
One Size Fits All? – Part 2: Benchmarking Results

Michael Stonebraker1, Chuck Bear2, U!ur Çetintemel3, Mitch Cherniack4, Tingjian Ge3
Nabil Hachem, Stavros Harizopoulos1, John Lifter5, Jennie Rogers3, and Stan Zdonik3

M.I.T.1, Vertica Inc.2, Brown University3, Brandeis University4, Streambase Inc.5

ABSTRACT
Two years ago, some of us wrote a paper predicting the
demise of “One Size Fits All (OSFA)” [Sto05a]. In that
paper, we examined the stream processing and data
warehouse markets and gave reasons for a substantial
performance advantage to specialized architectures in both
markets. Herein, we make three additional contributions.
First, we present reasons why the same performance
advantage is enjoyed by specialized implementations in the
text processing market. Second, the major contribution of
the paper is to show “apples to apples” performance
numbers between commercial implementations of
specialized architectures and relational DBMSs in both
stream processing and data warehouses. Finally, we also
show comparison numbers between an academic prototype
of a specialized architecture for scientific and intelligence
applications, a relational DBMS, and a widely used
mathematical computation tool. In summary, there appear
to be at least four markets where specialized architectures
enjoy an overwhelming performance advantage.

1. The History of the OSFA Architecture
Relational Database Management System (RDBMS)
technology dates from the work of System R [Ast76] and
Ingres [Sto76]. At the time (1970s), the architects of these
systems were focused on proving that relational technology
was superior to hierarchical and network systems on the
tasks that were then common, namely business data
processing. Hence, architectural decisions in these early
prototypes were focused on transaction processing.
Essentially all commercial RDBMSs are direct descendents
of these early systems and share their common architecture
(such as row store representation, B-tree indexing, modest
disk block size, and tuple-oriented execution).

Over the years, the large RDBMS vendors have enhanced
this original architecture in a number of ways, which
include:
! Multi-processor configurations. Originally designed

for shared-memory multi-processors, commercial
RDBMS systems have been extended to support either
shared disk systems (disk clusters), shared nothing
systems (blades), or both.

! XML. Recently, several RDBMSs have been extended
to support either SQL or XQuery on either tables or
data represented in XMLSchema.

! Data Warehouses. Several commercial systems have
been extended with features designed to make
business intelligence (warehouse) query workloads
perform better. These include techniques such as data
compression, materialized view, index-only tables, and
join indexes.

The main purpose of these various enhancements is to
continue to sell a single code line supporting all DBMS
needs. The reasons for this “one size fits all” (OSFA)
strategy include the following:
! Engineering costs. Multiple code lines increases

engineering effort linearly with the number of code
lines. Moreover, multiple code lines must often be
kept synchronized, resulting in additional engineering
effort.

! Sales costs. RDBMS salesmen must be taught which
code line to sell in which circumstance. Since the
issues get complex quickly (and salespeople are
known not to be rocket scientists), this is a daunting
task.

! Marketing costs. Multiple code lines must be
carefully positioned in the marketplace. This is often a
difficult challenge. It is much simpler to position
OSFA, i.e., “I am the guy with the hammer, and
everything is a nail”.

A single code line will succeed whenever the intended
customer base is reasonably uniform in their feature and
query requirements. One can easily argue this uniformity
for business data processing. However, in the last quarter

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the work
to the author and CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

173

century, a collection of new markets with new
requirements has arisen. In addition, the relentless advance
of technology has a tendency to change the optimization
tactics from time to time.
When either of these occurs, there is a possibility that a
new code line with a different architecture will
dramatically outperform the traditional one. Inevitably, this
is the result of a different storage architecture that has
inherent advantages relative to the OSFA one. For the
purpose of this paper, we define “dramatically outperform”
to mean at least a factor of 10 advantage on the same (or
comparable) hardware. For example, a factor of 10 is the
difference between response time of one minute and
response time of 6 seconds. Similarly, it is the difference
between an $800 PC with two CPUs and a blade farm with
20 processors. Whenever such a performance difference
occurs, customers who care about performance (i.e., ones
that are “in pain”) will be inclined to try the new
architecture. Although one can argue about whether a
factor of 10 is too high a fence for a new architecture to
clear, the number is clearly not a factor of 2 or 3. In the
latter case, one merely waits a year or two for the next
hardware advance or increases the hardware budget. A
factor of 10, in contrast, makes such tactics unworkable.
The premise of this paper is that there are at least four
markets where this factor of 10 (or higher) threshold
currently exists. In the next four sections, we detail the
reasons for our claims, which are based on benchmarking
or reports of benchmarking results by others. In the last
section of this paper, we speculate on a few ways that the
commercial DBMS market could unfold off into the future.

2. Text Databases – A Factor of 10
It is a significant disappointment that text storage and
retrieval engines do not use RDBMSs, a comment repeated
at most DBMS conferences. In fact, this market does not
use any DBMS, preferring to build directly on top of a file
system storage layer. Early warning of this “roll your own”
phenomenon came to one of us from the founder of
Inktomi (Eric Brewer) in the mid 1990s. He tried using a
commercial RDBMS in an early version of their product,
but quickly gave up when he realized that Inktomi ran
exactly one query, a three way join with constants for the
search terms in the user query. This single query could be

easily hard coded and ran about 100 times faster than the
same query in an RDBMS.
There are a myriad of reasons for this performance delta.
These include (i) the lack of need for locking or
transactions, data types other than text, and repeatable or
even complete answers, and (ii) the need for horizontal
data partitioning, application-specific compression, and
variable length lists.
In a retrospective, Brewer [Bre04] explored these reasons
in some detail. Moreover, all subsequent search engines
(e.g., Google, Lycos, etc.) have come to the same
conclusion and have built proprietary text engines.
Moreover, Google has built a complete system software
stack including a file system (GFS [Ghe03]), a special
DBMS (Bigtable [Cha06]), and pertinent parallel data
processing abstractions (MapReduce [Dea04] and Sawzall
[Pik05]). Bigtable is being deployed for a myriad of
internal storage uses.
At this point, it is likely that one of the search companies
will expose their internal storage system for customer data,
either as an appliance on the customer’s premise (along the
lines of the current Google appliance) or as a service.
When this happens, there will be one or more prominent
non-RDBMS architectures used to store customer data.

