
Cache-Oblivious Query Processing

Bingsheng He, Qiong Luo
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

{saven,luo}@cse.ust.hk

ABSTRACT
We propose a radical approach to relational query processing that
aims at automatically and consistently achieving a good perfor-
mance on any memory hierarchy. We believe this automaticity
and stableness of performance is at times more desirable than some
peak performance achieved through careful tuning, especially be-
cause both database systems and hardware platforms are becoming
increasingly complex and diverse. Our approach is based on the
cache-oblivious model, in which data structures and algorithms are
aware of the existence of a multi-level memory hierarchy but do
not assume any knowledge about the parameter values of the hier-
archy, such as the number of levels in the hierarchy, the capacity
and the block size of each level. Since traditional database systems
are intrinsically aware of these parameters, e.g., the memory page
size, our cache-oblivious approach requires us to rethink the query
processing architecture and implementation. In this position paper,
we present the architectural design of our cache-oblivious query
processor, EaseDB, discuss the technical challenges and report our
initial results.

1. INTRODUCTION
Both relational database systems and hardware platforms are be-

coming increasingly complex and diverse. As a result, it is a chal-
lenging task to automatically and consistently achieve a good query
processing performance across platforms. This problem is even
more severe for in-memory query processing, because the upper
levels of a memory hierarchy, such as the CPU caches, are hard, if
feasible at all, to manage by software.
Since CPU caches are an important factor for database perfor-

mance [3, 11], cache-conscious techniques [10, 11, 14, 22, 35, 41]
have been proposed to improve the in-memory query processing
performance. In this approach, the capacity and block size of a
target level in a specific memory hierarchy, e.g., the L2 cache, are
taken as explicit parameters for data layout and query processing.
As a result, cache-conscious techniques can achieve a high perfor-
mance with suitable parameter values and fine tuning. Neverthe-
less, it is difficult to determine these suitable parameter values at all
times and across platforms [7, 20, 21, 33], since they are affected

This publication is licensed under a Creative Commons Attribution 2.5
License; see http://creativecommons.org/licenses/by/2.5/ for further details.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

by the characteristics of the memory hierarchy and the system run-
time dynamics.
Considering the difficulties faced by the cache-conscious approach,

we propose another alternative, namely cache-oblivious query pro-
cessing, to achieve the goal of improving in-memory performance
automatically. Our approach is based on the cache-oblivious model
[18] proposed by M. Frigo et al. in 1999. A cache-oblivious algo-
rithm is aware of the existence of a multi-level memory hierarchy,
but assumes no knowledge about the parameters of the hierarchy.
By eliminating the dependency on the memory parameters, cache-
oblivious data structures and algorithms [5, 7, 12, 13, 18] usually
have provable upper bounds on the number of block transfers be-
tween any two adjacent levels of an arbitrary memory hierarchy.
Furthermore, this memory efficiency asymptotically matches those
more knowledgeable external memory algorithms in many cases.
Despite the nice theoretical properties of the cache-oblivious ap-

proach, it is uncertain whether a relational query processor can be
implemented in a cache-oblivious manner. One reason is that tra-
ditional database systems are designed to be aware of memory pa-
rameters. Moreover, most of the cache-oblivious work is on basic
data structures and computational algorithms, for example, cache-
oblivious B-trees [5, 7], sorting and matrix operations [18]. As
such, even if a cache-oblivious query processor is implemented, it
is unclear how well it will perform on real machines, especially in
comparison with a fine-tuned, cache-conscious counterpart.
In this paper, we present our initial design of EaseDB, the first

cache-oblivious query processor for memory-resident relational
databases. We also discuss the technical challenges in cache-oblivious
query processing and report our experience with designing, im-
plementing, and evaluating cache-oblivious query processing tech-
niques.

2. TECHNICAL CHALLENGES
In this section, we identify five technical challenges in cache-

oblivious query processing and discuss them in order.
The first technical challenge lies in the design of cache-oblivious

query processing algorithms that asymptotically match the memory
efficiency of their cache-conscious counterparts. Existing cache-
oblivious work has focused on the memory efficiency, but none of
it is about relational query processing. Relational query processing
algorithms, such as partitioned hash joins [11, 35], can be both
computation and data-intensive. Moreover, these algorithms are
carefully designed to take into account the memory parameters and
achieve a high memory efficiency.
In contrast, assuming no knowledge about the memory parame-

ters, cache-oblivious techniques are usually designed to divide and
conquer [18]. Specifically, a problem is divided into a number of
sub-problems recursively and the recursion will not end until the

44

smallest unit of computation is reached. The intuition is that, at
some point of the recursion, the sub-problem will fit into some
level of the memory hierarchy and will further fit into one block as
the recursion continues. However, due to the absence of memory-
specific parameters, the base case of the recursion is usually set as
small constants, e.g., the binary fanout of a cache-oblivious B+-
tree. Consequently, the divide-and-conquer process may be unnec-
essarily long. If this process involves a significant amount of data
access, as in query processing, the algorithms need to be carefully
designed to improve the memory efficiency.
The second challenge is about the reduction of the recursion

overhead in cache-oblivious algorithms without the knowledge of
cache parameters. As the base case size in the recursion is usu-
ally small, the recursion process goes unnecessarily deep. Conse-
quently, the recursion overhead, especially the computational over-
head, becomes significant. For instance, the cache-oblivious non-
indexed nested loop join had three times less CPU busy time when
the base case increased from one to two tuples in our experiments.
Moreover, the dominance of computational cost in the overall time
remained for all base cases smaller than 64 tuples. Thus, it is neces-
sary to determine a suitable base case size to avoid the unnecessary
recursions.
The third challenge is also a major one in traditional query pro-

cessing - cost estimation for query optimization. The difference,
again, is the absence of memory parameters. Traditional query
optimizers estimate costs on CPU instructions [37] and disk ac-
cesses [31], and a recent cache-conscious cost model estimates
CPU cache stalls with given cache parameters of all levels of caches
in the memory hierarchy [11]. However, it is infeasible for a cache-
oblivious query processor to estimate the absolute cost without the
cache parameter values. Therefore, we need to consider relative
costs and to compute expected values for an arbitrary memory hi-
erarchy. Additionally, this cost estimation will be useful for the
determination of the base case size.
The fourth challenge is on a cache-oblivious storage model. Ex-

isting storage models, e.g., the slotted-page storage model [31], are
inherently conscious of the disk, the memory, or the CPU cache
parameters. In order to make a query processor completely cache-
oblivious, the storage model must be redesigned. A few cache-
oblivious in-memory data structures, e.g., the Packed Memory Ar-
ray (PMA) [5], have been proposed so far, but none of them have
been studied in consideration of query processing workloads. Ad-
ditionally, even though we focus on read-only queries at the current
stage, it is desirable to also leave room for update efficiency in our
storage model.
The final challenge is on the performance evaluation of our cache-

oblivious query processor in comparison with its cache-conscious,
fine-tuned counterparts. Most of the cache-oblivious work focused
on establishing theoretical bounds of its memory efficiency. In
contrast, we emphasize on empirically evaluating the cache per-
formance as well as the overall performance of our query proces-
sor on various hardware platforms in addition to studying its the-
oretical bounds. Furthermore, to facilitate a fair comparison, we
need to implement representative cache-conscious algorithms and
to tune their parameter values for the best performance. In our ex-
periments, we have found that the performance of cache-conscious
algorithms varies greatly with the parameter values and the best pa-
rameter values for these algorithms are often none of the parameter
values of the memory hierarchy.

