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ABSTRACT 
Two years ago, some of us wrote a paper predicting the 
demise of “One Size Fits All (OSFA)” [Sto05a]. In that 
paper, we examined the stream processing and data 
warehouse markets and gave reasons for a substantial 
performance advantage to specialized architectures in both 
markets. Herein, we make three additional contributions. 
First, we present reasons why the same performance 
advantage is enjoyed by specialized implementations in the 
text processing market. Second, the major contribution of 
the paper is to show “apples to apples” performance 
numbers between commercial implementations of 
specialized architectures and relational DBMSs in both 
stream processing and data warehouses. Finally, we also 
show comparison numbers between an academic prototype 
of a specialized architecture for scientific and intelligence 
applications, a relational DBMS, and a widely used 
mathematical computation tool. In summary, there appear 
to be at least four markets where specialized architectures 
enjoy an overwhelming performance advantage.  
 

1. The History of the OSFA Architecture 
Relational Database Management System (RDBMS) 
technology dates from the work of System R [Ast76] and 
Ingres [Sto76].  At the time (1970s), the architects of these 
systems were focused on proving that relational technology 
was superior to hierarchical and network systems on the 
tasks that were then common, namely business data 
processing. Hence, architectural decisions in these early 
prototypes were focused on transaction processing.  
Essentially all commercial RDBMSs are direct descendents 
of these early systems and share their common architecture 
(such as row store representation, B-tree indexing, modest 
disk block size, and tuple-oriented execution). 

Over the years, the large RDBMS vendors have enhanced 
this original architecture in a number of ways, which 
include: 
! Multi-processor configurations. Originally designed 

for shared-memory multi-processors, commercial 
RDBMS systems have been extended to support either 
shared disk systems (disk clusters), shared nothing 
systems (blades), or both. 

! XML. Recently, several RDBMSs have been extended 
to support either SQL or XQuery on either tables or 
data represented in XMLSchema.   

! Data Warehouses. Several commercial systems have 
been extended with features designed to make 
business intelligence (warehouse) query workloads 
perform better.  These include techniques such as data 
compression, materialized view, index-only tables, and 
join indexes. 

The main purpose of these various enhancements is to 
continue to sell a single code line supporting all DBMS 
needs.  The reasons for this “one size fits all” (OSFA) 
strategy include the following: 
! Engineering costs. Multiple code lines increases 

engineering effort linearly with the number of code 
lines.  Moreover, multiple code lines must often be 
kept synchronized, resulting in additional engineering 
effort. 

! Sales costs.  RDBMS salesmen must be taught which 
code line to sell in which circumstance. Since the 
issues get complex quickly (and salespeople are 
known not to be rocket scientists), this is a daunting 
task. 

! Marketing costs.  Multiple code lines must be 
carefully positioned in the marketplace. This is often a 
difficult challenge. It is much simpler to position 
OSFA, i.e., “I am the guy with the hammer, and 
everything is a nail”.   

A single code line will succeed whenever the intended 
customer base is reasonably uniform in their feature and 
query requirements. One can easily argue this uniformity 
for business data processing. However, in the last quarter 

 
 
This article is published under a Creative Commons License Agreement 
(http://creativecommons.org/licenses/by/2.5/).  
You may copy, distribute, display, and perform the work, make derivative 
works and make commercial use of the work, but you must attribute the work 
to the author and CIDR 2007.  
3rd Biennial Conference on Innovative Data Systems Research (CIDR)  
January 7-10, 2007, Asilomar, California, USA. 

173



century, a collection of new markets with new 
requirements has arisen. In addition, the relentless advance 
of technology has a tendency to change the optimization 
tactics from time to time.   
When either of these occurs, there is a possibility that a 
new code line with a different architecture will 
dramatically outperform the traditional one. Inevitably, this 
is the result of a different storage architecture that has 
inherent advantages relative to the OSFA one. For the 
purpose of this paper, we define “dramatically outperform” 
to mean at least a factor of 10 advantage on the same (or 
comparable) hardware. For example, a factor of 10 is the 
difference between response time of one minute and 
response time of 6 seconds.  Similarly, it is the difference 
between an $800 PC with two CPUs and a blade farm with 
20 processors. Whenever such a performance difference 
occurs, customers who care about performance (i.e., ones 
that are “in pain”) will be inclined to try the new 
architecture. Although one can argue about whether a 
factor of 10 is too high a fence for a new architecture to 
clear, the number is clearly not a factor of 2 or 3. In the 
latter case, one merely waits a year or two for the next 
hardware advance or increases the hardware budget. A 
factor of 10, in contrast, makes such tactics unworkable. 
The premise of this paper is that there are at least four 
markets where this factor of 10 (or higher) threshold 
currently exists. In the next four sections, we detail the 
reasons for our claims, which are based on benchmarking 
or reports of benchmarking results by others. In the last 
section of this paper, we speculate on a few ways that the 
commercial DBMS market could unfold off into the future. 

