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ABSTRACT
We describe CompleteSearch, an interactive search engine
that offers the user a variety of complex features, which at
first glance have little in common, yet are all provided via
one and the same highly optimized core mechanism. This
mechanism answers queries for what we call context-sensitive
prefix search and completion: given a set of documents and
a word range, compute all words from that range which are
contained in one of the given documents, as well as those of
the given documents which contain a word from the given
range.

Among the supported features are: (i) automatic query
completion, for example, find all completions of the pre-
fix “seman” that occur in the context of the word “ontol-
ogy”, as well as the best hits for any such completion; (ii)
semi-structured (XML) retrieval, for example, find all email-
messages with “dbworld” in the subject line; (iii) semantic
search, for example, find all politicians which had a private
audience with the pope; (iv) DB-style joins and grouping,
for example, find the most prolific authors with at least one
paper in both “SIGMOD” and “SIGIR”; and (v) arbitrary
combinations of these.

The prefix search and completion mechanism of Complete-
Search is realized via a novel kind of index data structure,
which enables subsecond query processing times for collec-
tions up to a terabyte of data, on a single PC. We report
on a number of lessons learned in the process of building
the system and on our experience with a number of publicly
used deployments.

1. INTRODUCTION
We start right away by explaining CompleteSearch’s cen-

tral context-sensitive prefix search and completion mecha-
nism, which will be the basis for everything else in this pa-
per. This mechanism solves instances of a non-standard
range-searching problem, proposed in [5] and [6]. We first
give a formal definition of the problem, and then explain it
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by a number of examples. Section 2 will summarize the
basic idea of the index data structure behind Complete-
Search. Section 3 will give a detailed account of the fea-
tures provided by CompleteSearch. Section 4 will comment
on related work. In Section 5 we give implementation de-
tails and report on some of the lessons learned in the 2
1/2 years of our work on this system. Section 6 compiles
a wish list of things that are still left to do. Several live
demos of the CompleteSearch engine are available under
http://search.mpi-inf.mpg.de.

Definition 1. For a given collection of documents, with
a unique id for each document and a unique id for each of
the words used in the collection1, a context-sensitive prefix
search and completion query is a pair (D, W ), where D is
a set of document ids and W is a range of word ids. To
process the query means to compute a ranked list of all pairs
(d, w), where word w occurs in document d, d is from D and
w is from W .

Definition 1 can be understood in a number of ways. In
the following we will give three interpretations: one from an
IR perspective, one from a DB perspective, and one from a
theorist’s perspective. The ranking mechanism will be ex-
plained in more detail in Section 2; for now, let us just take
it for granted.

IR perspective

The original use of Definition 1 was for the following in-
teractive autocompletion feature. Imagine a user of a search
engine typing a query. Then with every letter being typed,
display completions of the last query word that would lead
to good hits, as well as the best hits for any of these com-
pletions. Here is an example. Consider a user searching
the English Wikipedia (one of our demo collections), having
typed his or her query to the point ontol sem. Then the
input set D would be the set of ids of documents containing
a word starting with2 ontol (like ontology, ontological,
etc.), and the input range W would be the range of ids of
words starting with sem.

The output set would then consist of pairs (d, w), where
word w starts with sem and occurs in a document d that

1Different occurrences of the same word have the same
id.

2By default, CompleteSearch assumes an implicit * at
the end of each query word, because that is the desired be-
havior in most cases. Exact-word matches can be enforced
by ending a word with a $
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Figure 1: A screenshot of our search engine for the query ontol sem searching the English Wikipedia. The
list of completions (on the left) and hits (on the right) are updated automatically and instantly after every
keystroke, hence the absence of any kind of search button. The number in parentheses after each completion is
the number of hits that would be obtained if that completion where typed. As completions, CompleteSearch
offers ordinary words as well as phrases, subwords, and category names, if appropriate. The “Refine by”
box gives a breakdown of the 353 hits by the most prominent categories in that set. This box is produced
proactively without any special action on part of the user, by launching the query ontol sem cat: in the
background; this is explained in Section 3.5.

also contains a word starting with ontol. Top ranked words
would be semantic and semiotics,3 but not for example
semiconductor, which, although it is one of the most fre-
quent words starting with sem in Wikipedia, does not occur
prominently in the context of words starting with ontol.
Top ranked documents would be an article about ontologies
in general, an article about the meaning and origin of the
word semantics, and an article about the semantic web. See
Figure 1 for a screenshot of our search engine in action for
that query.

