pallets, cases, or individual units [19].  These tags are able 
to transmit a 96-bit EPC code that identifies the 
manufacturer, type of item, and a unique serial number.  
More sophisticated tags can provide additional 
information such as sensor readings or transportation 
history.  These tags are remotely sensed by RFID readers.   
Readers are placed at numerous locations in the supply 
chain, such as manufacturing lines, loading dock doors, 
forklifts and trucks, store shelves and store checkouts.   

In a typical supply chain, a single tag is likely to be 
scanned 10 to 15 times.  These readings (called “beeps”) 
represent, in aggregate, a potentially huge data stream.  
Furthermore, current RFID technology is inherently error-
prone, meaning that these streams may contain a 
significant amount of dirty data.  The solution to both of 
these problems is to process the raw beeps to remove 
erroneous data and to reduce the volume through 
aggregation and event detection. 

For the purposes of this paper, we focus on the “back-
end”  of an SCM system, from suppliers to the back rooms 
of stores.  As an example, consider the following levels 
(see the left half of Figure 2): 

 
• RFID Readers – the edges of the system consist 

of the readers that interrogate the tags and collect 
their values.  Future SCM deployments also 
envision the use of sensors and sensor networks to 
provide additional monitoring capabilities. 

 
• Dock Doors – due to limitations on the range and 

orientation at which tags can be read, multiple 
readers (or antennae) are arranged around a single 
door to reduce the probability of missed tags. 

 
• Warehouse – the information from all the readers 

in the warehouse is aggregated in a computer 
(possibly a cluster) located in the warehouse. 

 



• Regional Center  – a location where logistics can 
be collected and managed for an entire 
geographical region, for example, the 
Southwestern United States. 

• Headquar ters – the main location or data center 
for the corporation.  For example, Wal-Mart does 
its corporate data processing in Bentonville, AR. 

 
Such a supply chain is a high fan-in system, where 

data collected at the edges is successively cleaned, 
refined, and aggregated. As can be seen, this scenario 
exhibits the wide range of scales in terms of time, 
geography, and resources typical of high fan-in systems.  
We use this example throughout the rest of the paper. 

3. Cascading Streams in HiFi 
The HiFi system provides data management infrastructure 
for high fan-in environments.  HiFi implements a uniform 
declarative framework for specifying data requests and 

driving system functionality.  A stream-oriented query 
language is used to specify data requests and to describe 
logical views of the data available in various parts of the 
system.  The use of successive stream-oriented query 
processing at each level of the system results in a flow of 
data from the edges inwards.  We refer to this data flow as 
cascading streams.  Note that this uniform approach 
stands in contrast to the current state-of-the-art, where 
each level of the system presents its own distinct API. 
HiFi uses stream-oriented query languages across all 
levels, which simplifies programming and enables a wide 
range of optimizations. 

3.1. Uses of Quer ies 

Although stream-based queries may not be suitable for all 
data processing tasks in HiFi, we believe that they can 
accomplish a wide array of tasks in a high fan-in 
environment.  We list these tasks roughly in order from 
the edges to the interior of the system.  At the edges, 
transformations are chiefly involved with making sense of 

Figure 2 – High fan-in system levels with associated CSAVA processing stages in an SCM Environment 



what the receptors produce; they typically become more 
complex as data moves towards the interior.    
 
Data Cleaning – Sensors and RFID readers are 
notoriously noisy devices, and dealing with the poor 
quality of data they produce is one of the main challenges 
in a high fan-in (or any receptor-based) system.   We use 
declarative queries to specify cleaning functionality for 
single devices as well as across groups of devices. 

 
Detecting Faulty Receptors – In addition to being noisy, 
receptors sometimes just fail. Depending on the actual 
failure mode (fail stop or fail dirty) and past history, it 
might be possible to detect a faulty sensor. 
 
Conversion and Calibration – In order to produce 
meaningful measurements, physical sensors typically 
require calibration.  Such calibration can be quite 
sophisticated and may need to be done on a continuous 
basis.  Furthermore, the raw data produced by physical 
sensors must often be converted into units that are 
meaningful to a given application. Queries may be used to 
do simple conversion and calibration. 
 
Outlier  Detection – In many monitoring systems, 
expected events are of less immediate interest than 
anomalies.  Queries can be used to detect and propagate 
various types of outliers in a streaming environment. 
 
Data Aggregation – While the raw data from a single 
receptor may not be a high volume stream, processing raw 
data from thousands of receptors is unsustainable. Queries 
that have a wider scope of interest must necessarily 
summarize raw data in the form of coarse-grained 
aggregate histories.  
 
Stream Correlation – Queries are also useful for 
comparing and correlating data from multiple streams.  
Such streams may be homogeneous, as in the case of 
temperature readings from a group of identical sensors, or 
heterogeneous, as in the case of combining temperature 
readings with RFID “beeps” .  
 
Complex Event Monitor ing – One of the main functions 
of HiFi is to continuously monitor the environment for 
interesting events. Such events are not limited to simple 
events at the edge. Rather, they also include composite 
events described in terms of widely varying timescales 
and geographic areas. A streaming query language, 
suitably extended with event processing constructs, can be 
used to describe these events. 