2. Text Databases – A Factor of 10 
It is a significant disappointment that text storage and 
retrieval engines do not use RDBMSs, a comment repeated 
at most DBMS conferences. In fact, this market does not 
use any DBMS, preferring to build directly on top of a file 
system storage layer. Early warning of this “roll your own” 
phenomenon came to one of us from the founder of 
Inktomi (Eric Brewer) in the mid 1990s. He tried using a 
commercial RDBMS in an early version of their product, 
but quickly gave up when he realized that Inktomi ran 
exactly one query, a three way join with constants for the 
search terms in the user query. This single query could be 

easily hard coded and ran about 100 times faster than the 
same query in an RDBMS.   
There are a myriad of reasons for this performance delta. 
These include (i) the lack of need for locking or 
transactions, data types other than text, and repeatable or 
even complete answers, and (ii) the need for horizontal 
data partitioning, application-specific compression, and 
variable length lists.  
In a retrospective, Brewer [Bre04] explored these reasons 
in some detail. Moreover, all subsequent search engines 
(e.g., Google, Lycos, etc.) have come to the same 
conclusion and have built proprietary text engines. 
Moreover, Google has built a complete system software 
stack including a file system (GFS [Ghe03]), a special 
DBMS (Bigtable [Cha06]), and pertinent parallel data 
processing abstractions (MapReduce [Dea04] and Sawzall 
[Pik05]). Bigtable is being deployed for a myriad of 
internal storage uses. 
At this point, it is likely that one of the search companies 
will expose their internal storage system for customer data, 
either as an appliance on the customer’s premise (along the 
lines of the current Google appliance) or as a service. 
When this happens, there will be one or more prominent 
non-RDBMS architectures used to store customer data. 

3. Data Warehouses – Another Factor of 10 
It is estimated that data warehouses form 1/3 of the 
RDBMS market in 2005 [Gar06, Ola06]. Right now, the 
data warehouse market is dominated by RDBMS vendors 
selling systems that use the traditional row-oriented 
architecture. C-Store [Sto05b] and Monet [Bon04] 
advocated the use of a column store for data warehouse 
applications and [Har06] gave some preliminary 
performance numbers. In this section, we present 
additional evidence, namely two specific performance 
studies using the now-released code line of Vertica 
[Ver06], a complete column-oriented DBMS along the 
lines of C-Store, which validate the column store 
performance claims. 

3.1 Telco Call Details 
Most (if not all) data warehouse applications use a star or 
snowflake schema, and the schema for this application is 
shown in Figure 1. This schema is in production use by a 
firm that specializes in business analysis of Telco call 

usage

account

toll

source

 
Figure 1. Telco Schema 

 Vertica Appliance 
Query 1 2.06 300 
Query 2 2.20 300 
Query 3 0.09 300 
Query 4 5.24 300 
Query 5 2.88 300 

 
Figure 2. Query Running Times (seconds) 
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detail information.  Here, the central fact table (usage) 
has a record per call with a variety of call detail data; the 
account table contains the phone numbers which are the 
billing entities; source contains the network the call 
detail came from; and toll contains billing information. 
Besides their schema, this firm gave Vertica 600 Gbytes of 
actual data and a suite of example queries they use in their 
day-to-day affairs. Moreover, they also gave Vertica 
approximate running times for their current solution, a 28 
blade appliance from one of the well-known DBMS 
appliance vendors, which lists for about $300,000 and 
implements a traditional row-store architecture. Figure 2 
shows these approximate running times, as well as the 
performance of Vertica on a dual core dual CPU Opteron 
computer, which lists for about $2500.   
Figure 3 shows the SQL for Query 2 of this benchmark 
suite defined over the star schema shown in Figure 1.  This 
query is typical of data warehouse queries in that it first 
filters using predicates over columns of the fact table or a 
dimension table, and then groups the restricted fact table 
over some attribute and aggregates. On this query, a 
column store outperforms a row store by a factor of 47 
with 1/7 the number of CPUs and two orders of magnitude 
less hardware cost. There are several reasons for this 
startling performance difference, but three stand out. 
First, the usage table contains a myriad of details about 
calls, including call forwarding information, the networks 
the call traversed, call length and drop information, etc. In 
all, there are more than 200 columns. While the wisdom of 
such a “fat” table can be debated by schema designers, it 
should be noted that the customer uses many different 
fields in various ad-hoc queries.  Hence, decomposing this 
fact table into multiple tables would introduce joins, which 
might slow performance. Also, in point of fact, the fact 
table has been pre-joined with appropriate columns in 
dimension tables to eliminate run-time joins, a common 

tactic to improve performance in warehouse environments, 
resulting in a materialized view with 212 columns. Note 
further that query 2 reads 7 columns from the 212. Hence, 
a column store will read exactly the 7 columns, while a row 
store will read all 212!a striking difference of nearly two 
orders of magnitude in byte movement from the disk. 
The second consideration is compression. As noted in a 
companion paper [Aba06], compression is usually more 
effective in a column store than a row store. Not only are 
all objects in a disk block of the same data type, but 
additional compression options, such as delta encoding and 
run-length encoding, are possible. In several benchmark 
studies, Vertica typically has a compression ratio of a 
factor of 10, better by nearly a factor of 3 than the 
compression possible in competing row stores.   
The third reason is sorting and indexing, which are used by 
Vertica, but not by the appliance. This explains the 
constant query time of the appliance, whereas Vertica 
keeps the data in some sort order, which can restrict 
running times for some queries. 
It is now straightforward to explain Figure 2.  The 
competing row store did not use compression or indexing.  
Hence, query times for the appliance are the time to read 
600 Gbytes off the disk, an impressive 70 Mbytes/sec per 
processor-disk pair. In contrast, Vertica stored less than 60 
Gbytes and actually read about 2 Gbytes. A factor of 300 
less I/O is guaranteed to generate a dramatic performance 
improvement! 
Although this customer had a very fat fact table, which 
obviously skewed the performance comparison, similar, 
though likely less dramatic, results have been observed in a 
variety of other studies. Our next example uses a “skinny” 
fact table.  

3.2 Simplified TPC-H 
The well known benchmark, TPC-H, is used by many 
vendors to claim superiority in data warehouse 
performance. This benchmark is cleverly constructed to 
avoid using a snowflake schema and to render materialized 
views unproductive. In interviewing about two dozen 
CIOs, the authors have never seen a warehouse that did not 
use a snowflake schema. Hence, Pat O’Neil simplified the 
TPC-H schema to be a snowflake and defined variants of 
12 TPC-H queries on this schema [One06]. The schema is 
shown in Figure 4 and a few of the 12 queries in Figure 5. 
Lastly, the running time of the 12 queries on a $2500 
Opteron computer with 4 cores is shown in Figure 6 for 
two engines, the Vertica column store and a popular row 
store.   