DB perspective

Definition 1 could also be viewed as the problem of com-
puting what could be called a half join. For example, con-
sider a collection of computer science articles (another one
of our demo collections), and assume that each article con-
tains special words of the form <category name>:<category
instance> (the colon serves to distinguish these words from
ordinary words), for example, conference:vldb, or author:
jon kleinberg, or year:2006. Observe that by adding these
special words, we implicitly create a table with the schema
(conference, author, year, publication). We will see in Sec-
tion 2, that our index data structure actually stores the

3Semiotics, or semiology, is the study of signs and sym-
bols and how meaning is constructed and understood.

columns of this table in contiguous memory, just by the way
it works.

Now consider the two queries conference:sigir author:
and conference:sigmod author: . According to Definition
1, the first query produces a list of authors who have pub-
lished at SIGIR, along with the corresponding publications.
Similarly, the second query produces a list of authors who
have published at SIGMOD, along with the corresponding
publications. Now let us us intersect the two lists of au-
thors, that is, the lists of (ids of) completions of the two
queries. Note the duality to the archetypical search engine
operation of intersecting lists of (ids of) documents. The
intersection of the two lists of completions gives us the list
of all authors, who have published at both SIGIR and SIG-
MOD, and the two lists of documents provide the witnesses
of these facts. That is, with two of our context-sensitive pre-
fix search and completion queries we have effectively com-
puted a self-join on the table which he have implicitly cre-
ated by the addition of the special words. In Section 3.4,
we explain how to generalize this to arbitrary joins. Note
that the information required to process this kind of query
is spread over several documents, which is something stan-
dard IR-style keyword search cannot handle. For example,
the query conference:sigir conference:sigmod author:
would not match any document, because no document is a
SIGIR paper and a SIGMOD paper at the same time.
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If we prepended ir db integration to the two queries
above, we would obtain the join table restricted to docu-
ments matching this query, and we would obtain a list of
authors which have published at both SIGIR and SIGMOD
about the topic of IR&DB integration. This is a first ex-
ample of how CompleteSearch can combine IR-style with
DB-style querying. We will elaborate on this in Section 3.4.
In Section 3.5, we will show how to take away from the
user the burden of having to know the syntax of the special
words.

Theorist’s perspective

From an efficiency point of view, it is instructive to view
Definition 1 as formalization of a non-standard, 1 1/2-di-
mensional range-searching problem.

The one-dimensional range-searching problem that corre-
sponds to Definition 1 would be, given a word range, to find
all word-in-document pairs with a word from that range.
Such range queries can be processed efficiently using a B-
tree like data structure, but they would not give us the
context-sensitivity that is so essential for all the features
of CompleteSearch. Sorting the result pairs by document
id is an efficiency problem already for the one-dimensional
case. As we will see in Section 2, our index data structure
manages to avoid sorting.

The multi-dimensional range-searching problem that cor-
responds to Definition 1 would be, given a d-tuple of ranges,
to find from a given collection of d-tuples all tuples match-
ing all d given ranges. This is a much researched, very hard
problem [13]. All the data structure we know of that solve
this problem directly, without solving the corresponding d
one-dimensional subproblems first, have a space consump-
tion on the order of N1+d′

, where N is the size of the col-
lection, and d′ grows fast with the dimensionality d of the
query [3] [1] [11].