3.2. Multi-level Query Processing 

In this section, we illustrate the power of successive 
processing of cascading streams through an example that 

we term “CSAVA” (pronounced “Cassava”). CSAVA 
consists of five core stages of processing (clean, smooth, 
arbitrate, validate, and analyze) designed to translate raw 
receptor readings into useful data for driving business 
processes.  Figure 2 depicts CSAVA for our SCM 
example.  At the bottom of the figure, RFID readers feed 
into processing nodes on warehouse doors which, in turn, 
feed into the main node at the warehouse.  These local 
nodes aggregate and send their data to regional centers 
and so on.  At each level, the nodes export views that 
perform successively more sophisticated functionality. 

Receptor  level: Cleaning 

Each receptor itself performs the first step in data 
processing and cleans the stream by filtering anomalous 
readings that do not have a signal strength higher than 
some threshold st r engt h_T: 
 
CREATE VI EW cl eaned_r f i d_st r eam AS 
( SELECT r ecept or _i d,  t ag_i d  
  FROM r f i d_st r eam r s 
  WHERE r ead_st r engt h >= st r engt h_T)  

Dock door  level: Smoothing 

Smoothing is the process of interpolating to compensate 
for lost readings and discarding anomalous readings by 
running a windowed aggregate (in this case, a count ) 
over the cleaned stream.  In this example, readings that 
have been seen at least count_T times in a window3 are 
considered legitimate; others  are dropped: 
 
CREATE VI EW smoot hed_r f i d_st r eam AS 
( SELECT r ecept or _i d,  t ag_i d 
 FROM cl eaned_r f i d_st r eam  
      [ r ange by  ‘ t 1’ ,  s l i de by ‘ t 2’ ]  
 GROUP BY r ecept or _i d,  t ag_i d 
 HAVI NG count ( * )  >= count _T)  

Warehouse level: Arbitration 

The tags reported after smoothing are those that a reader 
is reasonably sure to have seen.  Multiple nearby readers, 
however, may have seen the same tag.  To avoid over-
counting or other inaccuracies, data from multiple readers 
must be arbitrated to determine where the product 
corresponding to the tag actually is located.  In this 
example, the system also aggregates what each node has 
seen before passing the stream to the higher levels: 
 
 
 

                                                           
3 Note that we use “ range by”  to specify the width of the 
window and “slide by”  to specify its movement. 



CREATE VI EW pr oduct _count s AS 
( SELECT r ecept or _i d,   
        count  ( di st i nct  t ag_i d)  
 FROM smoot hed_r f i d_st r eam r s  
      [ r ange by ‘ t 3’ ,  s l i de by ‘ t 4’ ]  
  GROUP BY r ecept or _i d,  t ag_i d 
  HAVI NG count ( * )  >= ALL 
        ( SELECT count ( * )  
         FROM smoot hed_r f i d_st r eam  
         [ r ange by ‘ t 3’ ,  s l i de by ‘ t 4’ ]  
         WHERE t ag_i d = r s. t ag_i d 
         GROUP BY r ecept or _i d) )  

Regional center  level: Validation 

At this point in the hierarchy, the pr oduct _count s  
stream contains an aggregated view of products seen at 
each warehouse or store.  With this data, the regional 
center can use known business rules such as “ I know that 
the warehouse in Springfield should have 10,000 widgets”  
to validate that the supply chain is behaving as expected.  
 
Headquar ters level: Analysis 
Once the high-level business behavior is determined, 
headquarters can analyze this data through data mining-
type query operations to understand how the supply chain 
is behaving.  Note that this is done in real time to drive 
organizational decision-making. 

3.3. CSAVA Discussion 

CSAVA processing can be generalized to handle data 
from other types of receptors in other applications.  In 
general, clean involves operations over a single data item, 
smooth occurs over a window of data items from a single 
receptor, and arbitration occurs over streams from 
multiple receptors.  For example, cleaning for a sensor 
network application involves filtering individual readings 
that do not make sense (i.e., a negative sound reading) or 
are not interesting to the application, while arbitration 
entails comparing values from multiple sensors in the 
same area for calibration and outlier detection.   

In addition to the steps outlined above, there are a 
variety of auxiliary tasks that may occur throughout the 
CSAVA process4.  Data values retrieved from RFID 
readers may need to be converted from their raw RFID 
code to some organizationally meaningful handle such as 
product ID. Additionally, there may be organizational 
information, such as tracking history, which can augment 
the bare product ID.  Finally, aggregation, both in time 
and space, occurs throughout this process, whenever the 
raw data is not needed or bandwidth is scarce. 

                                                           
4 Note that these additional steps all begin with a “C”  or 
“A” , thus preserving our CSAVA acronym.  

In this example, each task in CSAVA was placed at a 
reasonable location in the hierarchy; in practice, however, 
the placement of each stage in CSAVA is flexible, 
provided that the appropriate data is available.  For 
example, validation may occur lower in the hierarchy if 
the validating data is also pushed down (e.g., the system 
could push a static relation containing expected RFID tags 
to the edge of the hierarchy). We address the issue of 
operator placement in more depth in Section 4.3.  

4. HiFi Design Concepts 
In the previous sections we laid out the motivation, 
applications, and the cascading stream processing model 
for high fan-in environments.  Given this background, we 
now describe the key aspects of our emerging design for 
the HiFi system. 