SELECT account.account_number,  
sum (usage.toll_airtime),  

sum (usage.toll_price) 

FROM usage, toll, source, account 

WHERE usage.toll_id = toll.toll_id 

  AND usage.source_id = source.source_id 

  AND usage.account_id = account.account_id 

  AND  toll.type_ind in (‘AE’. ‘AA’) 

  AND  usage.toll_price > 0 

  AND  source.type != ‘CIBER’ 

  AND  toll.rating_method = ‘IS’ 

  AND  usage.invoice_date = 20051013 

GROUP BY  account.account_number 
 

Figure 3. Query 2 
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Both systems used compression and horizontal 
partitioning.  Moreover, the row store was optimized by a 
“4 star wizard” DBA who tunes this vendor’s product as 
his profession. In Figure 6, we report on two physical 
schemas. The first one is called “low space” and uses very 
modest redundancy, while the second, called “medium 
space” creates three materialized views so no query need 
perform a complete scan. Lastly, the benchmark uses scale 
100 sizes, as defined in TPC-H, and the raw data occupies 
approximately 60 Gbytes. 
In Figure 6, one can compare the two systems using 
identical physical schemas. Note that the column store is 
around 7 times faster in less than half the space. 

Alternately, one could compare the two systems giving 
each a space budget. In this case, the column store is a 
much larger factor faster than the row store. Although 
these results are less dramatic than the results of Section 
3.1, they are similar to the results reported in [Sto05b]. 

4. Stream Processing – Another Factor of 10 
Recently, there has been considerable interest in 
performing low latency processing of message streams 
using a high-level tool kit. There are commercial products 
which use a rule notation (e.g., Apama [Apa06]), as well as 
ones which use a SQL notation (e.g., StreamBase [Str06] 
and Coral8 [Cor06]). Although there is some debate over 

Lineorder
orderkey (pk)
linenumber (pk)
custkey (fk)
partkey (fk)
suppkey (fk)
orderdate (fk)
orderpriority
shippriority
quantity
extendedprice
ordtotalprice
discount
revenue
supplycost
tax
commitdate (fk)
shipmode

Part
partkey (pk)
name
mfgr
category
brand1
color
type
size
container

Supplier
suppkey (pk)
name
address
city
nation
region
phone

Customer
custkey (pk)
name
address
city
nation
region
phone
mktsegment

Date
datekey (pk)
date
dayofweek
month
year
yearmonth
daynuminmonth
daynuminyear
monthnuminyear
weeknuminyear
sellingseason
lastdayinweekfl
lastdayinmonthfl
holidayfl
weekdayfl

 
 

Figure 4. The Schema for Simplified TPC-H 

Q1: Select the total discount given in 
1993, for lineitems with <25 quantity, 
and 1-3% discount 

Q5: Measure total revenue for a certain 
manufacturer/category/brand of part, from 
a supplier in a certain geographical area. 

Q8: Measure the revenue from customers in 
the same geographical region as their 
suppliers, further broken down by geography 
and year. 

SELECT SUM 
(lo_extendedprice*lo_discount)  

  AS revenue 

FROM lineorder, dwdate 

WHERE lo_orderdate = d_datekey 

  AND d_year = 1993 

  AND lo_discount between  

   1 and 3 

  AND lo_quantity < 25; 

 

SELECT SUM (lo_revenue), 
 d_year, p_brand1 

FROM   lineorder, dwdate,  

 part, supplier 

WHERE  lo_orderdate = d_datekey  

  AND  lo_partkey = p_partkey 

  AND  lo_suppkey = s_suppkey 

  AND  p_brand1 between   
 'MFGR#2221' and 
 'MFGR#2228' 

  AND  s_region = 'ASIA' 

GROUP BY d_year, p_brand1 

ORDER BY d_year, p_brand1; 

 

SELECT  c_city, s_city, d_year, 

  sum(lo_revenue) as revenue 

FROM    customer, lineorder, 

  supplier, dwdate 

WHERE   lo_custkey = c_custkey 

  AND  lo_suppkey = s_suppkey  

  AND  lo_orderdate = d_datekey  

  AND  c_nation = 'UNITED STATES'  

  AND  s_nation = 'UNITED STATES' 

  AND  d_year between  

   1992 and 1997 

GROUP BY c_city, s_city, d_year 

ORDER BY d_year asc, revenue desc; 

 
 

Figure 5. Samples from the Query Set of 12  
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which paradigm will win, it appears that a SQL notation 
has one big advantage, namely that most real-time stream 
processing problems have an embedded requirement to 
store and access substantial amounts of state. Since SQL is 
the universal paradigm for stored data, it is natural to use 
an extended version of SQL for the required mixing of real 
time and historical data. 
The current commercial systems are descendents of 
academic prototypes, such as Aurora [Aba03] and 
STREAM [Mot03]. At this point, there is substantial 
marketplace experience with such commercial systems, and 
their performance relative to the alternatives, namely using 
custom code or a relational DBMS. In this section, we also 
discuss two benchmarks comparing a specialized engine 
with a relational DBMS. Although Linear Road [Ara04] 
would be a natural choice, we chose instead to use two 
scenarios that came from real customers. 