In the interactive scenario we consider, where the partial
query is processed after every keystroke, the computation for
a d-dimensional query can reuse the result from the preced-
ing (d−1)-dimensional query. This naturally gives rise to the
1 1/2-dimensional range searching problem captured by Def-
inition 1. For example, the sorted list of document ids for the
query ontol sem would serve as input set D for the query
ontol sem search. Also, many of the proactively launched
background queries discussed in Section 3 just modify an
existing query by changing its last word or by appending a
prefix. Note that problems of join ordering and query plan
optimization do not arise in our interactive setting, because
there is no choice here but to evaluate the query in a strict
order from left to right.

2. THE HYB DATA STRUCTURE
The central completion mechanism of the CompleteSearch

engine makes use of a novel kind of index data structure,
called HYB, that was first presented in [6]. In this section,
we briefly present the main ideas behind HYB, to the extent
that it will be useful for understanding what follows in this
paper.

The basic unit of processing of HYB is a block. Each
block corresponds to a range of words, and these ranges
form a partitioning of the set of all words. In the simplest
conceivable setting, without ranking and without positional
information, a block consists of all pairs (w, d), where word

w occurs in document d, and w is from the word range per-
taining to that block. Each block is sorted by document
id.

For example, assume we have 10 documents overall with
ids 3, 5, 6, 7, 8, 9, 11, 12, 13, 15, which contain words A, B,
. . ., Z, and the four words A, B, C, and D are contained in
the following manner:

A : 3, 5, 6, 8, 9, 11, 12, 15
B : 5, 11
C : 3, 7, 11, 13
D : 3, 8

Then a block of HYB for the word range A - D would cor-
respond to the sequence of pairs

3 3 3 5 5 6 7 8 8 9 11 11 11 12 13 15
A C D A B A C A D A A B C A C A

HYB consists of a collection of such blocks, one for each
range from some partitioning of the full range of words (we
comment on appropriate partitionings below), with every
word-in-document pair being stored in exactly one block.

It is proven both theoretically and empirically in [6] that
these blocks can be compressed extremely well (at least as
well as the lists of an inverted index). Note that if we picked
one block for each single word (that is, the word ranges
corresponding to the blocks would all be singletons), HYB
would degenerate to a (compressed) inverted index. If, in the
other extreme, we picked a single large block for the range
of all words, HYB would degenerate to a (compressed) rep-
resentation of the original documents. HYB stands right in
the middle between these two extremes, as a hybrid between
the two, hence its name.

It is shown in [6] that blocks should be chosen of about
equal volume, where volume means number of pairs (w, d),
and that for optimal space efficiency and query processing
time, this volume should be chosen as a small fraction of the
total number of documents. CompleteSearch performs two
basic operations on the blocks of HYB: intersection with a
sorted list of document ids, which is fast because the blocks
are sorted by document ids; and intersection with a list of
word ids, which is fast, because the word ids from a block
come from a relatively small range. For each query, Com-
pleteSearch always processes at least one full block of HYB,
and for most queries it actually processes exactly one block.

For example, consider the query ontol sem search, and
assume that the sorted list of ids of documents matching
ontol sem has already been computed (right after the last
letter of that query was typed). This list would then be
intersected with the sorted list of document ids from the
block(s) containing all occurrences of the word search (con-
sidering only those document ids where the corresponding
word id matches search). If this is just a single block, which
it will be if the beginning of the last query word, search
in this case, is specific enough, we obtain the sorted list of
documents ids for ontol sem search in linear time, without
having to sort or merge.

In a full-blown index, the blocks of HYB are augmented
by parallel lists of word positions (needed for phrase and
proximity search) and scores (needed for ranking), both of
which are compressed, too.

The block structure of HYB has a variety of advantages.
It is simple. It can be compressed provably well. It enables
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a processing of the prefix search and completion queries ac-
cording to Definition 1 by mere sequential access, without
the need for sorting or other non-linear operations (more
about this in Section 5.1). In particular, tables created by
inserting special words with a common prefix, as described
in the introduction, will have their columns stored in con-
tiguous memory. Finally, HYB can be combined with tech-
niques for top-k retrieval [10] [4]; however, we have not fully
exploited that potential yet, see Section 6.