3. Data Warehouses – Another Factor of 10
It is estimated that data warehouses form 1/3 of the
RDBMS market in 2005 [Gar06, Ola06]. Right now, the
data warehouse market is dominated by RDBMS vendors
selling systems that use the traditional row-oriented
architecture. C-Store [Sto05b] and Monet [Bon04]
advocated the use of a column store for data warehouse
applications and [Har06] gave some preliminary
performance numbers. In this section, we present
additional evidence, namely two specific performance
studies using the now-released code line of Vertica
[Ver06], a complete column-oriented DBMS along the
lines of C-Store, which validate the column store
performance claims.

3.1 Telco Call Details
Most (if not all) data warehouse applications use a star or
snowflake schema, and the schema for this application is
shown in Figure 1. This schema is in production use by a
firm that specializes in business analysis of Telco call

usage

account

toll

source

Figure 1. Telco Schema

 Vertica Appliance
Query 1 2.06 300
Query 2 2.20 300
Query 3 0.09 300
Query 4 5.24 300
Query 5 2.88 300

Figure 2. Query Running Times (seconds)

174

detail information. Here, the central fact table (usage)
has a record per call with a variety of call detail data; the
account table contains the phone numbers which are the
billing entities; source contains the network the call
detail came from; and toll contains billing information.
Besides their schema, this firm gave Vertica 600 Gbytes of
actual data and a suite of example queries they use in their
day-to-day affairs. Moreover, they also gave Vertica
approximate running times for their current solution, a 28
blade appliance from one of the well-known DBMS
appliance vendors, which lists for about $300,000 and
implements a traditional row-store architecture. Figure 2
shows these approximate running times, as well as the
performance of Vertica on a dual core dual CPU Opteron
computer, which lists for about $2500.
Figure 3 shows the SQL for Query 2 of this benchmark
suite defined over the star schema shown in Figure 1. This
query is typical of data warehouse queries in that it first
filters using predicates over columns of the fact table or a
dimension table, and then groups the restricted fact table
over some attribute and aggregates. On this query, a
column store outperforms a row store by a factor of 47
with 1/7 the number of CPUs and two orders of magnitude
less hardware cost. There are several reasons for this
startling performance difference, but three stand out.
First, the usage table contains a myriad of details about
calls, including call forwarding information, the networks
the call traversed, call length and drop information, etc. In
all, there are more than 200 columns. While the wisdom of
such a “fat” table can be debated by schema designers, it
should be noted that the customer uses many different
fields in various ad-hoc queries. Hence, decomposing this
fact table into multiple tables would introduce joins, which
might slow performance. Also, in point of fact, the fact
table has been pre-joined with appropriate columns in
dimension tables to eliminate run-time joins, a common

tactic to improve performance in warehouse environments,
resulting in a materialized view with 212 columns. Note
further that query 2 reads 7 columns from the 212. Hence,
a column store will read exactly the 7 columns, while a row
store will read all 212!a striking difference of nearly two
orders of magnitude in byte movement from the disk.
The second consideration is compression. As noted in a
companion paper [Aba06], compression is usually more
effective in a column store than a row store. Not only are
all objects in a disk block of the same data type, but
additional compression options, such as delta encoding and
run-length encoding, are possible. In several benchmark
studies, Vertica typically has a compression ratio of a
factor of 10, better by nearly a factor of 3 than the
compression possible in competing row stores.
The third reason is sorting and indexing, which are used by
Vertica, but not by the appliance. This explains the
constant query time of the appliance, whereas Vertica
keeps the data in some sort order, which can restrict
running times for some queries.
It is now straightforward to explain Figure 2. The
competing row store did not use compression or indexing.
Hence, query times for the appliance are the time to read
600 Gbytes off the disk, an impressive 70 Mbytes/sec per
processor-disk pair. In contrast, Vertica stored less than 60
Gbytes and actually read about 2 Gbytes. A factor of 300
less I/O is guaranteed to generate a dramatic performance
improvement!
Although this customer had a very fat fact table, which
obviously skewed the performance comparison, similar,
though likely less dramatic, results have been observed in a
variety of other studies. Our next example uses a “skinny”
fact table.

3.2 Simplified TPC-H
The well known benchmark, TPC-H, is used by many
vendors to claim superiority in data warehouse
performance. This benchmark is cleverly constructed to
avoid using a snowflake schema and to render materialized
views unproductive. In interviewing about two dozen
CIOs, the authors have never seen a warehouse that did not
use a snowflake schema. Hence, Pat O’Neil simplified the
TPC-H schema to be a snowflake and defined variants of
12 TPC-H queries on this schema [One06]. The schema is
shown in Figure 4 and a few of the 12 queries in Figure 5.
Lastly, the running time of the 12 queries on a $2500
Opteron computer with 4 cores is shown in Figure 6 for
two engines, the Vertica column store and a popular row
store.

SELECT account.account_number,
sum (usage.toll_airtime),

sum (usage.toll_price)

FROM usage, toll, source, account

WHERE usage.toll_id = toll.toll_id

 AND usage.source_id = source.source_id

 AND usage.account_id = account.account_id

 AND toll.type_ind in (‘AE’. ‘AA’)

 AND usage.toll_price > 0

 AND source.type != ‘CIBER’

 AND toll.rating_method = ‘IS’

 AND usage.invoice_date = 20051013

GROUP BY account.account_number

Figure 3. Query 2

175

Both systems used compression and horizontal
partitioning. Moreover, the row store was optimized by a
“4 star wizard” DBA who tunes this vendor’s product as
his profession. In Figure 6, we report on two physical
schemas. The first one is called “low space” and uses very
modest redundancy, while the second, called “medium
space” creates three materialized views so no query need
perform a complete scan. Lastly, the benchmark uses scale
100 sizes, as defined in TPC-H, and the raw data occupies
approximately 60 Gbytes.
In Figure 6, one can compare the two systems using
identical physical schemas. Note that the column store is
around 7 times faster in less than half the space.