4.1 Split Adjusted Price 
This is a calculation that is often done in Wall Street 
applications.  There is an incoming feed of tick data: 

Ticks  (symbol = C6, 
            time = double,  

                          volume = integer, 
                          price = double) 
which could come from one of the popular data providers 
or from a direct connection to an exchange. In addition, 
there is a second feed: 

Splits  (symbol = C6, 
            time = double,  
            split_factor = float) 

The second feed records the times at which stock splits 
take place, giving the split factor; i.e., a 2 for 1 split would 

have a split factor of 2 and a 1 for 2 (reverse) split would 
have a split factor of 0.5. 
The goal of the computation is to produce the split adjusted 
price for the Ticks feed. Since a given symbol may split 
more than once, it is necessary to maintain a running 
composite of the total split factor seen up to now. This 
state is maintained in a Storage table 

Storage  (symbol = C6,  
                total_split = float) 

The following StreamSQL statements indicate the required 
processing on the stored table, Storage, and the two feeds 
Ticks and Splits. 

 
UPDATE Storage 

FROM Splits S 

SET (total_split = total_splits *  

S.split_factor) 

WHERE S.symbol = Storage.Symbol 

 

SELECT T.symbol,  

price = T.price * S.factor,  

T.volume, T.time 

FROM Ticks T, Storage S 

WHERE S.symbol = T.symbol 

 

The above code was run on StreamBase on a $1000 system 
(2.8GHz Pentium D 820, 3GB RAM, and 4x200G SATAII 
drives) and yielded a throughput of 333,000 messages per 
second. The RDBMS logic to accomplish the same task is 
a bit tricky. One option is to create a stored table Storage 
and then perform the rest of the application in a stored 
procedure. This approach yielded 12,640 messages per 

 Row Store 
Low Space 

Column Store 
Low Space 

Row Store 
High Space 

Column Store 
High Space 

Query 1 32.0 3.4 3.9 1.1 
Query 2 31.6 4.1 1.6 0.3 
Query 3 30.8 2.8 0.9 0.2 
Query 4 29.3 3.4 7.2 0.6 
Query 5 26.1 3.2 2.1 0.2 
Query 6 22.2 3.0 0.7 0.1 
Query 7 60.9 1.7 15.6 2.4 
Query 8 4.1 3.2 2.5 0.3 
Query 9 3.7 3.0 2.0 0.2 

Query 10 24.1 1.1 11.4 1.8 
Query 11 5.1 0.2 6.3 0.3 
Query 12 0.7 0.2 1.0 0.2 
Weighted 
Average 

13.6 1.8 2.9 0.4 

Space 
Required 

60.3 36.3 76.7 40.2 

 
Figure 6. Running Time (seconds) and Space Requirements (GBytes) 
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second. A second approach is to insert both feeds into the 
DBMS and then use triggers to perform the required 
processing. This approach has the characteristic of more 
fully utilizing DBMS functionality, but slows performance 
dramatically.   
To show the RDBMS in its best light, we also implemented 
a third alternative, namely allocating the Splits table as an 
array inside the stored procedure. To a first approximation 
this is a solution which codes the entire application as a 
stored procedure, using no DBMS facilities. Obviously, 
one would prefer to do the application with custom logic 
totally external to the DBMS, in preference to this option. 
However, we report this result in the category of “if you 
stand on your head, this is as good as it gets”, and the 
result was 38,000 messages/second. 

4.2 Forward First Arriver 
It is common for Wall Street firms to subscribe to multiple 
stock ticker feeds, such as Reuters, Comstock, or Infodyne. 
An equally common application is to forward the first 
arriving tick from whichever of the feeds has least latency 
at that moment. Late duplicates must be discarded, thereby 
creating a single virtual feed with the first arriving tick 
information.   
Obviously, one must forward the first arriver without 
waiting for the late duplicates. Otherwise, the whole 
purpose of the application, latency reduction, would be 
lost. In the interest of brevity, the StreamSQL for this 
application is omitted. However, the StreamBase 
implementation on the $1000 Pentium PC yielded 
performance of 281,000 messages per second. In contrast, 
the RDBMS logic requires one to construct a table of 
recent ticks and then to check this table to see if an 
incoming tick is a late duplicate. If so, it is discarded; 
otherwise it is forwarded and inserted into the table. The 
best performance our “4-star” wizard could coax out of the 
RDBMS was 11,790 messages per second using a table for 
the recent ticks and 51,700 messages/sec using an array 
inside the stored procedure. 
In [Sto05a], we discussed the reasons why stream 
processing engines outperform RDBMSs in this 
application. Here, we briefly review the reasons: 
! StreamSQL engines do not run in client-server mode. 

Hence, there are no process switches. In contrast, 
RDBMS engines are built not to trust the application, 
and must run it in a separate address space from the 
application. 

! Most StreamSQL engines do processing exclusively in 
virtual memory. There is no concept of reliably storing 
the data on disk, which is just a source of extra 
overhead. 

! StreamSQL engines support time windows natively, 
and do not need to simulate them using conventional 
SQL notions.  

! It pays to compile predicates to machine code for 
maximum performance, in contrast to RDBMSs, 
which typically compile operations to an intermediate 
form for easier maintenance. 

! RDBMSs are optimized for joining a million record 
source table to a million record target table. In 
contrast, StreamSQL engines are optimized for 
processing a single message (tuple) through a 
collection of operations with minimum latency. Hence, 
avoiding queues between operations is a good idea, 
whereas in RDBMSs such queues are omni-present. 

In summary, an in-process engine using main memory 
storage and optimized for single message operations will 
always greatly outperform a disk-based engine that uses 
out-of-process storage and that is optimized for set 
processing. 

5. Scientific and Intelligence Applications – 
Another Factor of 10 
Scientific and intelligence users have historically shunned 
commercial data base products, preferring to use 
customized solutions, such as HDF-5 [Hdf06], MatLab 
[Mat06], and NetCDF [Net06]. There are a myriad of 
reasons for this. In this section, we briefly review the 
lessons learned from Project Sequoia in the mid 1990s 
[Seq93]. After that, we present results from comparing a 
specialized prototype, ASAP ([A]rray [S]treaming [A]nd 
[P]rocessing), with a popular commercial RDBMS. 