Given the simple structure of HYB, ranking of the re-
sult lists is relatively straightforward, and easy to customize
too. For each word-in-document pair in the index, we have
a precomputed score. This could be a BM25 score reflecting
term and inverse document frequency [20], or it could be a
bit vector reflecting whether that word appears in the title
or is set in a particular font, or it could be any combina-
tion of these. Whenever we process two result lists (forming
their union or their intersection, depending on the query),
we simply aggregate scores according to some user-definable
function, for example, sum the BM25 scores.

Table 1 repeats the main performance figures from [6],
which show that HYB compresses indeed as well as an in-
verted index, yet can process context-sensitive prefix search
and completion queries according to Definition 1 by an order
of magnitude faster.

Collection Method space avg query 99%-ile

Homeopathy INV 70 MB 0.033 secs 0.384 secs

(450 MB/pos) HYB 62 MB 0.003 secs 0.026 secs

Wikipedia INV 2.2 GB 0.171 secs 2.272 secs

(7.4 GB/pos) HYB 2.0 GB 0.055 secs 0.492 secs

Terabyte INV 4.6 GB 0.581 secs 16.83 secs

(426 GB/nopos) HYB 4.9 GB 0.106 secs 0.865 secs

Table 1: Index size, average query time, and 99%-ile
of query times, of our block data structure (HYB)
versus the inverted index (INV), on three test collec-
tions. The parenthesis below each collection name
specifies the raw size of the collection and whether
the index was built with positional information or
not.

3. COMPLETESEARCH’S FEATURE SET
In this section, we give an account of CompleteSearch’s

feature set. We focus on the most important features, trying
to emphasize the diversity of functionality supported. The
main message of this section is that we get all this function-
ality via one and the same mechanism, namely our context-
sensitive prefix search and completion, by only adding suit-
able words to the documents. Note the relevance to a web
scenario, where users have control over their documents, but
not over the search engine.

Some of the features discussed below were already antici-
pated in [6]. The faceted-search feature was first presented
at [7]. The DB-style join feature is new and came as a pleas-
ant surprise for us when working on the original submission

of this paper. As we will see in Section 3.4, the fact that
HYB stands right in the middle between a representation by
document and a representation by word is especially crucial
for the join queries.

For the complete set of features, which also includes prox-
imity search, boolean OR, and negation, check out the online
help of our live demos under http://search.mpi-inf.mpg.
de.

3.1 Context-sensitive autocompletion search
This is the feature we already discussed in the introduc-

tion for the query ontol sem, namely to compute all comple-
tions of the last query word, sem in this case, which would
lead to good hits together with the preceding part of the
query, ontol in this case, as well as the best such hits. This
feature is useful in a variety of ways. It saves typing. It
spares the user the experience of overspecifying the query,
when already a (much) shorter query would give the desired
result. It helps the user exploring formulations used in the
collection, substantially reducing the amount of guess work
required. Note that without the context-sensitivity this fea-
ture would lose most of its worth; for example, there are
thousands of completions of sem, but only few that make
sense in the context of words starting with ontol. If the in-
dex has been built with positional information, the user may
also require that completions of sem come right after a word
starting with ontol (phrase search), or within a window of,
say, 10 words (proximity search).

Over the last two years, related autocompletion features
have been added to a number of desktop and web search
engines, for example, Apple’s Spotlight (www.apple.com/
macosx/features/spotlight), Google Suggest (labs.google.
com/suggest), and Alltheweb Live Search (livesearch.all
theweb.com). We remark that a prototype of our engine
already existed when Google Suggest and Apple Spotlight
were launched. We also remark that any of these services
offers only a much simplified feature compared to our Defi-
nition 1. Google Suggest, for example, completes from a list
of popular queries, which is algorithmically easy (ordinary
search in a sequence of strings) compared to our context-
sensitive full-text completion queries.

More value is added to the autocompletion feature, if we
augment the index by certain subwords and phrases. Then,
for example, sear can also complete to livesearch, and max
can complete to the phrase max planck institute. Check
out our demos for more examples.