4.1. Hierarchical Windowed Views 

One consequence of our decision to use stream-oriented 
queries as the common API throughout HiFi is that the 
nodes at various levels of the system can expose the data 
they provide using views.  Using views to structure 
distributed systems has long been studied in the data 
integration and federated database literature [18][25][32], 
and many of the techniques developed there can be used 
in HiFi.  There are, however, several aspects of high fan-
in architectures that push the envelope of this technology.  

First, the views in HiFi are typically over streaming 
data and the queries are continuous.   In such systems, 
windows play a crucial role in both query processing and 
semantics.  Window specifications divide unbounded 
streams into finite collections of data items over which 
queries can be executed.   Windows are specified by 
range and slide parameters (typically expressed in time or 
tuples).  The first parameter specifies the width of the 
window; the second specifies how the window moves as 
time progresses or as new tuples arrive.  

The definition and use of streaming views with 
windows is still an open problem.  When the slide/range 
of a query does not precisely match that of a view it is not 
immediately obvious how or even if the view can be 
exploited.  For instance, exploitation is generally possible 
if the range of the query matches (or in some cases, is 
subsumed by) that of the view and the slide of the query is 
a multiple of that of the view, or possibly if the slides are 
relatively prime. This has the flavor of periodic data 
processing [6].  

Second, because aggregation is such a fundamental 
concept in HiFi, the views at each level of the system will 
often contain aggregates.  When a query’s range exceeds 
its slide, the windows are overlapping. Evaluating 
aggregate queries over overlapping windows is 
challenging because input tuples must participate in 
multiple separate aggregate computations. We are 



working on techniques to efficiently share the execution 
of periodic overlapping windowed aggregates. 

Third, the hierarchical nature of the applications to be 
supported by HiFi emphasizes the issues of granularity 
and scope.   As stated above, we expect that in general, 
the granularity of requests will become coarser and the 
scope larger as one moves from the edges towards the 
interior of a high fan-in topology.  Aggregation and union 
operators can be used to achieve this; however, cases that 
do not follow this anticipated pattern are more difficult to 
handle.  For example, privacy and security constraints 
may restrict the detail and scope of information allowed to 
be passed to some other node in the system. 

4.2. Topological Fluidity 

Another important issue in the design of HiFi is the 
rigidity of the connections between nodes in the system. 
In some levels of a high fan-in system, a hardwired 
topology may be natural.  For instance, it makes sense for 
a node keeping track of items on a shelf to be hardwired 
to talk to the store's node, which in turn, is likely to talk to 
the regional node, and so forth. In such an arrangement, 
each node has a static parent (or small set of parents) and 
a relatively small static set of children with which it 
communicates.  With static connections at all levels, 
nodes require only a small amount of state to keep track 
of the other nodes with which they communicate.  
Furthermore, both query and data flow are greatly 
simplified in a static system, as there are only a small 
number of paths through the system. 

It is desirable in many cases to have more fluid 
connections between interior nodes.  In such a topology, 
nodes would still be grouped into levels, but connections 
to parents (for data flow) and children (for query flow) 
would occur on an ad-hoc basis.  Thus, the system can 
respond to runtime conditions by adding, removing, or 
changing links. Through fluid interior links, the system 
can route around overloaded or failed nodes and links, 
thus providing load balancing and fault tolerance. 

 Furthermore, some components in a high fan-in 
system, such as mobile nodes, do not fit into a static 
topology or may be disconnected for periods. For 
instance, a node mounted on a supply truck driving 
between distribution centers must have the ability to 
dynamically switch parents en route as well as be able to 
support disconnected operation. Finally, fluidity enables 
more fine-grained privacy and security provisioning.  An 
organization can specify exactly which queries and data 
flows can go where on a flow-by-flow basis. 

Of course, dynamism presents many challenges, 
including metadata management and query planning.  For 
HiFi, we are developing a hybrid approach, where there 
are preferred wirings between nodes, but where alternate 
routes through the system can be used in response to 
runtime conditions. 

4.3. Query Planning and Data Placement 

Once a query is submitted to HiFi, it must be planned and 
disseminated before it can be run.  Query planning in a 
high fan-in system involves a wide range of tasks.  First 
of all, the system must identify the relevant data streams 
and determine the responsible receptors.  If data is not 
already flowing from these receptors, the system must 
initiate data collection with appropriate settings (sample 
period, for instance).  The system must determine the 
general flow of the data from the leaves and decide upon 
the operators needed to process, split, merge, and 
transform streams.  Finally, the system must employ 
participating nodes to run these operators as data flow up 
the tree.  

A key efficiency consideration in HiFi is the 
placement of queries and data across the nodes of the 
system.  Given a query with a set of operators, the query 
planner must determine where in the hierarchy to place 
each operator.  This decision attempts to reduce overall 
system bandwidth usage by pushing operators down the 
hierarchy. Some data streams (or static relations) may not 
be visible at lower levels of the hierarchy.  Thus, the 
query planner should tend to push operators to the lowest 
level at which the streams and relations it operates over 
are visible.   