5.1 Project Sequoia 
The DEC-sponsored Sequoia project [Seq93] attempted to 
support scientific DBMS users (specifically the Earth 
Science research group at UC Santa Barbara under the 
direction of Jeff Dozier and the climate modeling group at 
UCLA under the direction of Roberto Mechosa) by 
applying POSTGRES to their problems. The result was 
unsuccessful. The major reason was that POSTGRES had 
no support for large multi-dimensional arrays, and the vast 
preponderance of objects from both groups was array data. 
Simulating arrays on top of POSTGRES tables was 
inefficient and inflexible. A second lesser reason was that 
POSTGRES had no built-in support for meta-data 
management. Santa Barbara scientists required information 
on the processing steps that had been applied to each of 
their data sets; mostly the data cleansing and data reduction 
algorithms which “cooked” raw satellite imagery into 
usable information. In addition, essentially all scientific 
data that results from real world observations is 
fundamentally uncertain, and error metrics are required for 
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such data sets. POSTGRES had no capabilities to store and 
update either data uncertainty or lineage.   
Revisiting this problem area a decade later strongly 
suggests the need for a different approach than Object-
Relational DBMSs. To satisfy the needs of this community, 
we are building a new DBMS, called ASAP, which uses 
multi-dimensional arrays as the basic storage and 
processing object. We have enough of ASAP running to 
perform the following two benchmarks. Although artificial, 
they appear to capture some of what scientific users want 
to do. 

5.2 Array Benchmarks 
5.2.1 Dot Product 
In two dimensions, dot product is defined as follows. 
Given two arrays, A[I, J] and B[I, J], we compute the dot 
product over the shared dimension J as: 

C [I],  where C[i]  = sum over j of A[i, j] * B [i, j] 
Notice that this is a straightforward generalization of the 
standard vector dot product for arrays: we compute the dot 
products of all vector pairs that we derive by iterating 
through all the values of the remaining dimensions.  
The benchmark is to compute the dot product of two 
integer arrays, A and B, with a number of dimensions 
varying between 3 and 6. The benchmark was first run on 
ASAP and Matlab, both of which support arrays as a native 
data type. In this experiment, each array has 250M 
elements (2GB double precision raw data), which were 
distributed uniformly across all dimensions. We compute 
the dot product for each possible shared dimension and 
compute the average running time of this collection of 
matrix computations.  The results are obtained on a 2 GHz, 
64-bit Athlon machine with 1GB RAM. 
The same operation was also run on ASAP and a popular 
commercial RDBMS, in which each array is represented as 
a table with attributes: dimension-1, …, dimension-n, and 
value. In this case, each array consists of 25M elements 
(100MB single precision raw data) and a 3.2 GHz Pentium 
machine with 1GB RAM  was used. For this dataset, the 
RDBMS uses 502MB-680MB per array, depending on the 
number of dimensions, as it has to store the dimensions as 
well.  
Finally, we examine two scenarios: (i) a “low stride” 
scenario, where all elements of a vector that is operated on 
are stored contiguously (as much as possible); and (ii) a 

“high stride” scenario where the elements of an operand 
vector are rather dispersed throughout the array. The 
former scenario models a simple, almost serial array access 
pattern, whereas the latter models a more complicated one. 
Figure 7 shows the speedup that ASAP achieves over 
Matlab and the RDBMS for these experiments for the low 
stride case. ASAP is always advantageous and achieves a 
speedup of up to 83 over Matlab. With increasing number 
of dimensions, the operand vector sizes decrease, which 
leads to a decrease in the speedup values as Matlab utilizes 
the memory better with smaller operands. In the high stride 
cases (not shown) as well as with datasets that are much 
larger than main memory, Matlab heavily relies on the 
virtual memory and basically comes to a halt. 
The comparison with the RDBMS consistently yields a 
speedup of 100 or more (similar results are obtained for the 
high-stride cases).  
This dot product computation was initially chosen because 
it is a modest computation, and one can craft a single pass 
algorithm to perform this function. Hence, it is relatively 
modest in both I/O and CPU requirements. The next 
section extends the benchmark to a more complex array 
operation. 

5.2.2 Matrix Multiplication 
In two dimensions, the matrix multiplication of two arrays, 
A[I, J] and B[J, L], is defined as: 

C [I, L], where C[i, l]  = sum over j of A[i, j] * B [j, l]. 
The benchmark is to compute the product of two integer 
arrays, A and B, with a number of dimensions varying 
between 3 and 6. For a given set of two shared dimensions, 
we compute the multiplications of all matrix pairs that we 
derive by iterating through all the values of the remaining 
set of dimensions. Note that this operation is N times more 
intensive than the dot product, where N is the average size 
of a dimension. 
This calculation was performed using ASAP as well as 
Matlab and the same RDBMS. Figure 8 tabulates the 
speedup results for the low stride case on the 
configurations described earlier for the dot product. 
We can observe even more dramatic improvements 
(~800x) over the RDBMS as matrix multiplication is not 
amenable to a single pass algorithm. On the other hand, 
Matlab does a much better job here, as matrix 
multiplication is a built-in, highly optimized operation. 

 Number of Dimensions 
 3 4 5 6 
Speedup over Matlab 82.9 16.44 9.6 10.1 
Speedup over RDBMS 102.5 119.1 114 119 

 
Figure 7. ASAP Speedup numbers for  

Dot Product (Low Stride case) 

 Number of Dimensions 
 3 4 5 6 
Speedup over Matlab 2.1 3.16 9.62 9.7 
Speedup over RDBMS 270.9 775.1 798 738 

 
Figure 8. ASAP Speedup numbers for 

Matrix Multiplication (Low Stride case) 
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Even so, ASAP beats Matlab for all dimensions. In the 
high-stride case and with larger datasets, however, the 
performance of Matlab deteriorates very fast due to heavy 
swapping. 