3. BACKGROUND AND RELATEDWORK
In this section, we first review the background on the memory

hierarchy and then cache-centric techniques including both cache-

conscious and cache-oblivious techniques.

3.1 Memory hierarchy
The memory hierarchy in modern computers typically contains

multiple levels of memory from top down [23]:
• Processor registers. They provide the fastest data access, usually
in one CPU cycle. The total size is hundreds of bytes.
• Level 1 (L1) cache. The access latency is a few cycles and the
size is usually tens of kilobytes (KB).
• Level 2 (L2) cache. It is an order of magnitude slower than the
L1 cache. Its size ranges from 256 KB to a few megabytes (MB).
• Level 3 (L3) cache. It is present in the Intel Itanium [25]. It
has a higher latency than the L2 cache. Its size is often several
megabytes.
•Main memory. The access latency is typically hundreds of cycles
and the size can be several gigabytes (GB).
•Disks. The access latency is hundreds of thousands of cycles. The
capacity of a single disk can be up to several hundred gigabytes.
Each level in the memory hierarchy has a larger capacity and a
slower access speed than its higher levels. In this paper, we use the
cache and the memory to represent any two adjacent levels in the
memory hierarchy whenever appropriate.
We define a cache configuration as a three-element tuple <C, B,

A>, where C is the cache capacity in bytes, B the cache line size
in bytes andA the degree of set-associativity. The number of cache
lines in the cache is C

B . A=1 is a direct-mapped cache, A=
C
B a fully

associative cache and A=n an n-associative cache (1 < n < C
B).

For the design and analysis of algorithms on the memory hier-
archy, a number of cache models have been proposed, such as the
external memory model (also known as the cache-conscious model)
[1] and the cache-oblivious model [18]. Both models assume a two-
level hierarchy, the cache and the memory. Especially, the cache-
oblivious model assumes an ideal cache, which is fully associative
and uses an optimal replacement policy [18]. The cache complexity
of an algorithm is defined to be the asymptotical number of block
transfers between the cache and the memory incurred by the algo-
rithm. Frigo et al. showed that, if an algorithm has an optimal cache
complexity in the cache-oblivious model, this optimality holds on
all levels of a memory hierarchy [18].

3.2 Cache-conscious techniques
Cache-conscious techniques [10, 11, 14, 22, 35, 41] have been

the leading approach to optimizing the cache performance of in-
memory relational query processing. Representatives of cache-
conscious techniques include blocking [35], buffering [22, 41] and
partitioning [11, 35] for temporal locality, and compression [10]
and clustering [15] for spatial locality.
Cache-conscious algorithms explicitly take cache parameters as

input. A common way of obtaining these cache parameters is to
use calibration tools [27]. One problem of calibration is that some
calibration results may be inaccurate or missing, especially as the
memory system becomes more complex and diverse. For example,
the calibrator [27] does not give the characteristics of TLB on the
P4 or Ultra-Sparc machines used in our experiments. Furthermore,
the best parameter values for a cache-conscious algorithm may be
none of the cache parameters, as our experiments showed. In con-
trast, cache-oblivious techniques are an automatic approach to per-
formance optimization for the entire memory hierarchy without the
need for any cache parameters.

3.3 Cache-oblivious techniques
Twomain methodologies of a cache-oblivious algorithm are divide-

and-conquer and amortization [16].

45

A

B1 Bt

A B1 Bt

In memory

Cut 1

Figure 1: The cache-oblivious B+-tree

The divide-and-conquer methodology is widely used in general
cache-oblivious algorithms, because it usually results in a good
cache performance. In this methodology, a problem is recursively
divided into a number of subproblems. At some point of the recur-
sion, the subproblem can fit into the cache, even though the cache
capacity is unknown.
Following the divide-and-conquer methodology, we proposed to

use two cache-oblivious techinques, recursive clustering [21] and
recursive partitioning [20], for the spatial and temporal locality of
data access, respectively. As their names suggest, recursive parti-
tioning recursively partitions data so that at some level of the recur-
sion a subpartition is fully contained in some level of the memory
hierarchy, and recursive clustering recursively places related data
together so that a cluster fits into one block at some level of the
recursion. An example of recursive partitioning is the quick sort,
one of the most efficient sorting algorithms in the main memory.
An example of recursive clustering is the cache-oblivious B+-

tree (COB+-tree) [5, 6]. A COB+-tree is obtained by storing a
complete binary tree according to the van Emde Boas (VEB) layout
[38], as illustrated in Figure 1. Suppose the tree consists ofN nodes
and has a height of h = log2(N + 1). The VEB layout proceeds
as follows. It first cuts the tree at the middle level, i.e., the edges
below the nodes of height h/2. This cut divides the tree into a
top subtree, A, and approximately

√
N bottom subtrees below the

cut, B1, B2, ..., and Bt. Each subtree contains around
√

N nodes.
Next, it recursively stores these subtrees in the order of A, B1, B2,
..., and Bt. The memory efficiency of one search on a complete
binary subtree stored in the VEB layout matches that of a cache-
conscious B+-tree (CCB+-tree) [5, 6].
The amortization methodology is used to reduce the average cost

per operation for a set of operations, even though the cost of a single
operation may be high. We use amortization to improve the reuse
of the data that reside in the cache. Specifically, we have designed
a novel cache-oblivious buffer hierarchy to amortize data accesses
to the buffers [20, 21], as shown in Figure 2. These buffers are
organized into a hierarchy. When a buffer is full, we flush the buffer
by distributing the buffered items to its child buffers recursively.
The sizes of buffers in the hierarchy are recursively defined. This

definition follows the VEB recursion [38]. At each cut of the re-
cursion, we define the sizes of the buffers at the middle level. If the
tree contains N buffers, we set the size of a buffer at the middle
level to be N

1
2 log2 N

1
2 , which equals the total size of the buffers

in the bottom subtree. This process ends when the tree contains
only one buffer. If the size of the buffer for this node has not been
determined, it is set to a small value. For example, if the buffer is
used in a tree index, it is set to the index node size [21]. At some

Buffer

R

Figure 2: A buffer hierarchy in EaseDB. The buffers form a
binary tree structure. Their sizes are recursively defined.

Table 1: Notations used in this paper
Parameter Description

C Cache capacity (bytes)
B Cache line size (bytes)

R, S Outer and inner relations of the join
r,s Tuple sizes of R and S (bytes)

|R|,|S| Cardinalities of R and S
||R||,||S|| Sizes of R and S (bytes)

CS The base case size in number of tuples

level of the recursion, buffers can fit into the cache and are reused
before they are evicted from the cache. Thus, the average cost of
each operation is reduced.
Representatives of existing cache-oblivious techniques include

recursive partitioning [18] and buffering [12, 18] for temporal lo-
cality, and recursive clustering [5] for spatial locality. Especially
for query processing, the following cache-oblivious data structures
and algorithmsmatch the cache complexity of their cache-conscious
counterparts. The notations used throughout this paper are summa-
rized in Table 1.

• B+-trees [7]: The cache complexity of a search on the B+-
tree for relation R is O(logB |R|).

• Sorting [13]: The cache complexity of sorting relation R is
O(|R|

B logC |R|).

• Nested-loop joins (NLJ) [21]: The cache complexity of join-
ing relations R and S without and with the B+-tree index is
O(|R|·|S|

C·B) and O(|R|
B logC |S|), respectively. For indexed

NLJs, a COB+-tree is built on S in advance.

• Hash joins [20]: The cache complexity of joining relationsR
and S is O(|R|

B logC |S|), where R and S are the probe and
build relations, respectively.