Alternately, one could compare the two systems giving
each a space budget. In this case, the column store is a
much larger factor faster than the row store. Although
these results are less dramatic than the results of Section
3.1, they are similar to the results reported in [Sto05b].

4. Stream Processing – Another Factor of 10
Recently, there has been considerable interest in
performing low latency processing of message streams
using a high-level tool kit. There are commercial products
which use a rule notation (e.g., Apama [Apa06]), as well as
ones which use a SQL notation (e.g., StreamBase [Str06]
and Coral8 [Cor06]). Although there is some debate over

Lineorder
orderkey (pk)
linenumber (pk)
custkey (fk)
partkey (fk)
suppkey (fk)
orderdate (fk)
orderpriority
shippriority
quantity
extendedprice
ordtotalprice
discount
revenue
supplycost
tax
commitdate (fk)
shipmode

Part
partkey (pk)
name
mfgr
category
brand1
color
type
size
container

Supplier
suppkey (pk)
name
address
city
nation
region
phone

Customer
custkey (pk)
name
address
city
nation
region
phone
mktsegment

Date
datekey (pk)
date
dayofweek
month
year
yearmonth
daynuminmonth
daynuminyear
monthnuminyear
weeknuminyear
sellingseason
lastdayinweekfl
lastdayinmonthfl
holidayfl
weekdayfl

Figure 4. The Schema for Simplified TPC-H

Q1: Select the total discount given in
1993, for lineitems with <25 quantity,
and 1-3% discount

Q5: Measure total revenue for a certain
manufacturer/category/brand of part, from
a supplier in a certain geographical area.

Q8: Measure the revenue from customers in
the same geographical region as their
suppliers, further broken down by geography
and year.

SELECT SUM
(lo_extendedprice*lo_discount)

 AS revenue

FROM lineorder, dwdate

WHERE lo_orderdate = d_datekey

 AND d_year = 1993

 AND lo_discount between

 1 and 3

 AND lo_quantity < 25;

SELECT SUM (lo_revenue),
 d_year, p_brand1

FROM lineorder, dwdate,

 part, supplier

WHERE lo_orderdate = d_datekey

 AND lo_partkey = p_partkey

 AND lo_suppkey = s_suppkey

 AND p_brand1 between
 'MFGR#2221' and
 'MFGR#2228'

 AND s_region = 'ASIA'

GROUP BY d_year, p_brand1

ORDER BY d_year, p_brand1;

SELECT c_city, s_city, d_year,

 sum(lo_revenue) as revenue

FROM customer, lineorder,

 supplier, dwdate

WHERE lo_custkey = c_custkey

 AND lo_suppkey = s_suppkey

 AND lo_orderdate = d_datekey

 AND c_nation = 'UNITED STATES'

 AND s_nation = 'UNITED STATES'

 AND d_year between

 1992 and 1997

GROUP BY c_city, s_city, d_year

ORDER BY d_year asc, revenue desc;

Figure 5. Samples from the Query Set of 12

176

which paradigm will win, it appears that a SQL notation
has one big advantage, namely that most real-time stream
processing problems have an embedded requirement to
store and access substantial amounts of state. Since SQL is
the universal paradigm for stored data, it is natural to use
an extended version of SQL for the required mixing of real
time and historical data.
The current commercial systems are descendents of
academic prototypes, such as Aurora [Aba03] and
STREAM [Mot03]. At this point, there is substantial
marketplace experience with such commercial systems, and
their performance relative to the alternatives, namely using
custom code or a relational DBMS. In this section, we also
discuss two benchmarks comparing a specialized engine
with a relational DBMS. Although Linear Road [Ara04]
would be a natural choice, we chose instead to use two
scenarios that came from real customers.

4.1 Split Adjusted Price
This is a calculation that is often done in Wall Street
applications. There is an incoming feed of tick data:

Ticks (symbol = C6,
 time = double,

 volume = integer,
 price = double)
which could come from one of the popular data providers
or from a direct connection to an exchange. In addition,
there is a second feed:

Splits (symbol = C6,
 time = double,
 split_factor = float)

The second feed records the times at which stock splits
take place, giving the split factor; i.e., a 2 for 1 split would

have a split factor of 2 and a 1 for 2 (reverse) split would
have a split factor of 0.5.
The goal of the computation is to produce the split adjusted
price for the Ticks feed. Since a given symbol may split
more than once, it is necessary to maintain a running
composite of the total split factor seen up to now. This
state is maintained in a Storage table

Storage (symbol = C6,
 total_split = float)

The following StreamSQL statements indicate the required
processing on the stored table, Storage, and the two feeds
Ticks and Splits.

UPDATE Storage

FROM Splits S

SET (total_split = total_splits *

S.split_factor)

WHERE S.symbol = Storage.Symbol

SELECT T.symbol,

price = T.price * S.factor,

T.volume, T.time

FROM Ticks T, Storage S

WHERE S.symbol = T.symbol

The above code was run on StreamBase on a $1000 system
(2.8GHz Pentium D 820, 3GB RAM, and 4x200G SATAII
drives) and yielded a throughput of 333,000 messages per
second. The RDBMS logic to accomplish the same task is
a bit tricky. One option is to create a stored table Storage
and then perform the rest of the application in a stored
procedure. This approach yielded 12,640 messages per

 Row Store
Low Space

Column Store
Low Space

Row Store
High Space

Column Store
High Space

Query 1 32.0 3.4 3.9 1.1
Query 2 31.6 4.1 1.6 0.3
Query 3 30.8 2.8 0.9 0.2
Query 4 29.3 3.4 7.2 0.6
Query 5 26.1 3.2 2.1 0.2
Query 6 22.2 3.0 0.7 0.1
Query 7 60.9 1.7 15.6 2.4
Query 8 4.1 3.2 2.5 0.3
Query 9 3.7 3.0 2.0 0.2