5.2.3 A Note on the RDBMS Implementation 
Both array benchmarks are implemented inside the 
RDBMS as a single SQL query that uses a group-by 
aggregation to compute the sum of the individual 
multiplications. Letting the RDBMS handle all 
multiplications incurs a certain overhead in that all of the 
dimension information needs to be copied over throughout 
the group-by computations. 
Perhaps a better approach would be to use the RDBMS to 
first correctly sort all pairs of vectors (or matrices) and 
then implement both types of computations in user space. 
Still, we expect such an approach to be significantly slower 
than ASAP since ASAP does not to perform any type of 
sorting. Furthermore, as we discuss next, ASAP has to read 
only a fraction of the bytes read by the RDBMS. 

5.3 Reasons for a Large Performance 
Difference 
We now explore the reasons for the performance difference 
on the two benchmarks. In addition, we speculate about the 
possible performance differential on a third benchmark that 
has been omitted because of lack of time. This third 
benchmark is to process a sequence of arrays, which might 
come from a surveillance system such as a video camera, a 
radar system, or satellite observation system, looking for a 
specific predefined pattern, P [I, J]. P would be an image of 
interest, such as a particular kind of vehicle. Whenever, a 
“hit” is detected, it should be reported. 

5.3.1 ChunkyStore 
The fundamental object in ASAP is a multi-dimensional 
array, A(I, J, …, K).  I, J, …, K are called indexes or 
dimensions, and there can be an arbitrary (finite) number of 
them. ASAP supports a collection of primitive data types 
(e.g., integer, float, and string) and will likely be extended 
with a POSTGRES-style abstract data type facility.  Hence, 
any dimension can be of any data type supported by the 
system.  In addition, ASAP assumes that every data type 
has a POSTGRES-style linear ordering [14]. Hence, the 
next value of a dimension is always well defined. A 
dimension may have a regular stride (e.g., 1, 2, 3…) or an 
irregular stride (e.g., 1.2, 2.76, 4.3, …). The value of an 
array at any collection of dimension values is a tuple of 
attribute values. Each attribute is named and has values 
from a single primitive type and may be NULL. Hence, an 
array value is basically a relational tuple. 
ASAP contains a storage system, ChunkyStore, with the 
following representations for arrays: 

! Dense arrays with regular strides: Here, the 
dimensions are not stored, and data elements are 
packed into storage in a straightforward way. Such 
arrays are then decomposed into “chunks” which 
contain all values for a “super-stride” in each of the 
dimensions. This is similar to the work of Sarawagi 
[Sar94] in chunking large arrays. Chunks are allocated 
to large disk blocks (e.g., 64K to 1 Mbytes), such that 
array elements are easily addressed. 

! Dense arrays with irregular strides:  In this case, 
there is a dimension index for each dimension that 
orders the dimension values. This index is then stored 
in addition to the chunked arrays. 

! Sparse arrays which are regular or irregular: Only 
the non-null values are stored, together with their 
dimension values. Again, the data will be chunked into 
disk blocks. However, there must be a block level 
index defining the bounding box, which defines the 
subarray in each chunk. 

! Hybrid scheme:  If the nulls in an array are highly 
skewed, it may make sense to store the array as a 
collection of subarrays, each with a storage 
representation appropriate to the contents of the 
subarray. 

 
Notice that the super-stride will be a variable for sparse 
arrays. Also note that there is automatic indexing for all 
dimensions, but no indexing for array values. If ASAP 
users filter frequently on array values, then we will revisit 
this choice in the future. 
Notice that ChunkyStore is highly advantageous in both 
benchmarks. First, the array dimensions for A and B are 
not stored. As such, the space consumed by ASAP is a 
small fraction of that consumed by the RDBMS. Even if 
the access patterns of the two systems were the same, 
ASAP would read this small fraction of the bytes read by 
the RDBMS. Second, the chunking dramatically cuts down 
on I/O for both benchmarks. In each case, a linear 
algorithm can be used that will read each chunk just once. 
In contrast, the RDBMS does not support such chunking 
and, in the best of circumstances, will require at least an N 
* Log N algorithm. 

5.3.2 Operators 
Besides the obvious relational-style operators (e.g., filter, 
aggregate), ASAP contains a collection of primitive 
operations oriented toward scientific computing.  These 
include the following: 
! Conventional array operations:  These include 

multiplication, addition, Eigenvalue computations, 
Fourier transforms, etc. 

! Pivot:  This command changes the dimensions of an 
array, by moving zero or more dimensions to normal 
values and zero or more normal values to dimensions. 
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Of course, this may convert a regular array to an 
irregular one or vice-versa.  Also, if the one of the new 
dimensions is not a key (i.e. its values are not unique), 
then the result of the pivot operations is not an array 
and must be disallowed. 

! Regrid:  Arrays may optionally have a coordinate 
system. ASAP supports any number of named 
coordinate systems. Associated with each co-ordinate 
system is a collection of functions that map co-
ordinate points to other coordinate systems. To convert 
an array from one coordinate system to another, it 
must be regridded, requiring a function to map any 
point in the source co-ordinate system to the target 
coordinate system. In this way, the lower left hand 
corner and all strides can be mapped to the target 
space. However, a cell in the source coordinate system 
rarely matches a cell in the target coordinate system. 
Hence, interpolation must be performed. This requires 
a support function, Intersect (source_cell, target_cell) 
that will return the degree of overlap between the cells. 
An interpolation function can then decide the value to 
place in each target cell by performing some 
computation on the intersecting source cells. 