Furthermore, the query planner must consider existing 
queries and data flows in order to exploit shared 
processing.  For instance, if multiple operators from 
different queries process the same underlying data stream, 
then it may be advantageous to pull the operators up.  
Alternatively, it may be possible to improve the visibility 
of some queries by pushing streams or static relations 
down the hierarchy.  This incurs initial bandwidth costs 
and complexity due to replication, but may improve 
parallelism and utilization of resources, and could provide 
overall bandwidth savings.  Caching can also improve 
performance, but query and data placement in a cache-
based system are inherently inter-dependent [24]. 

In a high fan-in system, the manner in which this 
query planning takes place may be done in a variety of 
ways, ranging from completely centralized to fully 
distributed.  The simplest approach is to fully centralize 
the planning decisions.  A new query would be sent to a 
single query planning node that has global knowledge and 
is able to fully plan and then disseminate the query. This 
approach is suitable for fully trusting organizations with 
relatively static data, query, and network characteristics.  

Alternatively, a recursive approach, where the 
planning and dissemination phases are combined, may be 
more applicable.  In this case, a query is introduced at 
some location, which becomes the root of the hierarchy 
for that query. The query then propagates from this point 
to the data sources one level at a time. At each step of the 
process, the current node plans its portion of the query 
using only knowledge of its immediate children. As we 



discuss in Section 5.4, we are implementing a flexible 
planning and optimization approach that follows this 
recursive query planning paradigm.   

4.4. Event Processing 

An important use case for HiFi involves the real-time 
monitoring and management of large distributed 
organizations such as supply chains. For such 
applications, it is necessary that the system enable the 
delivery of important status information and events in a 
timely fashion.   

An event is defined as any significant occurrence in 
the system.  A user may be interested in a variety of 
simple events over streaming data: 

• A taken-out-of-store event may be defined 
simply as seeing a tuple on a particular data 
stream originating from an RFID receptor 
located at the exit of a store. 

• A fire-in-room event may be defined as a simple 
“ filter event”  which is detected when a tuple with 
a temperature value more than 100°C is seen on 
a data stream.  

Complex events may also be of interest to a user. 
Unlike simple events, these require the joining and 
aggregation of multiple streams under intricate notions of 
time, ordering, and negation.  Examples include: 

• A shoplifting event may be triggered when the 
taken-out-of-store event is seen for an item 
WITHOUT the occurrence of the purchased-at-
counter event for that item.  

• A person-in-danger event may be triggered when 
the simple fire-in-room and person-in-room 
events are seen for the same room within a 10 
second window.  

In addition to real-time scenarios, event specifications 
may span large scales of time and space (e.g., a CEO who 
wants an alert when the nation-wide sales of a product in 
the previous week goes below a threshold).  

In a system like HiFi, event and (SQL-based) data 
processing need to be done in a unified manner. However, 
SQL does not provide natural ways of expressing queries 
over ordered data (like time-ordered data streams) 
[26][36]. Hence, specification of complex events over 
streams needs to be done in a language that provides user-
friendly ways of expressing ordering and negation, in 
addition to other constructs.  Unified support for data and 
event processing is achieved in HiFi by extending the 
query language available to the user in a manner suitable 
to express complex event queries on data streams.  

HiFi handles event processing using state machine-
based operators in the core data stream processing engine 
along with traditional relational operators. These new 
operators maintain and update state for event queries as 
they see tuples on different data streams (possibly coming 

from other operators). They trigger an event when a 
transition to an accepting state is made. The output of 
these operators can be further processed by other data 
operators, giving a unified framework for event and data 
processing. 

4.5. Archiving and Pr ior itization 

In many situations, in addition to real-time information, 
there is also a need (or at least a desire) to have access to 
the underlying detail information, perhaps in a delayed or 
archival fashion.  Examples include data mining and long-
term planning applications as well as regulation-driven 
requirements, such as those arising from Sarbanes-Oxley 
compliance [39]. 

We are designing HiFi to support a spectrum of 
delivery requirements, spanning the range from real-time 
delivery of status and event notifications to background 
delivery and archiving of detail information.  The basic 
approach is: “send summaries, anomalies, and alerts first; 
the details can follow later” . 

HiFi meets these varied delivery requirements through 
a dynamic prioritization architecture.  The first priority of 
HiFi's scheduling subsystem is ensuring that archival data 
is not permanently lost [13]. Each node must ensure that 
its archival data is eventually delivered to a node with 
permanent storage. Nodes without local storage keep a 
buffer of recent data and send the contents of this buffer 
to remote nodes as needed.  

Once HiFi has ensured the integrity of archival data, it 
devotes time to the other types of data. For these data, 
HiFi employs Data Triage [37] to provide the highest 
quality of timely results possible given the resources 
remaining. If there is time to process all data relevant to a 
monitoring query, HiFi will do so; otherwise, the system 
will shed load by summarizing data that it does not have 
time to process and sending these synopses in place of the 
original data. The system reconstructs complete query 
results by combining computations on complete data with 
computations on synopses.  

4.6. Real Wor ld Data 

Perhaps the most unique challenge presented by high fan-
in environments is the need to seamlessly integrate the 
physical world with the digital world. However, the 
characteristics of each realm differ greatly.  Real world 
data can be seen as an infinite collection of unbounded 
continuous streams with loose semantics, whereas the 
digital world is inherently discrete (for our purposes, it is 
tuple-oriented) with strict semantics and guarantees.  
Furthermore, data collection techniques are imperfect at 
best and provide only a flawed glimpse of the real world.  
Physical receptor devices can introduce significant 
complexity due to their wide variance in terms of 
interface, behavior, and reliability. Thus, a challenge 
facing any receptor-based system is to bridge these 



disparate worlds in a manner that enables users of the 
system to both trust and make sense of the data the system 
provides.  