Our previous work [20, 21] has designed cache-oblivious algo-
rithms for NLJs and hash joins. In this paper, we discuss architec-
tural design and implementation issues in developing a full-fledged
cache-oblivious query processor instead of focusing on individual
algorithms.

46

Table 2: Main memory relational query processors
FastDB TimesTen MonetDB EaseDB

Category cache-conscious cache-conscious cache-conscious cache-oblivious
Query optimizer rule-based instruction cost-based cache cost-based cache cost-based
Supported indexes T-tree, hash index B+-Tree, T-tree, hash index B+-Tree, T-tree, hash index B+-Tree, hash index
Access to database file virtual memory main memory virtual memory main memory
Storage model row-based row-based column-based row-based

EaseDB

SQL

Results

Plan executor

Parser

CO

cost estimator

Plan

generator

Query plan

Parsed query
Operators

CO

B+-tree

Table

scan

CO

Hash index

Table scan

Index scan

Sort

Hashing

Hash-grouping

Nested -loop

Sort -merge

Hash -joinFunnel sort
Quick sort

Join

Sort Aggr .

Sel . Proj .

Access

methods

Execution engine

Memory

manager
RelationStorage

Radix sort

Figure 3: The system architecture of EaseDB

4. EASEDB
In this section, we describe the architectural design and imple-

mentation status of EaseDB, our cache-oblivious query processor.
The goal of EaseDB is to automatically and consistently achieve a
good performance on various machines at all times.

4.1 System Overview
Figure 3 shows the system architecture of EaseDB. There are

three major components, namely the SQL parser, the query opti-
mizer, and the plan executor. The query optimizer in turn consists
of a query plan generator and a cache-oblivious cost estimator. At
the time of writing, we have finished the implementation of most of
the plan executor and the cost estimator. We will reuse the parser
component of PostgreSQL [30] for our SQL parser and will use a
Selinger-style optimizer [34] for plan generation. Additionally, a
two-phase optimization strategy [24] will be used to limit the plan
search space in the optimizer.
EaseDB currently runs in a single process (thread). We will ap-

ply a multi-threading mechanism at the operator level, similar to
that in staged databases [19]. We expect this multi-threading mech-
anism will boost the performance advantage of cache-oblivious al-
gorithms over cache-conscious ones, because cache-oblivious al-
gorithms are more robust on cache coherence among concurrent
threads in a processor [20]. Moreover, the self-optimizing nature
of cache-oblivious algorithms eliminates the tuning work required
in a multi-threaded environment.
Table 2 summarizes the main features of EaseDB in comparison

with three existing main memory relational query processors, in-
cluding FastDB [17], TimesTen [37] and MonetDB [29]. These
three query processors are cache-conscious, whereas EaseDB is
cache-oblivious. EaseDB uses cache cost as the cost metric in the
query optimizer, because the memory hierarchy has become an im-
portant factor in the performance of relational query processing.
In the following, we focus our discussion on the plan executor

and the cost estimator.

4.2 Execution engine
We divide the execution engine into three layers, including the

storage, access methods and query operators.

4.2.1 Storage
Currently EaseDB uses arrays to represent relations in a row-

based manner. Recent work [2, 29, 36] has shown that column-
based and row-based storage models have their own pros and cons.
Our decision towards a row-based storage model is mainly due to
its simplicity, because relational rows map naturally to arrays in the
main memory.
We consider both static data (no updates) and dynamic data in

our storage model. A generic array for static data is sufficient;
however, its performance suffers from updates. In comparison, the
linked list is a common storage model for dynamic data in a cache-
conscious setting. The node size of the linked list is determined
according to the cache block size. For example, the slotted page
model is essentially a linked list with a node size equal to the page
size. However, without the knowledge of the cache block size, the
linked list may have a very bad scan performance. Consider a node
of size s. This node spans "s/B#+1 cache lines in the worst case,
even though s can be very small. Therefore, an efficient cache-
oblivious storage model that balances the scan and update costs is
required.
We use the packed memory array (PMA) [5] as a storage model

for dynamic data. To make our presentation self-contained, we
briefly describe how PMA works [5]. PMA is essentially an ar-
ray with some unoccupied (or free) slots. The density of an array is
defined as the ratio of the number of elements over the total number
of slots in the array. A generic array has a density of 100%.
The basic idea of PMA is to define windows of different sizes

as contiguous areas of different sizes on the array, and to further
define the density thresholds for these windows. The window is
defined after its size: a k-window means the size of the window
is k, whose slots start from index (j − 1) ∗ k (1 ≤ j ≤ N/k,
N is the number of slots in the array). For simplicity, k = 2i

(i = log2log2N, log2log2N + 1, ..., log2N). That is, the smallest
window is of a size log2N and the largest one of N . The den-
sity thresholds are defined with the following two rules: (1) the
upper-bound density threshold decreases linearly as the window
size increases; (2) the lower-bound density threshold increases lin-
early as the window size increases. Given the lower-bound and
upper-bound density thresholds of the log2N -window and the N -
window, all density thresholds for windows of different sizes can
be determined.
Inserting a tuple at index j of PMA is handled as follows. We ex-

amine the 2i-windows containing j, i = log2log2N , log2log2N+1,
..., log2N until the first window is found whose density is smaller
than its upper-bound density threshold. After inserting the tuple
into this window, we redistribute the elements evenly within the
window. Deletions are handled similarly. By design, PMA has the
following memory efficiency bounds: (1) scanning any n consec-
utive elements causes O(n/B + 1) cache misses; (2) inserting or

47

Temporary store

(Temporary results and buffers)

Object store

(Relations and indexes)

Figure 4: The memory pool in EaseDB

deleting an element causesO((log2 N)2

B +1) cache misses on aver-
age.
We have two considerations for using PMA in EaseDB. First, we

will adjust the density thresholds of the log2N - and N -windows.
This adjustment will be based on the frequency of insertion and
deletion. Second, we will use strict two-phase locking [31] for
concurrency control on PMA. A PMA window is locked when the
redistribution of elements is propagated to this window.
After introducing the storage model in EaseDB, we discuss our

design on memory management. EaseDB has a memory manager
to handle memory allocation and deallocation. Similar to other
main memory databases [17, 29, 37], EaseDB does not have a
global buffer manager. When EaseDB starts up, it pre-allocates
a large memory pool. The memory space required for query pro-
cessing is allocated from the pool on demand.
We further divide the memory pool into two parts, the tempo-

rary store and the object store, as shown in Figure 4. The tempo-
rary store allocates the memory from top down, whereas the object
store from bottom up. If these two stores overlap, the memory pool
is running out of free memory. When this happens, either some
memory will be released from the pool or a new memory pool will
be allocated.
The temporary store is for storing temporary results and auxiliary

data structures such as buffers for query processing. The nature of
these data is dynamic. Therefore, it uses the sequential fit scheme
[9] in memory allocation for high memory utilization. In the se-
quential fit scheme, the process of handling a memory request is
to traverse all memory blocks until it reaches a free block that is
large enough to satisfy the memory request. To release a memory
block, it locates the block, releases it and may merge it with adja-
cent blocks of free memory. The original sequential fit scheme uses
a linked list to maintain the state information of memory blocks
[9]. In EaseDB, we use PMA and a cache-oblivious B+-tree built
on top of the PMA to speed up the search process for a fit free
block. Note, the space allocated in the temporary store is private to
a single thread so that the overhead of concurrency control on these
space is avoided.
The object store is used to store the base relations and the indexes

in EaseDB, which are more stable than the data in the temporary
store. This object store is shared among threads. Since the relations
and the indexes are all stored using PMA, the start addresses of their
corresponding PMAs are located via a hash index on the relation
name or index name.