! Concatenate:  Two arrays are compatible if they have 
the same number of dimensions of the same types. 
Collections of compatible arrays can be formed into 
groups, by adding an extra dimension, containing the 
array name using the Concatenate command. We note 
that there is no notion of sets of arrays; rather a set is 
modeled as an array in one higher dimension. 

! Locate: This command generalizes join to deal with 
fuzzy matching and with groups of elements. Locate 
searches a large array_1 for areas that “fuzzy-match” a 
smaller array_2, with the matching criteria described 
by the given function; i.e., the function must return 
“true” for the area of array_1 that matches array_2. 
This command is useful for feature extraction, where 
array_2 is the feature being searched in a data array 
array_1. In addition, Locate must perform a heuristic 
search of the large array for instances of the small 
array.  There are any number of search techniques that 
can be used, a last parameter to the Locate command is 
the search technique that should be employed. ASAP 
implements the common ones, and this set can be 
extended by an interest user. 

 
In both benchmarks, ASAP takes advantage of the matrix 
multiplication primitive, which is optimized for 
ChunkyStore. In addition, in the third benchmark, Locate 
can be used with a heuristic search limit the number of 
comparisons. Such optimizations are impossible in an 
RDBMS, which must simulate array operations on top of 
the conventional relational ones. 

5.3.3 Compression 
Obviously, dense arrays can be stored without explicit 
dimensions.  In addition, it makes sense in some 
environments to do further compression.  For example, one 
can delta-encode array values in a chunk, relative to a base 
value, thereby storing them in a lesser number of bits. 
Alternatively, one can delta encode arrays values, relative 
to their predecessor in some dimension. MPEG does 
exactly this for video in the time dimension, and ASAP 
will do this in a more general way.   
Although such compression is not useful in the two 
specific benchmarks, it can be profitably used in the third 
scenario. If the system delta encodes successive images in 
the time dimension, then Locate can ignore all parts of the 
image which are identical to the previous one (a common 
occurrence for stationary surveillance platforms), thereby 
lowering processing costs dramatically. Such compression 
is exceptionally difficult to obtain using an RDBMS 
solution, because the value to be delta encoded may not be 
in an adjacent tuple, or even on the same disk block. 

5.3.4 Seamless Integration of Real-time Cooking and 
Storage 
Most scientists collect raw data from instruments and then 
execute a workflow of processing steps to “cook” the data, 
which includes operations to perform such tasks as 
coordinate system transformations and data cleaning. One 
of the most important pieces of data lineage is the cooking 
“recipe”, which must be correctly captured in any system.  
Moreover, it is important that the cooking system have the 
same data model as the storage system. Otherwise, data 
transformations must be present to convert back and forth. 
Furthermore, if the cooking system becomes overloaded, 
then partially cooked data must be saved for later 
processing, which also argues for the same data model in 
both components. ASAP contains a real-time cooking 
component, which is a retargeting of the Aurora/Borealis 
code line to support arrays.   
This integration of real-time cooking and storage is not 
useful in the two benchmarks executed.  However, in the 
third one, we could perform all of the processing required 
without ever storing the data or performing any task 
switches.  In contrast, an RDBMS must store and then 
retrieve the data, resulting in substantial extra overhead. 
In aggregate, this architecture changes result in the factor 
of 10 times or more performance improvement, as 
observed on the dot product and matrix multiplication 
benchmarks. We would expect even more dramatic 
improvement if we had time to run the image analysis 
benchmark. 
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6. Other ASAP Features and Potential 
Performance Pitfalls 
As mentioned earlier, one of the lessons from the Sequoia 
project was the need to natively support data uncertainty 
and lineage in the database. The processing system needs 
to capture these data and automatically carry them 
throughout the entire processing pipeline, which can be 
prohibitively expensive if done naively. In particular, 
dealing with uncertain, probabilistic data can easily create 
a performance bottleneck (both CPU and memory), and 
thus needs special treatment to be practical, especially for 
the real-time cooking component. 
This section describes the tunable approaches that ASAP 
will use to deal with uncertainty and lineage data. The goal 
is to achieve higher efficiency at the expense of some 
(bounded) accuracy, while meeting the needs of a large 
fraction of scientific applications.  

6.1 Probabilistic Treatment of Data 
Essentially all scientific data that results from real-world 
observations is fundamentally uncertain. Previous work 
(e.g., [Bar92], [Wid05]) addressed inaccurate or 
probabilistic data in traditional databases. ASAP focuses 
on uncertainty in multidimensional array processing. In this 
context, uncertainty can arise in several ways: 
! Value uncertainty: An array value invariably has 

measurement error, which results in the actual value 
being uncertain. This is the typical probabilistic data 
support in databases. 

! Position (dimension value) uncertainty: In certain 
cases, the very position of the measurement is 
imprecise, as opposed to the obtained data value. 
Accordingly, the dimension values in the array are 
uncertain. 

! Result uncertainty of functions or predicates: Some 
functions or predicates, even when applied to 
deterministic data, produce uncertain results. For 
example, the LOCATE operator, which does pattern 
matching, may introduce uncertainty in the results, due 
to the exact nature of the data and the matching 
algorithms. 

 
How to succinctly represent uncertain data and efficiently 
process it in databases has been an open problem for a long 
time. This is our main focus in dealing with value 
uncertainty. We have three ways of representing uncertain 
data values: 
! R1: Value-probability pairs. An array value is 

represented as (v1, p1), (v2, p2),…, (vn, pn), where (vi, 
pi) indicates that the probability of the value being vi is 
pi. If the sum of the pi values, psum, is less than one, 

(1-psum) is the probability that the value does not exist 
in the array. 