Towards this end, HiFi uses virtual devices to interact 
with the physical world.  A virtual device interfaces with 
multiple raw receptors that are in close proximity, 
processing and fusing their streams to produce more 
useful, higher-quality data. It does this by incorporating 
CSAVA-like processing, conversion and calibration, 
virtualization, lineage tracking, and quality assessment.  
Thus, a virtual device may combine declarative query 
processing with non-declarative processing, such as with 
soft sensors [34].  

One of the more important services a virtual device 
provides is the support for the notions of answer quality 
and lineage. To provide for the first component, the 
virtual device augments receptor-based data with error 
estimates and confidence intervals.  For example, a virtual 
device for a sensor network can use known techniques 
[20] for determining answer quality based on probability 
distributions.  Similar methods apply to other receptors, 
provided that the error characteristics are known.  Lineage 
is also tracked for each data item (or set of items) as it is 
processed within the virtual device.  

A virtual device provides a rich interface to HiFi for 
interacting with the receptor (or set of receptors).  It 
exposes an interface that consists of a suite of virtual 
streams, including multiple levels of processed data 
streams (ranging from raw to fully cleaned data), quality 
streams, and lineage streams.  HiFi interacts with a virtual 
device by querying and correlating these streams to 
produce useful information.  For instance, to determine 
the quality of a certain data value, HiFi would correlate a 
data stream with the corresponding quality stream.  Thus, 
the virtual device exports an interface that is richer and 
more useful than a cleaning view over the raw data. 

A virtual device provides other services as well, such 
as archiving, prioritization, actuation, and receptor 
management.  All of these services are exposed via this 
same stream-based interface.  For instance, a query over 
the archive “stream” allows access to past data.   

We are currently exploring the extent of a virtual 
device’s functionality and defining its behavior in various 
environments. 

4.7. Pr ivacy and Access Control 

Privacy of data is a prime concern in environments where 
the flow of information crosses organizational boundaries. 
This is another case where the use of views to express 
exported data plays a role.  Each HiFi node exports a 
particular set of views to the higher level nodes based on 
the access control policies specified by the node’s 
organization. The query planner ensures that only those 
queries that can be written on top of these views are 
executed on that node. This restriction ensures that no 

information available at the node is leaked to the higher 
levels in an unauthorized manner. 

The use of SQL views for specifying authorization 
policies and enforcing access control by query rewriting 
using views has been discussed for the centralized case in 
[38]. For HiFi, we can extend the approach to a 
distributed scenario in which authorization views are 
exported by distributed data sources.  

4.8. System Management 

Finally, a major requirement and challenge for the 
deployment of a large, integrated, distributed system such 
as HiFi is the ability to continuously monitor the state of 
the system itself and adaptively adjust its behavior.  
Furthermore, the system must be easy to modify in terms 
of the addition and removal of new components and types 
of components.   While we are only beginning our 
investigation into the system management issue, we 
intend to exploit the fact that HiFi is itself a hierarchical 
system for monitoring and managing phenomena in 
hierarchical environments.  Thus, we expect to use the 
HiFi infrastructure itself to accomplish much of the 
system management task. 

5. Initial Architecture and Service Design 
Having outlined the major design issues for HiFi, we now 
present a description of the initial system. We detail the 
functionality and services provided by HiFi by outlining 
its major components: the Metadata Repository (MDR), 
the Data Stream Processor (DSP), and the HiFi Glue.  

5.1. Metadata Repository 

The Metadata Repository (MDR) serves as a globally 
accessible catalog for system-wide information.  This 
metadata is of three types: schema, views, and system 
information. 

The schema contained in the MDR is the mediated 
schema of the system over which all application queries 
and views are written. It is assumed that this changes very 
infrequently.  For instance in our SCM example, the 
mediated schema consists of sensor and RFID data. 

The views stored in the MDR are those exported by 
each node in the system.  The MDR also maintains a 
mapping of the views exported by a node and its physical 
location, which is vital for supporting a fluid, loosely-
coupled topology. 

The system information contained in the MDR 
includes node capabilities, authorization and privacy 
controls, and information relating to organizational 
boundaries and administrative domains.   Additionally, 
the MDR maintains runtime information, such as the 
current set of queries running on each node, current 
network usage, and unavailable/unreachable nodes to help 
guide and optimize system behavior. 



The MDR can be implemented in a variety of ways, 
from fully centralized to fully decentralized, and this is a 
topic we are currently investigating.  

5.2. Data Stream Processor  

The Data Stream Processor (DSP) lives entirely within 
a HiFi node and is responsible for all single site data 
stream processing. Only the following simple 
functionality is expected of a DSP:  

 
1. The ability to process continuous queries 
2. The ability to add continuous queries on-the-fly 
3. The ability to add sources on-the-fly 
4. The ability to cancel queries 
 

Additionally, when present, a HiFi node can profitably 
exploit: 
 

1. The ability to modify a currently running query  
2. The ability to suspend a currently running query  
3. The archiving of streams  
4. The querying of archived data 

 
The DSP is oblivious of HiFi and could (in principle) be 
any stream processor such as TelegraphCQ [12], Aurora 
[1] or STREAM [30]5. 