4.2.2 Access methods and query operators
In the current status, EaseDB supports three common access

methods, including the table scan, the B+-tree and the hash index.

11
22 nil
33

97 nil
98 nil
99 nil

1 nil

Hash

buckets

3 nil

Overflow

buckets

333

Figure 5: The cache-oblivious hash index

- Table scan. The relation is sequentially scanned or a binary
search is performed on the relation according to the sorted
key in the relation (if applicable).

- B+-trees. The COB+-tree has the same memory efficiency
bounds as the CCB+-tree, and its performance on disk-based
applications is close to or even better than the fine-tuned
CCB+-tree [7]. For in-memory query processing, the COB+-
tree has a very similar performance to the CCB+-tree.

- Hash indexes. The hash index for R consists of |R| buckets
so that each bucket is expected to contain one tuple. An ex-
ample of such a hash index is shown in Figure 5. The mem-
ory efficiency bound of a probe on the hash index is O(1),
which matches the memory efficiency bound of a probe on
the cache-conscious hash index [31]. However, the cache-
oblivious hash index has a space overhead due to the large
number of hash buckets.

We next briefly discuss cache-oblivious algorithms for common
query processing operators.

• Selection. In the absence of indexes, a sequential scan or
binary search on the relation is used. In the presence of in-
dexes, if the selectivity is high, a data scan on the relation is
performed. Otherwise, the B+-tree index or the hash index
can be used.

• Projection. If duplicate elimination is required, we use ei-
ther sorting or hashing to eliminate the duplicates for the pro-
jection.

• Sorting. Two cache-oblivious sorting algorithms, namely
the funnel sort [12, 18] and the distribution sort [18], have
been proposed. The funnel sort is essentially the merge sort
implementation with cache-oblivious buffers. Experimental
results [13] show that the funnel sort can outperform the fine-
tuned quick-sort in the main memory. Therefore, we chose
the funnel sort as one of our sorting methods.
Additionally, we have developed a cache-oblivious radix sort,
because a cache-conscious radix sort has been developed [11].
Our cache-oblivious radix sort is the binary radix sort with
our buffer hierarchy. The sorting process is similar to that
of the cache-oblivious hash join [20] except for two differ-
ences. First, at the ith phase of the radix sort (i ≥ 0), we use
the (log2 Max − i)th bit from the right, where Max is the
maximum key value of the tuples in the relation. Second, we
use the insertion sort to sort the base case.

48

In this paper, we used the radix sort and leave the comparison
study on the two sorting algorithms as future work.

• Grouping and aggregation. We use the build phase of the
hash join [20] to perform grouping and aggregation.

• Joins. We have implemented cache-oblivious nested-loop
joins with or without indexes [21], sort-merge joins, and hash
joins [20]. We briefly introduce the cache-oblivious tech-
niques used in our join algorithms.
The non-indexed NLJ (denoted as CO NLJ) performs recur-
sive partitioning on both relations. With recursive partition-
ing, both relations are recursively divided into two equal-
sized sub-relations, and the join is decomposed into four smaller
joins on the sub-relation pairs. This recursive process goes
on until the base case is reached.
The indexed NLJ uses cache-oblivious buffers to improve its
temporal locality. Buffering is performed on each level of the
tree index. Each non-leaf node is associated with a buffer,
which temporarily stores query items for the node.
The sort-merge join sorts both relations using a cache-oblivious
sorting algorithm, and merges the sorted relations on a per-
tuple basis.
The hash join has been implemented using recursive binary
partitioning and cache-oblivious buffers.
Each of these join algorithms has the same memory effi-
ciency bound as its cache-conscious counterpart.

4.3 Cost estimator
When multiple query plans are available, the optimizer chooses

the one of the minimum cost. In the optimizer of EaseDB, the cost
estimator estimates the cache cost of a query plan in terms of the
data volume transferred between the cache and the memory. Com-
pared with the cache-conscious cost model [11], our estimation as-
sumes no knowledge of the cache parameters of each level or the
number of levels in a specific memory hierarchy.
Our cost estimator estimates the expected volume of data trans-

ferred (in bytes) between the cache and the memory in the cache-
oblivious model. This two-level memory hierarchy has the follow-
ing characteristics for the simplicity of the cost estimation. First,
both the cache block size and the cache capacity are a power of
two. Second, B is no larger than

√
C according to the tall cache

assumption (B ≤
√

C) [18]. Note that these assumptions are based
on some fundamental properties of the memory hierarchy rather
than specific parameter values. Consequently, there is no tuning or
calibration involved.
To compute the expected volume of data transferred between the

cache and the memory caused by the algorithm, we need a cost
function of the algorithm. This cost function estimates the number
of cache misses caused by the algorithm for a given cache capacity
and cache block size. We denote this cost function to be F (C, B).
Suppose a query plan has a working set size ws bytes, which

is the total size of the data (e.g., relations and indexes) involved
in the query plan. We consider all possible combinations of the
cache capacity and the cache block size to compute the expected
data volume transferred between the cache and the memory on an
arbitrary memory hierarchy. If C ≥ ws, this working set can
fit into the cache. Once data in the working set are brought into
the cache, they stay in the cache for further processing. That is,
further processing does not increase the data volume transferred.
We estimate the data volume of the cases that the cache capac-
ity is larger than the working set of the query plan to be zero.

Thus, given a certain Cx value, we consider all possible B val-
ues and compute the expected volume of data transferred to be
(1
log2

√
Cx+1

(1·F (Cx, 1)+2·F (Cx, 2)+4·F (Cx, 4)+...+
√

Cx ·

F (Cx,
√

Cx))) = 1
log2

√
Cx+1

∑i=log2
√

Cx

i=0,Bx=2i (Bx · F (Cx, Bx)).
Therefore, we estimate the expected volume of data transferred

to beQ(F).

Q(F) =
1

log2 ws + 1
×

k=log2 ws∑

k=0,Cx=2k

1

log2

√
Cx + 1

i=log2
√

Cx∑

i=0,Bx=2i

(Bx · F (Cx, Bx)).

We use the cost estimator to determine the query plan in the opti-
mizer. Given an input query, the plan generator generates multiple
possible query plans. Then, we use the cost estimator to estimate
the expected volume of data transferred for each query plan. Thus,
the optimizer determines which of those plans will be the most ef-
ficient, and recommends it to the execution engine.
We also use the cost estimator to determine the suitable base

case size for a cache-oblivious algorithm. The base case size is
important for the efficiency of divide-and-conquer algorithms. A
small base case size results in a large number of recursive calls,
which can yield a significant overhead. A large base case size may
cause cache thrashing. Since the cost estimator gives the cache cost
of an algorithm, we use it to compare the costs with and without the
divide-and-conquer operation for a given problem size. We obtain
the suitable base case size to be the maximum size of which the
problem is small enough to stop the divide-and-conquer process.
Take CO NLJ as an example. We use the cost estimator to com-

pute the minimum sizes of the relations that are worthwhile to be
partitioned in the NLJ. Specifically, we compare the cache costs for
the NLJ without and with partitioning: (1) the join is evaluated as
a base case, and (2) we divide the join into four smaller joins and
evaluate each of these smaller joins as a base case. Since CO NLJ
uses the tuple-based simple NLJ to evaluate the base case, the cost
functions of the NLJ without and with partitioning are given as F
and F ′, respectively. Note, we define fc to be the size of the data
(in bytes) brought into the cache for a recursive call.