! R2: An expectation and variance pair. An array 
value, which can in general be the result of an 
operator, is represented as (E, Var), indicating the 
statistical information of the value. Compared to R1, 
although this is less informative, R2 is much more 
succinct and allows efficient processing of query 
operators. One can argue that the amount of uncertain 
information of R2 is sufficient for most applications of 
ASAP. For example, SUM or AVG on a huge number 
of values makes individual possible values 
unimportant; one would be concerned with the 
expected value and the variance. 

! R3: Upper and lower bounds. Similar to R2, the 
statistical information is in the form of bounds: ([E], 
UB, p1, LB, p2), where E (expected value) is optional, 
and UB, LB are upper and lower bounds, respectively. 
It holds that Pr[v > UB] < p1, and Pr[v < LB] < p2. As 
with R2, the goal here is also efficient processing of 
query operators with an acceptable amount of 
uncertainty information returned to the end users. 

 
R1 is similar to what has been proposed before in the 
literature [Bar92]; however, it does not scale well for most 
query operations. The query processing cost for generating 
a large number of value-probability pairs can be 
prohibitive. For example, SUM or AVG can cause the 
number of discrete values in a distribution to grow 
exponentially (all possible pairs), making it intractable. 
One alternative is to lower the granularity of the discrete 
probability points as query operators are applied. This, 
however, is still difficult if one wishes to obtain the same 
result value distribution. 
ASAP’s uncertainty model supports many options for how 
to represent values. The choice of representation has a very 
large impact on system performance. The main novelty of 
the ASAP approach is to trade accuracy in the uncertainty 
measure for ease of processing by allowing the system to 
choose among and convert between these various 
representations.  
One way to alter representations is to choose among R1, 
R2, or R3.  For example, a query on two arrays, each using 
R1, could more efficiently produce a result using R2 or R3. 
Such conversions between representations can be done as 
each query operator is applied. Not only these less-detailed 
representations seem to be sufficient and perhaps even 
more appropriate for most of our target applications, but 
also they make query processing on probabilistic data 
tractable (i.e., the cost is linear in the number of processed 
tuples).  
Another strategy ASAP will use involves choosing the 
granularity at which to assign uncertainty values. For 
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example, we can assign uncertainty to each cell in the array 
or to the array as a whole.  In between these extremes, we 
can carve the array up into rectangles and assign an 
uncertainty measure to each such region.  For example, we 
can divide a square array into 4 equal-sized quadrants, each 
with its own distribution. Each cell in a quadrant is thus 
assumed to have the same distribution “shape”, only 
differing by their expected values. 

6.2 Lineage Tracking 
ASAP also contains a specialized lineage array that 
encodes the queries that have been entered to produce all 
target arrays, along with the source arrays they are derived 
from. In effect, this can be thought of as the derivation 
history of all materialized views. If done at the individual 
tuple level, tracking lineage can become very expensive 
and even NP-Hard for some operations [Wid05]. Thus, 
ASAP chooses to record only the processing (cooking 
recipe) that generated any given array. This capability also 
takes much less space and at present seems to be sufficient 
to meet the needs of many scientific applications that we 
are familiar with. 

7. Now What? 
The previous section indicated a collection of markets 
where a very noticeable performance differential can be 
realized with a custom architecture. It is obvious that the 
four markets have conflicting architectural requirements. 
Hence, they cannot be addressed with an OSFA DBMS.  
As a result, there are several possible ways that DBMS 
architectures could evolve off in to the future: 
! Yawn (no change). One could argue that RDBMSs 

are fast enough to meet the needs of most of the 
customers in these four areas. Hence, there will be a 
few niche solutions to address the high end of any 
market, with RDBMS capturing the remainder of the 
customers. 
Although one might argue this point of view in 
markets 3 and 4, it is a bit difficult to make a serious 
case for this in markets 1 and 2. Especially in 
warehouse applications, where the data volumes and 
query complexity are going through the roof, this is a 
difficult position to defend. 

! K Systems united by a common parser. One could 
argue that there will be some number, K, of engines, 
where K is determined by the number of non-trivial 
markets with specialized requirements. However, these 
can all be hidden under a common parser, with the 
actual user command directed to the correct engine.   
The effort to construct a common version of 
StreamSQL, which unites historical and streaming 
data, is a step in this direction. Whether this tactic can 
come to fruition in stream processing, let alone the 

other markets indicated in this paper, is anybody’s 
guess. 

! K Systems using abstract data types. Another 
possibility is to build what amounts to a complete 
engine within the extension systems present in current 
DBMSs. For example, a complete column store could 
be built as an extension. The net result is a different, 
less pleasant syntax, for something like the previous 
solution. 

! Data Federation. One could simply come to grips 
with the fact that there will be a number of, basically 
incompatible, systems, and “adaptors” are required to 
map between them. This will be the “full employment 
act” for computer scientists for a long time to come, 
because mapping between different systems has 
proved semantically troublesome for the last 30 or so 
years, and shows no signs of getting easier anytime 
soon. 

! From Scratch Rewrite. It is conceivable that a single 
code line could be architected with sufficient 
generality to encompass all of the requirements noted 
in this paper. For example, one could design a 
“morphing” ChunkyStore that could move between a 
row store and a column store, with various 
ChunkyStore alternatives in between. Such a storage 
system requires an optimizer and executor with 
dramatically more generality than current systems. It is 
conceivable that one could also construct a system that 
ran in client-server or embedded mode, and had some 
sort of “fast path” for text search. 

The old adage comes to mind at this point “may you be 
blessed to live in interesting times”. In our opinion, the 
next decade will be an interesting time to be active in the 
DBMS field as vendors cope with the choices laid out 
above. Also, there is an obvious charge to DBMS 
researchers; namely find an application area where OSFA 
does not work and figure out what does. 
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