3.2 Structured search in XML documents
Any kind of full-text index with support for proximity

search can be easily extended to take advantage of semi-
structured text, by which we here mean text enriched with
XML tags. A generic way is to add all XML tags as special
words (that is, recognizable as such), for example, tag:email
or tag:subject. It is then straightforward to extend the
proximity operator such that a word is considered close to a
particular tag if and only if it occurs between a correspond-
ing tag pair. In CompleteSearch, the proximity operator
is denoted by .. (two dots). An example query would be
tag:email..tag:subj..dbworld, which would retrieve all
email messages (tagged as such) mentioning (a word start-
ing with) dbworld in their subject line.

This simple trick supports a subset of the XPath query
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syntax, called NEXI [22]. XML support has been added in
a similar way to the TopX engine [21], which we will briefly
discuss in Section 4. Note that CompleteSearch permits free
mixing of queries using tag information with any of the other
query types.

3.3 Semantic search
Here is a feature which we would not get from an ordi-

nary full-text search index, but which we get easily from a
mechanism solving instances of the problem from Definition
1. The feature we are going to describe would otherwise re-
quire an ad hoc solution and efficiency would be non-trivial
to achieve.

Consider the Wikipedia collection, and assume we have
tagged all mentionings of a politician.4 Then create a copy
of each such mentioning, prefixed by a unique category iden-
tifier, for example, wherever Tony Blair is mentioned, add
the word politician:tony blair.

This gives us a basic question answering facility. For ex-
ample, the questionWhich politician had a private audience
with a pope? could be formulated as the query audience
pope politician:. Our context-sensitive prefix search and
completion mechanism according to Definition 1 would then
compute a ranked list of completions of politician: which
occur in the context of audience pope.

In fact, we can even take away from the user the burden of
having to know the special syntax politician: by launch-
ing appropriate queries in the background. Such behavior
of a search engine is called proactive. More details on this
are given in Section 3.5.

3.4 DB-style joins
The previous section showed that questions such as Which

politicians had an audience with the pope? can be dealt with
if only we have the necessary semantic annotation. Matters
become more complicated when, as is often the case, the
information required to answer the question is spread over
several pages. For example, to find an answer to the question
Which German chancellors had an audience with the pope, it
might be essential to combine information from the following
two pages: one page about Angela Merkel, mentioning that
she is the current German chancellor (but not that she met
with the pope), and another page about the current pope
having met Angela Merkel. For this example, assume that in
both documents, Angela Merkel has been correctly tagged
as a politician, as described in the previous section.

What we need then is DB-style join functionality, and
it came as a surprise for ourselves that we can also reduce
this operation to an instance of the problem from Definition
1. For the above question, all we have to do is launch the
two queries german chancellor politician: and audience
pope politician: and intersect the two lists of comple-
tions. (Note the duality: the archetypical search engine op-
eration is to intersect lists of documents.) This will give us
a list of names of politicians with both properties, as well

4How we obtain such a tagging is an issue orthogonal
to the aspects considered in this paper. For our Wikipedia
demo we currently use the following simplistic approach:
Wikipedia has category information for most pages. In par-
ticular, all politicians’ pages are in the category Politicians.
Most mentionings of a politician will link to that politician’s
page, which gives us the desired information for tagging.

as a list of document pairs witnessing this fact. These wit-
nesses will exactly be the combination of the results for the
first query, proving that the particular politician is or was
German chancellor, and the second query, proving that the
particular politician had an audience with the pope.

As we explain next, it is not hard to generalize this to ar-
bitrary joins. Given any table named ABC with attributes
(corresponding to columns) attr 1 up to attr n, create a spe-
cial document for each row of the table as follows. First add
the name of the table as table:ABC and then the attribute-
value pairs as attr 1:<val 1> up to attr n:<val n>, where
<val i> is the entry for attribute i in the considered row.