F (Cx, Bx) =

{ 1
Bx

(||R|| + |R| · ||S||) , ||S|| ≥ Cx
1

Bx
(||R|| + ||S||) , otherwise

F ′(Cx, Bx) =

1
Bx

(2||R|| + |R| · ||S|| + 4fc) ,||S|| ≥ 2Cx
1

Bx
(||R|| + ||S|| + 4fc) ,||S|| ≤ Cx

2
1

Bx
(2||R|| + ||S|| + 4fc) ,otherwise

With the cost estimator, we obtain φ = Q(F) and φ′ = Q(F ′).
Given the condition of recursive partitioning in CO NLJ, ||R|| =
||S||, we obtain the minimum base case size when φ > φ′.
Finally, we note that a cache-oblivious cost model for the mesh

layout was proposed by Yoon et al. [39, 40]. Yoon’s model esti-
mates the expected number of cache misses caused by the accesses
to a mesh. In contrast, our cost model estimates the expected vol-
ume of data transferred between the cache and the memory for gen-
eral query processing algorithms.

5. PRELIMINARY RESULTS
We present our preliminary performance results on a few core

components of EaseDB, specifically the PMA storage model, the
access methods and the join algorithms.

49

5.1 Experimental setup
Our experiments were conducted on three machines of different

architectures, namely P4, AMD and Ultra-Sparc. The main fea-
tures of these machines are listed in Table 3. The L2 caches on
all three platforms are unified. The Ultra-Sparc does not support
hardware prefetching data from the main memory, whereas both P4
and AMD do. AMD performs prefetching for ascending sequential
accesses only whereas P4 supports prefetching for both ascending
and descending accesses. In modern CPUs, a translation looka-
side buffer (TLB) is used as a cache for physical page addresses,
holding the translation for the most recently used pages. We treat
a TLB as a special CPU cache, using the memory page size as its
cache line size, and calculating its capacity as the number of entries
multiplied by the page size.

Table 3: Machine characteristics
Name P4 AMD Ultra-Sparc
OS Linux 2.4.18 Linux 2.6.15 Solaris 8

Processor Intel P4
2.8GHz

AMD Opteron
1.8GHz

Ultra-Sparc III
900Mhz

L1 DCache <8K, 64, 4> <128K,64,4> <64K, 32, 4>
L2 cache <512K,128,8> <1M, 128, 8> <8M, 64, 8>
DTLB 64 1024 64
Memory 2.0 GB 15.0 GB 8.0 GB

Intel P4 supports the SMT (Simultaneous Multi-Threading) fea-
ture to allow two concurrent threads running in one processor [28].
Since the L2 cache is shared by the two running threads in SMT,
we can evaluate the performance impact of cache coherence on our
algorithms. All experiments were conducted in a single-threaded
environment except the one evaluating the performance impact of
SMT.
All algorithms were implemented in C++ and were compiled us-

ing g++ 3.2.2-5 with optimization flags (O3 and finline-functions).
In our experiments, the memory pool was set to be 1.5G bytes on
all platforms. The data in all experiments were always memory-
resident and the memory usage never exceeded 90%.
The workload contains two selection queries and two join queries

on relationsR and S. Both tables contain n fields, a1, ..., an, where
ai is a randomly generated 4-byte integer. We varied n to scale up
or down the tuple size. The tree index was built on the field a1 of
R and S. The hash index was built on the field a1 of R.
The selection queries in our experiments are in the following

form:

Select R.a1

From R
Where <predicate>;

One of the two selection queries is with a non-equality predicate
(x − δ < R.a1 < x + δ) and the other an equality predicate
(R.a1 = x). Note that x is a randomly generated 4-byte integer.
We used the B+-tree index to evaluate the non-equality predicate
and the hash index to evaluate the equality predicate. Since we
focused on the search performance of the tree index, we set δ to a
small constant such as ten in the non-equality predicate.
The join queries in our experiments are:

Select R.a1

From R, S
Where <predicate>;

One of the two join queries is an equi-join and the other non-
equijoin. The equi-join takes R.a1 = S.a1 as the predicate and the

non-equijoin R.a1 < S.a1 and...and R.an < S.an. All fields
of each table are involved in the non-equijoin predicate so that an
entire tuple is brought into the cache for the evaluation of the pred-
icate. We used the non-indexed NLJ to evaluate the non-equijoin
and used the indexed NLJ or the sort-merge join or the hash join to
evaluate the equi-join.
Table 4 lists the main performance metrics used in our experi-

ments. We used the C/C++ function clock() to obtain the total exe-
cution time on all three platforms. In addition, we used a hardware
profiling tool, PCL [8], to count cache misses on P4.

Table 4: Performance metrics
Metrics Description
TOT CYC Total execution time in seconds (sec)
L1 DCM Number of L1 data cache misses in billions (109)
L2 DCM Number of L2 data cache misses in millions (106)
TLB DM Number of TLB misses in millions (106)

For the cache-conscious algorithms in our study, we varied their
parameter values to examine the performance variance. Given a
cache parameter, y, of a target level in the memory hierarchy (either
C or B) of an experiment platform, we varied the parameter value
x in a cache-conscious algorithm within a range so that the three
cases x < y, x = y and x > y were all observed. Given a multi-
level memory hierarchy, we considered all cache levels and varied
the cache parameter value in a cache-conscious algorithm for every
level of the cache.

5.2 PMA
First, we compared the performance of PMA and the linked list

for our consideration on the choice of the storage model. We began
with an empty relation and performed random insertions into the
relation. The relation was stored using PMA or the linked list.

(a) |R|(M)

linked-list PMA

random insertion table scan

(b) |R|(M)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

T
O

T
_

C
Y

C
 (

s
e

c
)

0

0.05

0.1

0.15

0.2

0.25

1 2 4 8

T
O

T
_

C
Y

C
 (

s
e

c
)

Figure 6: Performance of PMA and the link list on P4. On
the left is the insertion performance. On the right is the scan
performance.

Figures 6 (a,b) show the performance of PMA and the linked list
for insertion and scan, respectively, when the upper-bound density
thresholds for the log2 |R|- and |R|-windows are set to be 100%
and 90%. These high density thresholds may cause a large redis-
tribution overhead so that we can observe the behavior of these
two choices under stress tests on updates. We obtained similar re-
sults when the density thresholds were varied. We fixed r to be 8
bytes and varied |R| in millions of tuples (M) to examine the ef-
fect of the data size. The figures show that insertion with PMA is
slightly slower than that with the linked list, whereas the scan on

50

0

0.05

0.1

0.15

0.2

0.25

0.3

8 16 32 64

|R| (M)

T
O

T
_
C

Y
C

 (
s
e
c
)

0

0.05

0.1

0.15

0.2

0.25

0.3

8 16 32 64

|R| (M)

T
O

T
_
C

Y
C

 (
s
e
c
)

0

0.2

0.4

0.6

0.8

8 16 32 64

|R| (M)

T
O

T
_
C

Y
C

 (
s
e
c
) COB+-tree

CSS(F=9)

CSS(F=17)

CSS(F=33)

CSS(F=65)

(a) P4 (b) AMD (c) Ultra-Sparc

Figure 7: Performance comparison of COB+-trees and CSS-trees

0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6 7 8 9

log2(Bk)

T
O

T
_
C

Y
C

 (
s
e
c
)

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9

log2(Bk)

T
O

T
_
C

Y
C

 (
s
e
c
)

0

5

10

15

0 1 2 3 4 5 6 7 8 9

log2(Bk)

T
O

T
_
C

Y
C

 (
s
e
c
)

(a) P4 (b) AMD (c) Ultra-Sparc

Figure 8: Performance of hash indexes. The hash index with Bk = 1 is our cache-oblivious hash index in EaseDB.