5.3. HiFi Glue    

The HiFi Glue, which runs on each HiFi node, is the 
fabric that seamlessly binds together the system. It 
coordinates its local DSP, communicates with other HiFi 
nodes, and manages incoming and outgoing streams. The 
HiFi Glue itself consists of local and global sets of 
services. The glue and its relationship to the MDR and 
DSP are shown in Figure 3.  
 

5.3.1. Local Services 

The local HiFi Glue services perform actions that involve 
local decisions only.   

                                                           
5 Our current implementation uses a combination of two 
versions of TelegraphCQ and the TinyDB system, as these have 
been previously developed by our group.  The ease of 
incorporating other stream processors remains to be seen. 

Figure 3 - Internal architecture of a HiFi node 



Logical Query Planner : The Logical Query Planner 
converts queries into a local query plan (the DSP Plan) 
and a set of queries to be run on child nodes (the Remote 
Query Set or RQS). We describe this process in more 
detail in Section 5.4.  

DSP Manager : This module is responsible for 
starting, stopping, suspending, and modifying locally 
running DSP queries and streams based on input from the 
Query Planner.  It also handles syntax translation from 
HiFi’s internal query representation to the local DSP’s 
query language, if necessary. 

Resource Manager : This module’s job is to adapt a 
node’s behavior to unpredictable run-time conditions and 
perform functions such as prioritization and load-
shedding.  

Local View Manager : The Local View Manager 
provides a way to describe and manage the views that 
represent the data exposed by the node. It interacts with 
the MDR to export and revoke the current set of views 
active on this node.  Additionally, it allows authorization, 
privacy, and other constraints to be specified for each 
view.  

Archive Manager :  This component manages the 
archiving of streams for the purposes of historical 
querying.  Note that some DSPs support this functionality 
internally [13].  Furthermore, the Archive Manager may 
interact with other nodes to place data (both relations and 
streams) for efficient query processing. 

Cache Manager : The Cache Manager snoops 
incoming data streams and determines what data to cache 
based on current workload.  Additionally, it interacts with 
the Query Planner to enable query processing using 
cached data (i.e., materialized views).  

Query L istener : The Query Listener listens for 
remote connections, parses incoming requests, and passes 
them on to the Query Planner. 

Query Dispatcher : This component dispatches 
queries of the Remote Query Set to remote HiFi nodes.  

Data L istener /Disseminator : These components 
handle incoming and outgoing data streams.  Incoming 
streams from multiple sources may be merged into the 
same stream en route to the DSP.  Outgoing streams may 
be split among multiple destinations.  Additionally, these 
components handle pre- or post-processing of streams, 
such as encryption/decryption or format translation. 

 

5.3.2. Global Services 

Global HiFi services require non-local knowledge and 
interaction with other nodes in the system.  In some cases, 
this portion of the glue need not physically reside on each 
node. Instead it can be viewed as a set of globally 
available services that perform actions on behalf of the 
requesting node.   

Query Placement Service: This component 
determines the best node to start executing a query when 

received from a user. It does this by determining the scope 
and granularity of the query and consulting the MDR to 
determine the lowest common ancestor that can serve as 
the query root. 

Physical Query Planner : Once the Logical Query 
Planner produces a set of plans involving child views, this 
module consults the MDR to determine the physical node 
location of these views. This is what enables fluid 
topologies in HiFi.  

Control Manager : The Control Manager interacts 
with other HiFi nodes to perform overall system 
management.  This includes system health monitoring and 
global and local startup/shutdown. 

5.4. A Day in the L ife of a Query 

In this section, we illustrate the functionality of many of 
the architectural components by walking through the 
processing of a query.   

The primary query planning mechanism on each node 
is called the shared view infrastructure (SVI), which is 
part of the Logical Query Planner.  Each HiFi node is 
aware of a set of views (V1, V2,…, Vn) that describe all 
the data available to it (i.e., the views exported by all of 
its children). The SVI converts each view V i to a succinct 
form composed of a set of sources and operators. The SVI 
then merges this view into its shared view representation 
in a manner identical to the way in which new queries are 
merged into a common shared plan in TelegraphCQ [12]. 
Thus, the SVI contains an agglomerated form of the 
individual views.  

When a query Q enters the HiFi system, the Query 
Placement Service is consulted to dispatch the query to its 
root. Once a query arrives at its root, the following steps, 
coordinated by the Query Planner on each node, take 
place recursively to both plan and disseminate the query. 

 
1. SVI conversion: Q is transformed into the same 

representation used for views in the SVI. 
2. Logical planning: This plan is folded into the SVI in 

same manner in which views are added to produce 
the following: 
• Remote Query Set (RQS): A set of queries 

(QV1, QV2,…, QVi), created by the Logical Query 
Planner, that represent the current query 
rewritten using the views of children.  For each 
child node’s view V i that must provide data to 
this query, a corresponding query QVi is created 
to be run on the corresponding child.  Note that a 
query QVi can be different from the view V i as 
more operations can generally be pushed down 
into the provider of V i.  