If we then want to compute the inner join with table
XY Z on attribute attr k, we launch the queries table:ABC
attr k: and table:XYZ attr k: as prefix search and com-
pletion queries according to Definition 1. For the two re-
sult sets, we then intersect the lists of matching completions
(not documents). These completions are then exactly the
matching attribute-value pairs for the join attribute. To
obtain the corresponding rows of the join result table effi-
ciently, note that whenever we are intersecting lists of word
ids with HYB, we are actually handling pairs, and we also
have the corresponding document id at hand (and vice versa
when we are intersecting lists of document ids). This way
we can easily obtain the corresponding document ids, which
correspond to the matching rows in both tables. By slightly
modifying the intersection routine to output NULL when a
word id is present in only one of the two lists, we can use
the same procedure to compute left, right or outer joins as
well.

Since the special words for a particular attribute of any
such table share a common prefix, they will be stored in
consecutive locations by HYB, and will either form their
own block, or be part of a single block. This allows for an
efficient processing of join queries. Note that the complex
problem of join ordering does not occur in our interactive
setting, because the fact that we want results after every
keystroke demands an evaluation of the query in a strict
order from left to right.

3.5 Proactive search
The fanciest and most well-meant features are bound to

be left unnoticed if the query syntax is too complicated.
This applies to user interfaces in general, but especially to
search engines, where users expect to get from a vaguely
felt search desire to relevant results without much trouble
or special instructions.

Here the completion mechanism of CompleteSearch comes
in handy again. Assume the user is looking for politicians
and has started to type politic. Assume that for each
document categorised under Politicians, we have added the
special word cat:politician. Then the answer to the query
cat:politic will give us all category names starting with
politic. CompleteSearch can be configured to launch these
queries, with cat: prepended to the last word, automati-
cally, and thus inform the user whenever there is category
information relevant to one of the query words typed. Note
that we get context-sensitivity for free here. If, for example,
the user has typed altruist politi, the category Politi-
cians will be suggested to the user only if there exists a page
mentioning a politician and also containing a word starting
with altruist.
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With category information of the kind cat:... added
to the index, we get yet another feature, known as faceted
search [7]. Namely, whenever a query <query> is being con-
sidered, CompleteSearch also launches the query <query>
cat: in the background. According to Definition 1, the com-
pletions for this background query will be a ranked list of
categories that occur in the context of <query>, which gives
nothing else but a breakdown of the hits for <query> accord-
ing to whatever category information has been added to the
index. This feature lets the user freely alternate between
directory-style browsing and keyword search, which has been
shown to enhance user experience and retrieval quality sig-
nificantly [14]. For an example, see Figure 1, which shows
a breakdown of the hits for ontol sem by Wikipedia cat-
egories, for example, Knowledge Representation and W3C
standards. Optionally, the displayed hits can also be grouped
with respect to these categories.

Note that we could get this feature by an ad hoc add-on
to whatever system we have at our disposal. With an un-
derlying DBMS, for example, this feature is a just matter of
suitable SQL queries, however at the price of a very substan-
tial loss in efficiency. With CompleteSearch we merely have
to add the right words to the index and rewrite queries in an
appropriate way. It turns out that the queries for realizing
faceted search are among those which yield the worst-case
behavior for both our block index HYB and the inverted
index INV. However, HYB beats INV by an order of magni-
tude also in this worst case; performance figures for a large
collection (Wikipedia) are provided in [7].

4. RELATED WORK
The QUIQ engine [15] is another recent attempt to inte-

grate IR and DB functionality into a single system in a uni-
form manner. QUIQ is built on top of a DBMS, partly mo-
tivated by their focus on dynamic updates (to which we give
only relatively little attention, see Section 6). Like Com-
pleteSearch, QUIQ makes extensive use of the idea to “map
non-text data to pseudo-keywords that cannot be confused
with actual keywords of text”.

The TopX engine, developed by our colleagues at MPII
[21], combines search in semi-structured (XML) data with
techniques for top-k retrieval, with a strong focus on the
latter. As explained in Section 3.2, CompleteSearch sup-
ports exactly the same subset of XPath queries as TopX.
Like QUIQ, TopX is built on top of an off-the-shelf DBMS
(Oracle).

The HySpirit system [12] was designed for “hypermedia
retrieval integrating concepts from information retrieval and
deductive databases.” The system is based on a probabilis-
tic model of Datalog. Like CompleteSearch, it can com-
bine ranked retrieval with database queries. Like QUIQ and
TopX, HySpirit is built on top of a DBMS.