PMA is over twice faster than that on the linked list. This result
clearly indicates that PMA is the choice for the storage model in
our cache-oblivious setting.

5.3 Access methods
We evaluated our access methods including the B+-tree and the

hash index. We executed a number of selection queries on each
access method.

5.3.1 B+-trees
We compared the search performance of COB+-trees and cache

sensitive search trees(CSS-trees) [32]. On each platform, we varied
the fanout of the CSS-tree from 9 to 65. The node size was varied
from 32 to 256 bytes. Figure 7 shows the performance comparison
with the number of tuples in the relation varied. The number of
selection queries executed was 200K.
On all platforms, COB+-trees have a similar performance to CSS-

trees. The performance gap between them becomes smaller as
the relation size increases. When |R| = 64M , the COB+-tree is
around 20% slower than the best CSS-tree on P4 and AMD, and it
is less than 1% slower than the best CSS-tree on Ultra-Sparc.

5.3.2 Hash indexes
We evaluated the hash index with the average number of tuples

in each bucket, Bk, varied. The number of selection queries exe-
cuted was 200K. Figure 8 shows the performance of hash indexes
when Bk is varied from one to 512. Since each tuple takes 8 bytes
(four bytes for the value and four bytes for the record identifier),
the bucket size is around (8 × Bk) bytes. That is, the bucket size
is varied from 8 to 4K bytes. Note, the cache-oblivious hash index
is the one with Bk = 1.
On all platforms, the performance degrades dramatically as the

Bk value increases. Due to the hardware prefetching capability,
P4 has a smaller performance degradation than Ultra-Sparc. The
cache-oblivious hash index is faster than the cache-conscious one,

because its bucket size is smaller and the computation time on each
bucket is likely to be smaller. However, it has a larger space over-
head due to its larger number of hash buckets.

5.4 Join algorithms
We verified the effectiveness of our cost estimator and evaluated

the performance of our cache-oblivious join algorithms in com-
parison with the best performance of their cache-conscious coun-
terparts. The reported results for non-indexed NLJs and indexed
NLJs were obtained when |R| = |S| = 256K and r = s = 128
bytes, |R| = |S| = 5M and r = s = 8 bytes, respectively.
The results for sort-merge joins and hash joins were obtained when
|R| = |S| = 32M and r = s = 8 bytes. These settings were cho-
sen to be comparable to the previous studies on cache-conscious
join algorithms [11, 35, 41]. More detailed results on each individ-
ual algorithm can be found in our related papers [20, 21].

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(a) log2(Cs)

T
O

T
_

C
Y

C
 (

se
c
)

TLB Stalls L1 Dstalls L2 Dstalls Busy

L2L1 TLBModel

Non-indexed NLJ

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

(b) log2(Cs)

T
O

T
_

C
Y

C
 (

se
c
)

Model,
|TLB|, |L1| |L2|

Hash join

Figure 9: Performance of join algorithms with the base case
size varied on P4. On the left is the non-indexed nested-loop
join. On the right is the hash join.

51

5.4.1 Model verification
Figure 9 shows the time breakdown of two representative cache-

oblivious join algorithms, non-indexed NLJs and hash joins, with
the base case size varied on P4. The results for the sort-merge join
algorithm are not shown in this figure, since they were similar to
those of the hash join. The busy time is obtained by subtracting
the three types of cache stalls from the total elapsed time. The base
case for the non-indexed NLJ is a join on two equal-sized partitions.
The size of each partition is compared with the capacities of the L1
and L2 caches, and the TLB. The base case for the hash join is a
join with a small hash table. Since each hash bucket is likely to
be one cache line, the size of the hash table is compared with the
number of cache lines in the L1 and L2 data caches, and the number
of entries in the TLB.
With the estimated base case size, the busy time and cache stalls

of both algorithms are greatly reduced. These results verify the ef-
fectiveness of our cost estimator. One may conjecture from Figure
9(a) that the L1 cache capacity is a better guess than our cost es-
timator for the base case size on P4; unfortunately, this particular
phenomenon does not hold for different platforms, different algo-
rithms, or different data sizes.

5.4.2 Single-threaded evaluation
Figure 10 shows the performance measurements of join algo-

rithms on the three platforms.
Figures 10 (a–c) show the performance for non-indexed NLJs.

The cache-conscious algorithm is the blocked NLJ [35], whose pa-
rameter is the block size of the inner relation. We varied the block
size of the blocked NLJ from 4KB to 16MB.
Figures 10 (d–f) show the performance for indexed NLJs with

cache-oblivious and cache-conscious buffering schemes. In cache-
conscious buffering [41], an index tree is organized into multiple
subtrees (called virtual nodes [41]) and the root of each subtree is
associated with a buffer. The parameter of this cache-conscious
buffering is the number of tree levels in a virtual node. Given an
index tree of l levels, we varied the number of levels in a virtual
node from one to (l − 1).
Figures 10 (g–i) show the performance for sort-merge joins. The

sorting algorithm is the radix sort. The cache-conscious radix sort
works in two phases. First, given the partition granularity, gr bytes,
it divides the relation into multiple partitions using the radix cluster
algorithm [11]. Each partition is around gr bytes. Second, it sorts
each partition using the quick sort. These figures show the best
performance obtained in our tuning on the radix cluster algorithm
for the given partition granularity.
Figures 10 (j–l) show the performance for hash joins. The cache-

conscious hash join is the radix join [11]. In the radix join, we need
to tune the partition fanout and the partition granularity. Given a
certain partition granularity, gr bytes, we varied the partition fanout
and measured the execution time. These figures show the best per-
formance obtained in our tuning for the given partition granularity.
We analyze the results of Figure 10 on three aspects. First,

we study the performance variance of each cache-conscious algo-
rithm. On a given platform, the performance variance of a cache-
conscious join algorithm with different parameter values is large.
Furthermore, the performance variance of a cache-conscious al-
gorithm differs across platforms. For example, the performance
variance of cache-conscious indexed NLJs on Ultra-Sparc is larger
than the other two platforms, whereas the performance variance
of cache-conscious non-indexed NLJs, sort-merge joins and hash
joins on Ultra-Sparc is smaller than the other two platforms.
Second, we study the best parameter values for the cache-conscious

algorithms. On a given platform, the best parameter value for a

0

20

40

60

80

100

120

140

CO CC(best)

T
O

T
_
C

Y
C

 (
s
e
c
)

0

1

2

3

4

5

6

CO CC(best)

T
O

T
_
C

Y
C

 (
s
e
c
)

L1 Dstall

TLB Dstall

L2 Dstall

Busy

0

2

4

6

8

10

12

14

16

CO CC(best)

T
O

T
_
C

Y
C

 (
s
e
c
)

0

2

4

6

8

10

12

14

16

18

CO CC(best)

T
O

T
_
C

Y
C

 (
s
e
c
)

L1 Dstall

TLB Dstall

L2 Dstall

Busy

Non-indexed NLJ Indexed NLJ

Hash join Sort-merge join

Figure 11: Time breakdown of cache-oblivious algorithms and
the best cache-conscious algorithms on P4

cache-conscious join algorithm may be none of the cache param-
eters, e.g., the sizes of the L1 and L2 data caches, or the number
of entries in the TLB. Moreover, for a given cache-conscious al-
gorithm, the best parameter values differ across platforms. These
results show it is difficult to determine the best parameter values on
different platforms even with the knowledge of the cache parame-
ters.
Third, we compare the overall performance of cache-conscious

and cache-oblivious algorithms on three platforms. Regardless of
the architectural differences among the three platforms, our join
algorithms provide a robust and good performance. In specific, the
performance of our join algorithms is close to, if not better than, the
best performance of cache-conscious join algorithms on P4, and is
mostly better than the best performance of cache-conscious join
algorithms both on AMD and Ultra-Sparc.
We further examine the time breakdown of our cache-oblivious

algorithms and the best cache-conscious algorithms in Figure 11.
The total cache stalls of the cache-conscious join algorithms are
significant, because these algorithms typically optimize only for
the cache of a chosen level and cache thrashing may occur at the
levels other than the chosen one. In contrast, the cache stalls of
our cache-oblivious algorithms are less significant due to their au-
tomatic optimization for the entire memory hierarchy. The busy
time is significant among all cache-oblivious join algorithms.