Query 10 24.1 1.1 11.4 1.8
Query 11 5.1 0.2 6.3 0.3
Query 12 0.7 0.2 1.0 0.2
Weighted
Average

13.6 1.8 2.9 0.4

Space
Required

60.3 36.3 76.7 40.2

Figure 6. Running Time (seconds) and Space Requirements (GBytes)

177

second. A second approach is to insert both feeds into the
DBMS and then use triggers to perform the required
processing. This approach has the characteristic of more
fully utilizing DBMS functionality, but slows performance
dramatically.
To show the RDBMS in its best light, we also implemented
a third alternative, namely allocating the Splits table as an
array inside the stored procedure. To a first approximation
this is a solution which codes the entire application as a
stored procedure, using no DBMS facilities. Obviously,
one would prefer to do the application with custom logic
totally external to the DBMS, in preference to this option.
However, we report this result in the category of “if you
stand on your head, this is as good as it gets”, and the
result was 38,000 messages/second.

4.2 Forward First Arriver
It is common for Wall Street firms to subscribe to multiple
stock ticker feeds, such as Reuters, Comstock, or Infodyne.
An equally common application is to forward the first
arriving tick from whichever of the feeds has least latency
at that moment. Late duplicates must be discarded, thereby
creating a single virtual feed with the first arriving tick
information.
Obviously, one must forward the first arriver without
waiting for the late duplicates. Otherwise, the whole
purpose of the application, latency reduction, would be
lost. In the interest of brevity, the StreamSQL for this
application is omitted. However, the StreamBase
implementation on the $1000 Pentium PC yielded
performance of 281,000 messages per second. In contrast,
the RDBMS logic requires one to construct a table of
recent ticks and then to check this table to see if an
incoming tick is a late duplicate. If so, it is discarded;
otherwise it is forwarded and inserted into the table. The
best performance our “4-star” wizard could coax out of the
RDBMS was 11,790 messages per second using a table for
the recent ticks and 51,700 messages/sec using an array
inside the stored procedure.
In [Sto05a], we discussed the reasons why stream
processing engines outperform RDBMSs in this
application. Here, we briefly review the reasons:
! StreamSQL engines do not run in client-server mode.

Hence, there are no process switches. In contrast,
RDBMS engines are built not to trust the application,
and must run it in a separate address space from the
application.

! Most StreamSQL engines do processing exclusively in
virtual memory. There is no concept of reliably storing
the data on disk, which is just a source of extra
overhead.

! StreamSQL engines support time windows natively,
and do not need to simulate them using conventional
SQL notions.

! It pays to compile predicates to machine code for
maximum performance, in contrast to RDBMSs,
which typically compile operations to an intermediate
form for easier maintenance.

! RDBMSs are optimized for joining a million record
source table to a million record target table. In
contrast, StreamSQL engines are optimized for
processing a single message (tuple) through a
collection of operations with minimum latency. Hence,
avoiding queues between operations is a good idea,
whereas in RDBMSs such queues are omni-present.

In summary, an in-process engine using main memory
storage and optimized for single message operations will
always greatly outperform a disk-based engine that uses
out-of-process storage and that is optimized for set
processing.

5. Scientific and Intelligence Applications –
Another Factor of 10
Scientific and intelligence users have historically shunned
commercial data base products, preferring to use
customized solutions, such as HDF-5 [Hdf06], MatLab
[Mat06], and NetCDF [Net06]. There are a myriad of
reasons for this. In this section, we briefly review the
lessons learned from Project Sequoia in the mid 1990s
[Seq93]. After that, we present results from comparing a
specialized prototype, ASAP ([A]rray [S]treaming [A]nd
[P]rocessing), with a popular commercial RDBMS.

5.1 Project Sequoia
The DEC-sponsored Sequoia project [Seq93] attempted to
support scientific DBMS users (specifically the Earth
Science research group at UC Santa Barbara under the
direction of Jeff Dozier and the climate modeling group at
UCLA under the direction of Roberto Mechosa) by
applying POSTGRES to their problems. The result was
unsuccessful. The major reason was that POSTGRES had
no support for large multi-dimensional arrays, and the vast
preponderance of objects from both groups was array data.
Simulating arrays on top of POSTGRES tables was
inefficient and inflexible. A second lesser reason was that
POSTGRES had no built-in support for meta-data
management. Santa Barbara scientists required information
on the processing steps that had been applied to each of
their data sets; mostly the data cleansing and data reduction
algorithms which “cooked” raw satellite imagery into
usable information. In addition, essentially all scientific
data that results from real world observations is
fundamentally uncertain, and error metrics are required for

178

such data sets. POSTGRES had no capabilities to store and
update either data uncertainty or lineage.
Revisiting this problem area a decade later strongly
suggests the need for a different approach than Object-
Relational DBMSs. To satisfy the needs of this community,
we are building a new DBMS, called ASAP, which uses
multi-dimensional arrays as the basic storage and
processing object. We have enough of ASAP running to
perform the following two benchmarks. Although artificial,
they appear to capture some of what scientific users want
to do.

5.2 Array Benchmarks
5.2.1 Dot Product
In two dimensions, dot product is defined as follows.
Given two arrays, A[I, J] and B[I, J], we compute the dot
product over the shared dimension J as:

C [I], where C[i] = sum over j of A[i, j] * B [i, j]
Notice that this is a straightforward generalization of the
standard vector dot product for arrays: we compute the dot
products of all vector pairs that we derive by iterating
through all the values of the remaining dimensions.
The benchmark is to compute the dot product of two
integer arrays, A and B, with a number of dimensions
varying between 3 and 6. The benchmark was first run on
ASAP and Matlab, both of which support arrays as a native
data type. In this experiment, each array has 250M
elements (2GB double precision raw data), which were
distributed uniformly across all dimensions. We compute
the dot product for each possible shared dimension and
compute the average running time of this collection of
matrix computations. The results are obtained on a 2 GHz,
64-bit Athlon machine with 1GB RAM.
The same operation was also run on ASAP and a popular
commercial RDBMS, in which each array is represented as
a table with attributes: dimension-1, …, dimension-n, and
value. In this case, each array consists of 25M elements
(100MB single precision raw data) and a 3.2 GHz Pentium
machine with 1GB RAM was used. For this dataset, the
RDBMS uses 502MB-680MB per array, depending on the
number of dimensions, as it has to store the dimensions as
well.
Finally, we examine two scenarios: (i) a “low stride”
scenario, where all elements of a vector that is operated on
are stored contiguously (as much as possible); and (ii) a