Our work on CompleteSearch addresses some of the issues
and challenges raised in a recent overview paper by Chaud-
huri, Ramakrishnan, and Weikum [8]; see also [9]. Our cen-
tral completion mechanism might be viewed as an instance
of the “storage-level core system with RISC-style functional-
ity” argued for in [8]. We certainly agree with their point of
view that an integrated IR&DB (or DB&IR) system should
not be built on top of an SQL-engine or a vanilla B-tree
implementation, for reasons of efficiency. Table 2, which
will be discussed in Section 5, gives a simple confirmation.

Flexible scoring and ranking and high-performance query
processing, the first two items on the requirement list of [8],
are at the core of the design of CompleteSearch.

For a more thorough overview of the area of IR&DB-
integration, we refer the reader to the SIGMOD’05 panel
discussion [2], in particular its references. A classification
of existing schemes according to criteria such as integration
architecture and general approach is attempted in [19].

We discuss work related to aspects which are not yet ad-
equately addressed by CompleteSearch in our Conclusions,
Section 6.

5. LESSONS LEARNED
We give an account of the main implementation issues

and a brief overview of the system’s architecture. Several
instances of CompleteSearch are up and running and pub-
licly used, and we report on some experiences with our users.

5.1 Locality of Access
Efficiency was of utmost importance to us in the design

and implementation of the central prefix search and com-
pletion mechanism of CompleteSearch. To achieve that, the
following three aspects turned out to be most essential: (i)
that access to the data is as sequential as possible, (ii) that as
little data as possible is processed per query, and (iii) a very
careful, hardware-aware (yet portable) implementation. We
elaborate on each of these three aspects in the following.

It is a truism that sequential access to data is faster than
random access. For a typical disk, average seek time is 5 mil-
liseconds versus an average transfer rate of 50 Megabytes per
second. But even when the data is entirely in main mem-
ory, sequential access is up to 100 times faster than random
access. This factor tends to be smaller for complex appli-
cations (or programs in higher-level languages, see the next
but one paragraph), but when other factors of inefficiency
are eliminated it plays a crucial role. Indeed, our first5 in-
dex data structure, presented in [5], was theoretically close
to optimal in that we could prove its query processing time
to be asymptotically bounded by the size of the output. Yet,
our follow-up scheme from [6], without this theoretically de-
sirable property, but highly optimized for locality of access,
beats the scheme from [5] by a factor of more than 5.

To reduce the amount of data that have to be read from
disk and processed per query, the HYB index makes exten-
sive use of compression. Further, it is one of the distinguish-
ing features of HYB that the index data is laid out such that
the processing of a query requires mere scans of portions of
the data. In particular, no sorting or other non-linear or
non-local operations of large portions of the data are re-
quired. We also make use of techniques for top-k retrieval
[10] [4], though not (yet) exploiting their full potential; see
Section 6.

Concerning implementation, C++ was the programming
language of choice. It is often debated how much faster an
implementation in C++ really is compared to, say, a pro-
gram written in JAVA, or queries to a DBMS like Oracle or
MySQL. Indeed, anecdotal evidence as well as a study by
Prechelt [18] have it that the choice of programming lan-
guage does not make much of a difference for the average

5Note that the work on [5] predated that of [6] by almost
a year, the two articles just happened to be accepted for
publication at about the same time.
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Figure 2: Average processing rate (in Megabytes
per second) for four different programming lan-
guages/environments scanning an ordinary (in-
memory) array of 10 million 4-byte integers, mea-
sured on a Linux PC with two 3 GHz Intel Xeon
processors and 4 GB of main memory. The rate
for C++ is close to the 2 GB/s memory bandwidth
specified for that machine.

program. However, when it comes to algorithms highly op-
timized for sequential access to data, the difference is enor-
mous. See Table 2, where for a simple scanning task, C++
wins over JAVA by factor of 6, over a MySQL application
by a factor of more than 100, and over a scripting language
like Perl by a factor of almost 1000.