5.4.3 Multi-threaded evaluation
Finally, we investigated the performance impact of cache inter-

ference on cache-conscious and cache-oblivious algorithms. We
observed that the execution time of each thread running in the multi-
threaded environment was not stable, whereas the system through-
put was stable. The variance in the execution time of each thread
is because of the resource contention and sharing in SMT at run-
time. Therefore, we used the system throughput as the performance
metric in the multi-threaded environment. Figure 12 shows the
throughput improvement of SMT on P4. Both of the concurrent
threads ran the same algorithm, either the cache-oblivious algo-
rithm or the best cache-conscious algorithm.
SMT improves the throughput of both cache-conscious and cache-

oblivious algorithms. The improvement to the cache-oblivious al-

52

0

5

10

15

20

25

30

11 15 19 23

CO

T
O

T
_

C
Y

C
 (

s
e

c
)

0

5

10

15

20

25

30

35

11 15 19 23

T
O

T
_

C
Y

C
 (

s
e

c
)

0

20

40

60

80

100

120

140

11 15 19 23

T
O

T
_

C
Y

C
 (

s
e

c
)

L1 TLB L2 L1 TLBL2 L1TLB L2

CC

8 8 8

log2(gr) bytes log2(gr) bytes log2(gr) bytes

(j) P4 (k) AMD (l) Ultra-Sparc

0

2

4

6

8

10

12

14

4 8 12

T
O

T
_

C
Y

C
 (

s
e

c
)

0

1

2

3

4

5

6

7

8

9

10

4 8 12

T
O

T
_

C
Y

C
 (

s
e

c
)

0

100

200

300

400

500

600

700

800

900

1000

4 8 12

T
O

T
_

C
Y

C
 (

s
e

c
)

L1 TLB L2 L1 TLBL2 L1 TLB L2

level level level

(d) P4 (e) AMD (f) Ultra-Sparc

0

500

1000

1500

2000

2500

15 19 23

log2(BLK) bytes

T
O

T
_

C
Y

C
 (

s
e

c
)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

15 19 23

T
O

T
_

C
Y

C
 (

s
e

c
)

0

2000

4000

6000

8000

10000

12000

15 19 23

T
O

T
_

C
Y

C
 (

s
e

c
)

L1 TLB L2 L1 TLBL2 L1 TLB L2

log2(BLK) bytes log2(BLK) bytes

(a) P4 (b) AMD (c) Ultra-Sparc

12 12 12

1 1 1

Non-indexed NLJ

Indexed NLJ

Hash join

CO CC

CO CC

0

5

10

15

20

25

30

11 15 19 23
0

5

10

15

20

25

30

11 15 19 23 0

20

40

60

80

100

120

140

11 15 19 23

L1 TLB L2 L1 TLBL2 L1TLB L2

T
O

T
_

C
Y

C
 (

s
e

c
)

T
O

T
_

C
Y

C
 (

s
e

c
)

T
O

T
_

C
Y

C
 (

s
e

c
)

Sort-merge join
CO CC

log2(gr) bytes log2(gr) bytes log2(gr) bytes

(g) P4 (h) AMD (i) Ultra-Sparc

Figure 10: Performance study for join algorithms. From top down: the non-indexed NLJ, the indexed NLJ, the sort-merge join and
the hash join.

1

1.1

1.2

1.3

1.4

Non-indexed

NLJ

Indexed

NLJ

Sort-merge

join

Hash join

T
h
ro

u
g
h
p
u
t
im

p
ro

v
e
m

e
n
t

CO

CC(best)

Figure 12: Throughput improvement of SMT on P4

gorithms is larger than that to the cache-conscious algorithms. This
is because the cache-oblivious algorithm is more robust than the
cache-conscious algorithm on the cache coherence. We conjecture
that the advantage of such robustness of the cache-oblivious algo-

rithm will be greater in the future when the processor supports more
concurrent threads [28].

6. DISCUSSION
Through implementing and evaluating EaseDB, we have got hands-

on experience on developing an efficient cache-oblivious query pro-
cessor. We have also deepened our understanding on the efficiency
of cache-centric techniques. In the following, we discuss the main
advantages and limitations of cache-oblivious techniques and out-
line a few future directions.
The main advantage of cache-oblivious techniques is their self-

optimization. As we observed in the experiments, EaseDB had a
consistently good performance on any machine without any mod-
ification. This automaticity eliminates the need for the cache pa-
rameters, which are not always available and are often difficult to
obtain automatically. Moreover, this automaticity is achieved with-
out tuning for a specific memory hierarchy. For example, one may
develop an algorithm to tune the block size of the inner relation in

53

the blocked NLJ on a target machine. The tuning is based on the
performance differences of different block sizes. If a larger block
size improves the performance, we continue to increase the block
size. However, such tuning is affected by both the static and the dy-
namic characteristics of the memory hierarchy, which are difficult,
if possible, to determine. In contrast, cache-oblivious techniques
rely on the divide-and-conquer methodology to achieve the auto-
maticity.
Nevertheless, the efficiency of cache-oblivious techniques needs

careful design and optimization. Without knowledge of any cache
parameters, cache-oblivious techniques usually employ sophisti-
cated data structures and mechanisms, e.g., the VEB layout and our
recursive buffering mechanism, in order to achieve the same cache
complexity as their cache-conscious counterpart. Moreover, they
require some automatic and machine-independent optimization to
improve their efficiency. For instance, a suitable base case size im-
proves the efficiency, but it must be estimated in a cache-oblivious
way.
As the first cache-oblivious query processor, EaseDB opens a

number of areas for cache-oblivious databases. Take the storage
model as an example. Traditional query processors use NSM [31],
DSM [11, 29, 36] or PAX (Partition Attributes Across) [2] as stor-
age models, either for main memory databases or for disk-based
databases. In contrast, we consider PMA to be a suitable stor-
age model for cache-oblivious query processing. Currently, we
use PMA to store the relation in a row-based manner. However,
it is an interesting direction to investigate how to support DSM ef-
ficiently using PMA. For instance, we consider using some com-
pression schemes to reduce the data volume transferred between
the cache and the memory in a cache-oblivious setting.
Finally, new architecture features, especially the emerging pro-

cessor techniques, create great opportunities for cache-oblivious
query processing. In addition to the SMT technique that has been
investigated in this study, we are interested in several other architec-
tural features, in particular, the transactional memory [26], multi-
core processors and GPUs (Graphics Processing Units) [4].

7. CONCLUSION
As the memory hierarchy becomes an important factor for the

performance of database applications, we propose to apply cache-
oblivious techniques to automatically improve the memory perfor-
mance of relational query processing. In this paper, we present
our initial efforts on building a cache-oblivious query processor,
EaseDB, and report our preliminary results on cache-oblivious stor-
age models, access methods and joins in comparison with their
cache-conscious counterparts. Our results show that our cache-
oblivious algorithms provide a good performance on various plat-
forms, which is similar to or even better than their fine-tuned cache-
conscious counterparts.
Our current work on EaseDB is focused on (1) evaluating and

improving the performance of the cache-oblivious access methods
and query processing algorithms; (2) developing the cost-based op-
timizer and verifying its effectiveness; and (3) using our prototype
engine to support some data-intensive applications, for example,
scientific computing. We expect that the development and continu-
ous evaluation of our prototype system will bring further algorith-
mic and system research issues.