• DSP Plan: A local DSP query Qlocal that operates 
over the input streams produced by the RQS. 



3. DSP setup: The DSP Manager creates a new stream 
definition corresponding to each QVi in the RQS and 
then adds  Qlocal on-the-fly to the DSP. 

4. Physical planning: For each QVi  to be run on a child 
node, the Physical Query Planner produces the 
following: 
• Where: L i - a location to run the query.  If 

multiple child nodes export the same view, then 
the physical query planner chooses one of the 
nodes based on runtime conditions. 

• What: Q'Vi - the actual query that has to be run. 
Note that Q'Vi  is a textual representation of  QVi 
in the syntax expected by the HiFi node L i.  

5. Query dissemination: Each Q'Vi is sent to its 
appropriate location L i where this same process takes 
place recursively. 

6. Data sourcing: As results from the query Q'Vi are 
received by the Data Listener, they are streamed into 
the DSP. 

7. Returning results: As the local DSP produces 
results, the Data Disseminator directs them to the 
appropriate parent(s). 

 

6. Prototype System 
We have built an initial version of HiFi using the 
TelegraphCQ (TCQ) stream query processor and the 
TinyDB sensor database system.  The goal of this 
prototype is to examine the feasibility of the uniform 
declarative framework and to derive a better 
understanding of the core components required for 
building high fan-in systems.  Figure 4 depicts this initial 
deployment.  It consists of a three-level hierarchy: 
receptors, initial processing, and core processing. 

 

6.1. Receptors 

The receptor level consists of sensor networks and RFID 
readers monitoring the physical world.  For our sensornet 
system, we use TinyDB [28], which supports a SQL-
esque interface for query processing.  Our current 
prototype uses RFID readers to make up the other branch 
of the receptor level.  Although the RFID reader does not 
export a SQL interface, we have built a simple adapter to 
interact with the device.  Both of these systems are 
capable of some form of processing, ranging from 
aggressive in-network aggregation in TinyDB to simple 
buffering (i.e., windowing) in the RFID reader.  HiFi 
exploits this functionality to clean the data as it samples it.  

 

6.2. Initial Processing 

The receptors feed their streams of partially cleaned data 
to the second level in our prototype hierarchy for initial 

processing.  This level serves as the aggregation point for 
the receptors and consists of small computing devices 
capable of field deployment.  For our system, we use Intel 
Stargates [16], small, single-board Linux-based compute 
devices built with Intel XScale processors.  As shown in 
Figure 4, MoteServer and RFIDServer processes interact 
with the receptors and inject their streams into HiFi.  For 
data processing, the Stargates run a scaled-down version 
of TelegraphCQ, capable of running simple continuous 
queries.  Here the system performs additional cleaning 
and performs basic aggregation and correlation using 
queries similar to those shown in Section 3.2 before 
passing on the data.  A Stargate along with an associated 
sensor network and RFID reader represent our field 
deployable unit (FDU) which monitors one area. 

6.3. Core Processing 

The Stargates feed their processed and aggregated streams 
to the root of our hierarchy, a full-fledged server running 
TelegraphCQ.  This node runs queries that correlate 
streams across all devices, for example, “ find the 
maximum (sound/number_of_tags) quotient across all 
areas.”  

 

6.4. Exper iences 

We have deployed this prototype as described with 
several FDUs and a streaming visualization interface for 
demonstration at the 2004 VLDB conference [15].  In 
many ways this experience influenced the design 
presented above.  We briefly discuss some of these 
experiences and the lessons we learned from them.  

There were many basic problems arising from the 
inherent complexity of a high fan-in system.  Each new 
device incorporated into the system brought with it its 
own implementation challenges.  We discovered many 
small bugs in different parts of the system as we moved to 
each new platform.  These challenges provide a strong 
argument for a general-purpose data management 
platform such as HiFi to remove this source of complexity 
when deploying high fan-in systems.  

Although our deployment had only three levels in its 
hierarchy, we discovered that there was severe data lag, 
from the time when a receptor read a data value to the 
time when that value was reflected in the output. This 
stemmed from the fact that hierarchical, window-based 
query processing, naively implemented, has inherent 
delays. If a query’s windowing specifications (i.e., its 
range and slide parameters) are disseminated unchanged 
through the hierarchy, a lag on the order of the slide 
parameter is introduced for each level.  Thus, the system 
must be careful in handling the window clause as a query 
is propagated down the hierarchy. We are currently 
developing techniques to address this issue. 



Our implementation of CSAVA provided many 
interesting lessons.  As development and testing 
progressed, we discovered that the RFID data produced 
by the readers were highly unreliable.  By applying 
CSAVA processing, we were able to clean up this data to 
a certain extent.  Additionally, this effort validated our 
uniform declarative framework, as CSAVA deployment 
took relatively little development time. 

Finally, deploying this system reinforced our belief 
that system management is very important.  Our 
deployment was relatively small in scope, yet it had five 
different platforms running four different data processing 
systems across more than 20 devices. Without 
management tools for start up, shutdown, and status, the 
system would have been largely unusable.  Additionally, 
we discovered that compartmentalized design of each 
node provides a benefit in that faults were isolated to the 
component that failed. We were able to dramatically 
increase the uptime of the system through strict 
compartmentalization of each component in the system. 