“high stride” scenario where the elements of an operand
vector are rather dispersed throughout the array. The
former scenario models a simple, almost serial array access
pattern, whereas the latter models a more complicated one.
Figure 7 shows the speedup that ASAP achieves over
Matlab and the RDBMS for these experiments for the low
stride case. ASAP is always advantageous and achieves a
speedup of up to 83 over Matlab. With increasing number
of dimensions, the operand vector sizes decrease, which
leads to a decrease in the speedup values as Matlab utilizes
the memory better with smaller operands. In the high stride
cases (not shown) as well as with datasets that are much
larger than main memory, Matlab heavily relies on the
virtual memory and basically comes to a halt.
The comparison with the RDBMS consistently yields a
speedup of 100 or more (similar results are obtained for the
high-stride cases).
This dot product computation was initially chosen because
it is a modest computation, and one can craft a single pass
algorithm to perform this function. Hence, it is relatively
modest in both I/O and CPU requirements. The next
section extends the benchmark to a more complex array
operation.

5.2.2 Matrix Multiplication
In two dimensions, the matrix multiplication of two arrays,
A[I, J] and B[J, L], is defined as:

C [I, L], where C[i, l] = sum over j of A[i, j] * B [j, l].
The benchmark is to compute the product of two integer
arrays, A and B, with a number of dimensions varying
between 3 and 6. For a given set of two shared dimensions,
we compute the multiplications of all matrix pairs that we
derive by iterating through all the values of the remaining
set of dimensions. Note that this operation is N times more
intensive than the dot product, where N is the average size
of a dimension.
This calculation was performed using ASAP as well as
Matlab and the same RDBMS. Figure 8 tabulates the
speedup results for the low stride case on the
configurations described earlier for the dot product.
We can observe even more dramatic improvements
(~800x) over the RDBMS as matrix multiplication is not
amenable to a single pass algorithm. On the other hand,
Matlab does a much better job here, as matrix
multiplication is a built-in, highly optimized operation.

 Number of Dimensions
 3 4 5 6
Speedup over Matlab 82.9 16.44 9.6 10.1
Speedup over RDBMS 102.5 119.1 114 119

Figure 7. ASAP Speedup numbers for

Dot Product (Low Stride case)

 Number of Dimensions
 3 4 5 6
Speedup over Matlab 2.1 3.16 9.62 9.7
Speedup over RDBMS 270.9 775.1 798 738

Figure 8. ASAP Speedup numbers for

Matrix Multiplication (Low Stride case)

179

Even so, ASAP beats Matlab for all dimensions. In the
high-stride case and with larger datasets, however, the
performance of Matlab deteriorates very fast due to heavy
swapping.

5.2.3 A Note on the RDBMS Implementation
Both array benchmarks are implemented inside the
RDBMS as a single SQL query that uses a group-by
aggregation to compute the sum of the individual
multiplications. Letting the RDBMS handle all
multiplications incurs a certain overhead in that all of the
dimension information needs to be copied over throughout
the group-by computations.
Perhaps a better approach would be to use the RDBMS to
first correctly sort all pairs of vectors (or matrices) and
then implement both types of computations in user space.
Still, we expect such an approach to be significantly slower
than ASAP since ASAP does not to perform any type of
sorting. Furthermore, as we discuss next, ASAP has to read
only a fraction of the bytes read by the RDBMS.

5.3 Reasons for a Large Performance
Difference
We now explore the reasons for the performance difference
on the two benchmarks. In addition, we speculate about the
possible performance differential on a third benchmark that
has been omitted because of lack of time. This third
benchmark is to process a sequence of arrays, which might
come from a surveillance system such as a video camera, a
radar system, or satellite observation system, looking for a
specific predefined pattern, P [I, J]. P would be an image of
interest, such as a particular kind of vehicle. Whenever, a
“hit” is detected, it should be reported.

5.3.1 ChunkyStore
The fundamental object in ASAP is a multi-dimensional
array, A(I, J, …, K). I, J, …, K are called indexes or
dimensions, and there can be an arbitrary (finite) number of
them. ASAP supports a collection of primitive data types
(e.g., integer, float, and string) and will likely be extended
with a POSTGRES-style abstract data type facility. Hence,
any dimension can be of any data type supported by the
system. In addition, ASAP assumes that every data type
has a POSTGRES-style linear ordering [14]. Hence, the
next value of a dimension is always well defined. A
dimension may have a regular stride (e.g., 1, 2, 3…) or an
irregular stride (e.g., 1.2, 2.76, 4.3, …). The value of an
array at any collection of dimension values is a tuple of
attribute values. Each attribute is named and has values
from a single primitive type and may be NULL. Hence, an
array value is basically a relational tuple.
ASAP contains a storage system, ChunkyStore, with the
following representations for arrays:

! Dense arrays with regular strides: Here, the
dimensions are not stored, and data elements are
packed into storage in a straightforward way. Such
arrays are then decomposed into “chunks” which
contain all values for a “super-stride” in each of the
dimensions. This is similar to the work of Sarawagi
[Sar94] in chunking large arrays. Chunks are allocated
to large disk blocks (e.g., 64K to 1 Mbytes), such that
array elements are easily addressed.

! Dense arrays with irregular strides: In this case,
there is a dimension index for each dimension that
orders the dimension values. This index is then stored
in addition to the chunked arrays.

! Sparse arrays which are regular or irregular: Only
the non-null values are stored, together with their
dimension values. Again, the data will be chunked into
disk blocks. However, there must be a block level
index defining the bounding box, which defines the
subarray in each chunk.