Acknowledgement
This work was supported by grants HKUST6263/04E and 617206
from the Research Grants Council of the Hong Kong Special Ad-
ministrative Region, China.

We thank Chang Xu and Jun Zhang for discussions and for read-
ing early drafts of this paper.

8. REFERENCES
[1] A. Aggarwal and S. V. Jeffrey. The input/output complexity

of sorting and related problems. Commun. ACM,
31(9):1116–1127, 1988.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis.
Weaving relations for cache performance. In VLDB ’01:
Proceedings of the 27th International Conference on Very
Large Data Bases, pages 169–180, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood.
Dbmss on a modern processor: Where does time go? In
VLDB ’99: Proceedings of the 25th International Conference
on Very Large Data Bases, pages 266–277, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc.

[4] A. Ailamaki, N. K. Govindaraju, S. Harizopoulos, and
D. Manocha. Query Co-Processing on Commodity
Processors. VLDB, 2006.

[5] M. A. Bender, E. D. Demaine, and M. Farach-Colton.
Cache-oblivious B-trees. In FOCS ’00: Proceedings of the
41st Annual Symposium on Foundations of Computer
Science, page 399, Washington, DC, USA, 2000. IEEE
Computer Society.

[6] M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A
locality-preserving cache-oblivious dynamic dictionary. J.
Algorithms, 53(2):115–136, 2004.

[7] M. A. Bender, M. Farach-Colton, and B. C. Kuszmaul.
Cache-oblivious string B-trees. In PODS ’06: Proceedings of
the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 233–242, New
York, NY, USA, 2006. ACM Press.

[8] R. Berrendorf, H. Ziegler, and B. Mohr. PCL: Performance
Counter Library. http://www.fz-juelich.de/zam/PCL/.

[9] B. Blunden. Memory Management: Algorithms and
Implementation in C/C++. Wordware Publishing, Inc., 2002.

[10] P. Bohannon, P. Mcllroy, and R. Rastogi. Main-memory
index structures with fixed-size partial keys. In SIGMOD
’01: Proceedings of the 2001 ACM SIGMOD international
conference on Management of data, pages 163–174, New
York, NY, USA, 2001. ACM Press.

[11] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture optimized for the new bottleneck: Memory
access. In VLDB ’99: Proceedings of the 25th International
Conference on Very Large Data Bases, pages 54–65, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers
Inc.

[12] G. S. Brodal and R. Fagerberg. Cache oblivious distribution
sweeping. In ICALP ’02: Proceedings of the 29th
International Colloquium on Automata, Languages and
Programming, pages 426–438, London, UK, 2002.
Springer-Verlag.

[13] G. S. Brodal, R. Fagerberg, and K. Vinther. Engineering a
cache-oblivious sorting algorith. In ALENEX/ANALC, pages
4–17, 2004.

[14] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving hash join performance through prefetching. In
ICDE ’04: Proceedings of the 20th International Conference
on Data Engineering, page 116, Washington, DC, USA,
2004. IEEE Computer Society.

54

[15] T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious
structure layout. In PLDI ’99: Proceedings of the ACM
SIGPLAN 1999 conference on Programming language
design and implementation, pages 1–12, New York, NY,
USA, 1999. ACM Press.

[16] E. D. Demaine. Cache-Oblivious Algorithms and Data
Structures. Lecture Notes from the EEF Summer School on
Massive Data Sets, BRICS, 2002.

[17] FastDB. http://www.ispras.ru/ knizhnik/fastdb.html.
[18] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran.

Cache-oblivious algorithms. In FOCS ’99: Proceedings of
the 40th Annual Symposium on Foundations of Computer
Science, page 285, Washington, DC, USA, 1999. IEEE
Computer Society.

[19] S. Harizopoulos and A. Ailamaki. A Case for Staged
Database Systems. In CIDR ’03: Proceedings of the 1st
Biennial Conference on Innovative Data Systems Research,
2003.

[20] B. He and Q. Luo. Cache-Oblivious Hash Joins. Technical
report, HKUST-CS06-04, 2006.

[21] B. He and Q. Luo. Cache-Oblivious Nested-Loop Joins. In
CIKM ’06: Proceedings of the ACM Fifteenth Conference on
Information and Knowledge Management, 2006.

[22] B. He, Q. Luo, and B. Choi. Cache-conscious automata for
xml filtering. IEEE Transactions on Knowledge and Data
Engineering, 18(12):1629–1644, 2006.

[23] J. L. Hennessy and D. A. Patterson. Computer Architecture:
A Quantitative Approach. Morgan Kaufman Publishers,
2002.

[24] W. Hong and M. Stonebraker. Exploiting inter-operation
parallelism in xprs. In SIGMOD ’92: Proceedings of the
1992 ACM SIGMOD international conference on
Management of data, pages 19–28, New York, NY, USA,
1992. ACM Press.

[25] Intel Corp. Intel(R) Itanium(R) 2 Processor Reference
Manual for Software Development and Optimization.

[26] B. C. Kuszmaul and J. Sukha. Concurrent Cache-Oblivious
B-Trees Using Transactional Memory. Workshop on
Transactional Memory Workloads, 2006.

[27] S. Manegold. The Calibrator (v0.9e), a Cache-Memory and
TLB Calibration Tool.
http://www.cwi.nl/∼manegold/Calibrator/.

[28] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty,
J. A. Miller, and M. Upton. Hyper-Threading Technology
Architecture and Microarchitecture. Intel Technology
Journal, 6(1), 2002.

[29] MonetDB. http://monetdb.cwi.nl/.
[30] PostgreSQL. http://www.postgresql.org/.
[31] R. Ramakrishnan and J. Gehrke. Database Management

Systems. McGraw-Hill, 3 edition, 2003.
[32] J. Rao and K. A. Ross. Cache conscious indexing for

decision-support in main memory. In VLDB ’99:
Proceedings of the 25th International Conference on Very
Large Data Bases, pages 78–89, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[33] M. Samuel, A. U. Pedersen, and P. Bonnet. Making
CSB+-trees processor conscious. In DAMON ’05:
Proceedings of the 1st international workshop on Data
management on new hardware, page 1, New York, NY, USA,
2005. ACM Press.

[34] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.

Lorie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD ’79: Proceedings
of the 1979 ACM SIGMOD international conference on
Management of data, pages 23–34, New York, NY, USA,
1979. ACM Press.

[35] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious
algorithms for relational query processing. In VLDB ’94:
Proceedings of the 20th International Conference on Very
Large Data Bases, pages 510–521, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

[36] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: a column-oriented dbms. In VLDB ’05: Proceedings
of the 31st international conference on Very large data bases,
pages 553–564. VLDB Endowment, 2005.

[37] TimesTen. http://www.oracle.com/timesten/index.html.
[38] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and

Implementation of an Efficient Priority Queue. Math.
Systems Theory, 10:99–127, 1977.

[39] S.-E. Yoon and P. Lindstrom. Mesh layouts for block-based
caches. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1213–1220, 2006.

[40] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha.
Cache-oblivious Mesh Layouts. ACM Trans. Graph.,
24(3):886–893, 2005.

[41] J. Zhou and K. A. Ross. Buffering Access to
Memory-Resident Index Structure. VLDB, 2003.

55