7. Related Work 
As has been discussed in the previous sections, HiFi 
builds on a large body of related work.  In addition to 
work already discussed about the individual components 
of HiFi (e.g., view-based query rewrite), there is previous 
work relating to both the architecture of high fan-in 
systems in general and to the design of HiFi in particular.    

7.1. Hierarchical and Receptor -based Systems 

There are a variety of projects aimed at managing and 
querying the data produced by receptors, both physical 
and virtual.  These projects have assumed topologies 
similar to the high fan-in approach described here, 
although there are significant differences. 

IrisNet[17] uses a two level hierarchy consisting of 
receptors feeding into a core composed of a set of nodes 
running a distributed database.  Queries are posed in 
XQuery over a hierarchical schema which represents both 

Figure 4 – The initial HiFi prototype [15] 



the node organization and data organization.  Thus, 
queries contain full information to enable the query to be 
routed to the lowest common ancestor necessary to 
answer that query.  The focus is on ease of service 
deployment and scalability.  Although IrisNet is organized 
in a hierarchy, it does not address hierarchical aggregation 
or successive processing of queries. 

Astrolabe [43] is designed for distributed system 
monitoring and data mining for system management. It 
organizes its nodes in a hierarchical manner (termed 
zones) with a primary focus on aggregation to enable 
system scalability.  While not explicitly dealing with 
streams, it does handle rapid updates to the underlying 
data and re-computes aggregates on-the-fly.  It does not 
address windowing semantics.  Astrolabe is designed to 
run on a relatively homogenous system and doesn’ t take 
into account differing system capabilities.  

The MIT Auto-ID center defines a set of specifications 
on how to interact with RFID data, including Savant [31].  
They address a similar hierarchical framework with 
multiple Savants talking to each other.  The also define 
some of the same types of data processing stages we 
discuss in our CSAVA example.  However, each stage in 
their processing involves a different data model and 
different protocol for interacting with the data. 

The Hourglass project [40] from Harvard is 
developing a data collection network (DCN) for accessing 
sensor-based data.  Their infrastructure consists of an 
overlay network of wired nodes collecting data from 
various sensor networks.  They generalize system 
components into producers, consumers, and services and 
focus on how best to establish and maintain circuits in the 
overlay network.  

The D-Stampede project [3][35] at Georgia Tech 
provides a programming system for managing what they 
term an “Octopus”  hardware configuration, with a wide 
range of receptors feeding into a cluster for further 
processing.  Their goal is to provide an API to support 
high performance application development for a 
heterogeneous (both hardware and software) environment.  
They focus on providing an application development 
environment and not on data management. 

 

7.2. Data Stream Processing 

As we have discussed previously, HiFi draws heavily 
from the large body of recent work on single site data 
stream processing.  Projects in this area include 
TelegraphCQ [12], STREAM[30], Aurora [1][10], and 
NiagaraCQ [11].   To date, there has been less work on 
distributed stream processing.  
    The Aurora Project has branched into two separate 
efforts to extend stream processing to a distributed 
environment.  Aurora* [14] is designed for a single 
administrative domain and addresses QoS and dynamic 

operator repartitioning and movement to achieve load-
balancing and fault-tolerance. The Medusa System [14] 
arranges single site Aurora data stream processors in a 
loosely federated network mediated by agoric principles 
to enable spanning of organizational boundaries and load 
balancing.  This work differs from HiFi that it has focused 
on distributing stream processing for load balancing and 
high availability.  In contrast, HiFi is focused on 
identifying and addressing the problems that arise in 
systems that naturally assume a high fan-in topology. 

More recently, Ahmad and Cetintemel have reported 
on an in-depth study of operator placement in a 
distributed stream processing system [5].  This work 
analyzes multiple algorithms and exposes the trade-off 
between bandwidth usage and answer latency. 
 

7.3. Distr ibuted Data Management Systems 

More traditional database research has focused on 
distributed data management in the form of both tightly 
and loosely coupled distributed databases as well as 
federated databases.  Relevant efforts in this area include 
Mariposa[42], Information Manifold [25], and 
Tukwila[23].  

8. Conclusions 
In this paper, we have introduced the notion of high fan-in 
systems, an emerging information systems architecture 
that leverages advances in data acquisition and sensor 
technologies to enable disparate, widely distributed 
organizations to continuously monitor, manage, and 
optimize their operations.   The technology required to 
support high fan-in systems builds on previous work in 
federated data management, data stream processing, 
sensor network query processing, and distributed data 
management; however, the unique architectural, 
application, and environmental considerations that arise in 
such systems raises a wealth of new and interesting 
research questions. 

We described our initial design ideas and outlined 
currently open issues in the development of HiFi, a high 
fan-in infrastructure currently being implemented at UC 
Berkeley.  We have built an initial prototype of HiFi using 
the TelegraphCQ and TinyDB code bases, and have 
successfully demonstrated the usefulness of stream-
oriented query processing for correlating, aggregating, 
and visualizing readings from sensor motes and RFID 
readers.  This paper represents a current snapshot of our 
development and identifies areas of future research.  Of 
course, as the project develops, we anticipate that both our 
design and our research agenda will evolve as new issues 
and opportunities arise. 
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