! Hybrid scheme: If the nulls in an array are highly
skewed, it may make sense to store the array as a
collection of subarrays, each with a storage
representation appropriate to the contents of the
subarray.

Notice that the super-stride will be a variable for sparse
arrays. Also note that there is automatic indexing for all
dimensions, but no indexing for array values. If ASAP
users filter frequently on array values, then we will revisit
this choice in the future.
Notice that ChunkyStore is highly advantageous in both
benchmarks. First, the array dimensions for A and B are
not stored. As such, the space consumed by ASAP is a
small fraction of that consumed by the RDBMS. Even if
the access patterns of the two systems were the same,
ASAP would read this small fraction of the bytes read by
the RDBMS. Second, the chunking dramatically cuts down
on I/O for both benchmarks. In each case, a linear
algorithm can be used that will read each chunk just once.
In contrast, the RDBMS does not support such chunking
and, in the best of circumstances, will require at least an N
* Log N algorithm.

5.3.2 Operators
Besides the obvious relational-style operators (e.g., filter,
aggregate), ASAP contains a collection of primitive
operations oriented toward scientific computing. These
include the following:
! Conventional array operations: These include

multiplication, addition, Eigenvalue computations,
Fourier transforms, etc.

! Pivot: This command changes the dimensions of an
array, by moving zero or more dimensions to normal
values and zero or more normal values to dimensions.

180

Of course, this may convert a regular array to an
irregular one or vice-versa. Also, if the one of the new
dimensions is not a key (i.e. its values are not unique),
then the result of the pivot operations is not an array
and must be disallowed.

! Regrid: Arrays may optionally have a coordinate
system. ASAP supports any number of named
coordinate systems. Associated with each co-ordinate
system is a collection of functions that map co-
ordinate points to other coordinate systems. To convert
an array from one coordinate system to another, it
must be regridded, requiring a function to map any
point in the source co-ordinate system to the target
coordinate system. In this way, the lower left hand
corner and all strides can be mapped to the target
space. However, a cell in the source coordinate system
rarely matches a cell in the target coordinate system.
Hence, interpolation must be performed. This requires
a support function, Intersect (source_cell, target_cell)
that will return the degree of overlap between the cells.
An interpolation function can then decide the value to
place in each target cell by performing some
computation on the intersecting source cells.

! Concatenate: Two arrays are compatible if they have
the same number of dimensions of the same types.
Collections of compatible arrays can be formed into
groups, by adding an extra dimension, containing the
array name using the Concatenate command. We note
that there is no notion of sets of arrays; rather a set is
modeled as an array in one higher dimension.

! Locate: This command generalizes join to deal with
fuzzy matching and with groups of elements. Locate
searches a large array_1 for areas that “fuzzy-match” a
smaller array_2, with the matching criteria described
by the given function; i.e., the function must return
“true” for the area of array_1 that matches array_2.
This command is useful for feature extraction, where
array_2 is the feature being searched in a data array
array_1. In addition, Locate must perform a heuristic
search of the large array for instances of the small
array. There are any number of search techniques that
can be used, a last parameter to the Locate command is
the search technique that should be employed. ASAP
implements the common ones, and this set can be
extended by an interest user.

In both benchmarks, ASAP takes advantage of the matrix
multiplication primitive, which is optimized for
ChunkyStore. In addition, in the third benchmark, Locate
can be used with a heuristic search limit the number of
comparisons. Such optimizations are impossible in an
RDBMS, which must simulate array operations on top of
the conventional relational ones.

5.3.3 Compression
Obviously, dense arrays can be stored without explicit
dimensions. In addition, it makes sense in some
environments to do further compression. For example, one
can delta-encode array values in a chunk, relative to a base
value, thereby storing them in a lesser number of bits.
Alternatively, one can delta encode arrays values, relative
to their predecessor in some dimension. MPEG does
exactly this for video in the time dimension, and ASAP
will do this in a more general way.
Although such compression is not useful in the two
specific benchmarks, it can be profitably used in the third
scenario. If the system delta encodes successive images in
the time dimension, then Locate can ignore all parts of the
image which are identical to the previous one (a common
occurrence for stationary surveillance platforms), thereby
lowering processing costs dramatically. Such compression
is exceptionally difficult to obtain using an RDBMS
solution, because the value to be delta encoded may not be
in an adjacent tuple, or even on the same disk block.

5.3.4 Seamless Integration of Real-time Cooking and
Storage
Most scientists collect raw data from instruments and then
execute a workflow of processing steps to “cook” the data,
which includes operations to perform such tasks as
coordinate system transformations and data cleaning. One
of the most important pieces of data lineage is the cooking
“recipe”, which must be correctly captured in any system.
Moreover, it is important that the cooking system have the
same data model as the storage system. Otherwise, data
transformations must be present to convert back and forth.
Furthermore, if the cooking system becomes overloaded,
then partially cooked data must be saved for later
processing, which also argues for the same data model in
both components. ASAP contains a real-time cooking
component, which is a retargeting of the Aurora/Borealis
code line to support arrays.
This integration of real-time cooking and storage is not
useful in the two benchmarks executed. However, in the
third one, we could perform all of the processing required
without ever storing the data or performing any task
switches. In contrast, an RDBMS must store and then
retrieve the data, resulting in substantial extra overhead.
In aggregate, this architecture changes result in the factor
of 10 times or more performance improvement, as
observed on the dot product and matrix multiplication
benchmarks. We would expect even more dramatic
improvement if we had time to run the image analysis
benchmark.

181

6. Other ASAP Features and Potential
Performance Pitfalls
As mentioned earlier, one of the lessons from the Sequoia
project was the need to natively support data uncertainty
and lineage in the database. The processing system needs
to capture these data and automatically carry them
throughout the entire processing pipeline, which can be
prohibitively expensive if done naively. In particular,
dealing with uncertain, probabilistic data can easily create
a performance bottleneck (both CPU and memory), and
thus needs special treatment to be practical, especially for
the real-time cooking component.
This section describes the tunable approaches that ASAP
will use to deal with uncertainty and lineage data. The goal
is to achieve higher efficiency at the expense of some
(bounded) accuracy, while meeting the needs of a large
fraction of scientific applications.