We made extensive use of templating, to reduce the code
complexity without compromising instruction-cache efficiency
(few instructions in the inner loops) and branch predictabil-
ity (no conditionals in the inner loops, wherever possible).

5.2 An interactive web-application
Building an interactive web application like Complete-

Search that is supposed to display its GUI via any standard
web browser is a very challenging task.

It starts with the design, which is all but obvious. The
completion server necessarily has a non-negligible start-up
cost and cannot be started from scratch for every query, but
has to run as a background process continuously. But letting
the client’s web browser communicate with a program on a
remote computer is a security problem. We solved this by
a three-step approach: the web page displayed to the client
contains JavaScript code, which for each user action triggers
the loading of a special web page via an AJAX protocol.
This web page is dynamically created via PHP, in particu-
lar taking care of the communication with the completion
server, and generating the HTML as well as the JavaScript
code.

The advantage of this approach is that no installation or
special software is required on the side of the user; any stan-
dard web browser will do. Nor can any firewall settings be
a problem: if web browsing works, CompleteSearch works
too. The price for this is complex code on three different ma-
chines (completion server, web server, client machine) which
interacts with each other in a non-trivial manner, and can be
hard to debug. Missing standards and inconsistencies con-
cerning the way web browsers process JavaScript, render a
complex layout, or deal with the the history (back button)
are a constant source of trouble.

5.3 User Feedback
The CompleteSearch engine would not be close to what it

is today without the feedback of our users. In this section
we report on some of the main lessons we learned from this
feedback loop.

The first users were ourselves. When starting the project
2 1/2 years ago, we first wrote a prototype (in Perl) to see
the search engine in action, on a real collection. Many of

the features were born in that way, and a number of features
which we deemed interesting at first were discarded in that
process.

One of the lessons we had to learn was that the vast ma-
jority of (our) users is not willing to read even the tiniest
bit of documentation before using a search engine, not even
if the search does not give the expected results. Actually,
we anticipated this to some extent, and tried to keep the
user interface intuitive and simple right from the beginning.
And after all, the whole approach of CompleteSearch is a
proactive one: display completions, hits, refinements, alter-
natives, etc. as the user is typing. If he or she opts to ignore
this information, the basic functionality of a search engine
is still there.

But the following surprised us: below the search field we
put a very short note saying ”Type ? for help”, and the
mechanism was such that typing ? at any point in the
query would instantaneously display a few sentences on the
most important advanced operators which can help improve
search results. Well, hardly any user ever pressed the ? key,
let alone read the help information. After this experience we
abandoned all our plans for more elaborate help pages, feed-
back forms, etc. and focused on making our whole system
as proactive as possible.

6. THINGS TO DO
As explained in Section 5.1, we have made strong efforts,

in algorithmic design as well as in implementation, to limit
the sheer amount of data that has to be processed per query
and to make access to it almost exclusively sequential. This
gives us subsecond query times (suitable for an interactive
system) for collections up to a terabyte in size, on a single
PC.

However, we have not yet fully exploited the potential of
top-k retrieval techniques [10] [4] for further reducing the
amount of data that has to be scanned, especially for large
word ranges. This is work in progress.

An aspect to which we have paid little attention so far,
is the question of how to deal with dynamic updates. So
far, our philosophy has been to split large collections into
several parts, and to rebuild partial indices from scratch
when it becomes necessary. In the IR world this is actually
considered one of the most effective ways of updating [16].
Still there is work to do for us here, especially in automating
this process.

We have pointed out the applicability of our Definition
1 to a variety of query types, both IR and DB-style, and
also combinations of the two. Our account in Section 3 is
somewhat by example. It looks like there is an interesting,
non-trivial theoretical connection between Definition 1 and
standard concepts from IR and DB to be worked out.

Finally, there is the issue of distributing our indices over
several machines, to be able to scale up to not just millions
but billions of documents. Preliminary work in this direction
made us optimistic that standard techniques for distributing
very large corpora by document [17] would also work for
CompleteSearch.
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