6.1 Probabilistic Treatment of Data
Essentially all scientific data that results from real-world
observations is fundamentally uncertain. Previous work
(e.g., [Bar92], [Wid05]) addressed inaccurate or
probabilistic data in traditional databases. ASAP focuses
on uncertainty in multidimensional array processing. In this
context, uncertainty can arise in several ways:
! Value uncertainty: An array value invariably has

measurement error, which results in the actual value
being uncertain. This is the typical probabilistic data
support in databases.

! Position (dimension value) uncertainty: In certain
cases, the very position of the measurement is
imprecise, as opposed to the obtained data value.
Accordingly, the dimension values in the array are
uncertain.

! Result uncertainty of functions or predicates: Some
functions or predicates, even when applied to
deterministic data, produce uncertain results. For
example, the LOCATE operator, which does pattern
matching, may introduce uncertainty in the results, due
to the exact nature of the data and the matching
algorithms.

How to succinctly represent uncertain data and efficiently
process it in databases has been an open problem for a long
time. This is our main focus in dealing with value
uncertainty. We have three ways of representing uncertain
data values:
! R1: Value-probability pairs. An array value is

represented as (v1, p1), (v2, p2),…, (vn, pn), where (vi,
pi) indicates that the probability of the value being vi is
pi. If the sum of the pi values, psum, is less than one,

(1-psum) is the probability that the value does not exist
in the array.

! R2: An expectation and variance pair. An array
value, which can in general be the result of an
operator, is represented as (E, Var), indicating the
statistical information of the value. Compared to R1,
although this is less informative, R2 is much more
succinct and allows efficient processing of query
operators. One can argue that the amount of uncertain
information of R2 is sufficient for most applications of
ASAP. For example, SUM or AVG on a huge number
of values makes individual possible values
unimportant; one would be concerned with the
expected value and the variance.

! R3: Upper and lower bounds. Similar to R2, the
statistical information is in the form of bounds: ([E],
UB, p1, LB, p2), where E (expected value) is optional,
and UB, LB are upper and lower bounds, respectively.
It holds that Pr[v > UB] < p1, and Pr[v < LB] < p2. As
with R2, the goal here is also efficient processing of
query operators with an acceptable amount of
uncertainty information returned to the end users.

R1 is similar to what has been proposed before in the
literature [Bar92]; however, it does not scale well for most
query operations. The query processing cost for generating
a large number of value-probability pairs can be
prohibitive. For example, SUM or AVG can cause the
number of discrete values in a distribution to grow
exponentially (all possible pairs), making it intractable.
One alternative is to lower the granularity of the discrete
probability points as query operators are applied. This,
however, is still difficult if one wishes to obtain the same
result value distribution.
ASAP’s uncertainty model supports many options for how
to represent values. The choice of representation has a very
large impact on system performance. The main novelty of
the ASAP approach is to trade accuracy in the uncertainty
measure for ease of processing by allowing the system to
choose among and convert between these various
representations.
One way to alter representations is to choose among R1,
R2, or R3. For example, a query on two arrays, each using
R1, could more efficiently produce a result using R2 or R3.
Such conversions between representations can be done as
each query operator is applied. Not only these less-detailed
representations seem to be sufficient and perhaps even
more appropriate for most of our target applications, but
also they make query processing on probabilistic data
tractable (i.e., the cost is linear in the number of processed
tuples).
Another strategy ASAP will use involves choosing the
granularity at which to assign uncertainty values. For

182

example, we can assign uncertainty to each cell in the array
or to the array as a whole. In between these extremes, we
can carve the array up into rectangles and assign an
uncertainty measure to each such region. For example, we
can divide a square array into 4 equal-sized quadrants, each
with its own distribution. Each cell in a quadrant is thus
assumed to have the same distribution “shape”, only
differing by their expected values.

6.2 Lineage Tracking
ASAP also contains a specialized lineage array that
encodes the queries that have been entered to produce all
target arrays, along with the source arrays they are derived
from. In effect, this can be thought of as the derivation
history of all materialized views. If done at the individual
tuple level, tracking lineage can become very expensive
and even NP-Hard for some operations [Wid05]. Thus,
ASAP chooses to record only the processing (cooking
recipe) that generated any given array. This capability also
takes much less space and at present seems to be sufficient
to meet the needs of many scientific applications that we
are familiar with.

7. Now What?
The previous section indicated a collection of markets
where a very noticeable performance differential can be
realized with a custom architecture. It is obvious that the
four markets have conflicting architectural requirements.
Hence, they cannot be addressed with an OSFA DBMS.
As a result, there are several possible ways that DBMS
architectures could evolve off in to the future:
! Yawn (no change). One could argue that RDBMSs

are fast enough to meet the needs of most of the
customers in these four areas. Hence, there will be a
few niche solutions to address the high end of any
market, with RDBMS capturing the remainder of the
customers.
Although one might argue this point of view in
markets 3 and 4, it is a bit difficult to make a serious
case for this in markets 1 and 2. Especially in
warehouse applications, where the data volumes and
query complexity are going through the roof, this is a
difficult position to defend.

! K Systems united by a common parser. One could
argue that there will be some number, K, of engines,
where K is determined by the number of non-trivial
markets with specialized requirements. However, these
can all be hidden under a common parser, with the
actual user command directed to the correct engine.
The effort to construct a common version of
StreamSQL, which unites historical and streaming
data, is a step in this direction. Whether this tactic can
come to fruition in stream processing, let alone the

other markets indicated in this paper, is anybody’s
guess.

! K Systems using abstract data types. Another
possibility is to build what amounts to a complete
engine within the extension systems present in current
DBMSs. For example, a complete column store could
be built as an extension. The net result is a different,
less pleasant syntax, for something like the previous
solution.

! Data Federation. One could simply come to grips
with the fact that there will be a number of, basically
incompatible, systems, and “adaptors” are required to
map between them. This will be the “full employment
act” for computer scientists for a long time to come,
because mapping between different systems has
proved semantically troublesome for the last 30 or so
years, and shows no signs of getting easier anytime
soon.

! From Scratch Rewrite. It is conceivable that a single
code line could be architected with sufficient
generality to encompass all of the requirements noted
in this paper. For example, one could design a
“morphing” ChunkyStore that could move between a
row store and a column store, with various
ChunkyStore alternatives in between. Such a storage
system requires an optimizer and executor with
dramatically more generality than current systems. It is
conceivable that one could also construct a system that
ran in client-server or embedded mode, and had some
sort of “fast path” for text search.

The old adage comes to mind at this point “may you be
blessed to live in interesting times”. In our opinion, the
next decade will be an interesting time to be active in the
DBMS field as vendors cope with the choices laid out
above. Also, there is an obvious charge to DBMS
researchers; namely find an application area where OSFA
does not work and figure out what does.

8. ACKNOWLEDGEMENTS
Parts of this work are supported by the NSF under grants
IIS-0086057 and IIS-0325838.

9. REFERENCES

[Aba03] D. Abadi, D. Carney, U. Cetintemel, M.
Cherniack, C. Convey, S. Lee, M. Stonebraker, N.
Tatbul, and S. Zdonik. “Aurora: A New Model and
Architecture for Data Stream Management”. In VLDB
Journal, 2003.

[Aba06] D. Abadi, S. Madden, and M. Ferreira.
“Integrating Compression and Execution in Column-
Oriented Database Systems”. In Proc. of the ACM

183

International Conference on Management of Data
(SIGMOD), 2006.

[Apa06] http://www.progress.com/apama/index.ssp

[Ara04] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A.
Maskey, E. Ryvkina, M. Stonebraker, and R. Tibbetts.
“Linear Road: A Benchmark for Stream Data
Management Systems”. In Proceedings of the VLDB,
2004.

[Ast76] M. M. Astrahan, M. W. Blasgen, D. D.
Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,
W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G.
R. Putzolu, I. L. Traiger, B. Wade, and V. Watson.
"System R: A Relational Approach to Database
Management". ACM Transactions on Database Systems,
June 1976.

[Bar92] D. Barbara, H. Garcia-Molina, and D. Porter. “The
Management of Probabilistic Data”. IEEE Trans. Knowl.
Data Eng., 4(5):487-502, 1992.

[Bon05] P. Boncz, M. Zukowski, N. Nes.
“MonetDB/X100: Hyper-pipelining Query Execution”.
In Proceedings of the Conference on Innovative
Database Research (CIDR), 2005.

[Bre04] E. Brewer. “Combining Systems and Databases:
A Search Engine Retrospective,” in Readings in
Database Systems, M. Stonebraker and J. Hellerstein,
Eds., 4 ed, 2004.

[Cha06] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D.
A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R.
E. Gruber. “Bigtable: A Distributed Storage System for
Structured Data”. In Proc. of the Conference on
Operating System Design and Implementation (OSDI),
2006.

[Cor06] http://www.coral8.com/

[Dea04] J. Dean and S. Ghemawat. “MapReduce:
Simplified Data Processing on Large Clusters”. In
Proceedings of the Conference on Operating Systems
Design and Implementation (OSDI), 2004.

 [Ghe03] S. Ghemawat, H. Gobioff, and S.-T.
Leung. “The Google File System”. In Proceedings of the
nineteenth ACM SOSP, 2003.

[Gra06] C. Graham. Market Share: Relational Database
Management Systems by Operating System, Worldwide,
2005”. Gartner Report No: G00141017, May 2006.

[Har06] S. Harizopoulos, V. Liang, D. Abadi, and S.
Madden. "Performance Tradeoffs in Read-Optimized
Databases." In Proceedings of the 32nd Very Large
Databases Conference (VLDB), 2006.

[Hdf06] http://hdf.ncsa.uiuc.edu/HDF5/

[Mat06] http://www.mathworks.com/

[Mot03] R. Motwani, J. Widom, A. Arasu, B. Babcock, S.
Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, and
R. Varma. “Query Processing, Resource Management,
and Approximation and in a Data Stream Management
System”. In Proceedings of the First Biennial Conference
on Innovative Data Systems Research (CIDR 2003),
Asilomar, CA, 2003.

[Net06] http://www.unidata.ucar.edu/software/netcdf/

[Ola06] OLAP Market Report. Online manuscript.
http://www.olapreport.com/market.htm

[One06] P. O’Neil, E. O’Neil, and X. Chen. “A Star
Schema Data Warehouse Benchmark”. Online
Manuscript. http://www.cs.umb.edu/~poneil/publist.html

[Pik05] R. Pike, S. Dorward, R. Griesemer, S. Quinlan.
“Interpreting the Data: Parallel Analysis with Sawzall”.
In Scientific Programming Journal, Special Issue on
Grids and Worldwide Computing Programming Models
and Infrastructure 13:4, pp. 227-298.

[Sar94] S. Sarawagi and M. Stonebraker. “Efficient
Organization of Large Multidimensional Arrays”. In
Proceedings of the 10th International Conference on
Data Engineering (ICDE), 1994.

[Seq93] http://s2k-ftp.cs.berkeley.edu:8000/index.html

[Sto05a] M. Stonebraker and U. Cetintemel. “One Size Fits
All: An Idea Whose Time has Come and Gone”. In
Proceedings of the International Conference on Data
Engineering (ICDE), 2005.

[Sto05b] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, S. Zdonik. “C-
Store: A Column Oriented DBMS”. In Proceedings of
the Conference on Very Large Databases (VLDB), 2005.

[Sto76] M. Stonebraker, E. Wong, P. Kreps, and G. Held.
“The Design and Implementation of Ingres”. ACM
Journal on Transactions on Database Systems (TODS),
1(3), 1976.

[Stre06] http://www.streambase.com/

[Ver06] Vertica Inc. http://www.vertica.com/

[Wid05] J. Widom. “Trio: A System for Integrated
Management of Data, Accuracy, and Lineage”. In Proc.
of the International Conference on Innovative Database
Research (CIDR), 2005.

184

