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ABSTRACT 
Current web search engines essentially conduct document-level 
ranking and retrieval. However, structured information about real-
world objects embedded in static webpages and online databases 
exists in huge amounts. We explore a new paradigm to enable 
web search at the object level in this paper, extracting and 
integrating web information for objects relevant to a specific 
application domain. We then rank these objects in terms of their 
relevance and popularity in answering user queries. In this paper, 
we introduce the overview and core technologies of object-level 
vertical search engines that have been implemented in two 
working systems: Libra Academic Search (http://libra.msra.cn) 
and Windows Live Product Search (http://products.live.com). 
  

Keywords 
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1. INTRODUCTION 
The primary function of current web search engines is essentially 
relevance ranking at the webpage level (i.e. Page-level Search), an 
information retrieval paradigm for more than 25 years. We believe 
that within a few years these types of general web search 
technologies will become commodity. In this paper, we are 
considering a paradigm shift to enable searching at the object 
level.  
A large portion of the web is inherently (semi-)structured, and 
provides information for various kinds of real-world objects (i.e. 
entities). Typical objects are products, people, papers, 
organizations, and the like. We can imagine that if these objects 
can be extracted from the web and integrated in structured 
databases, powerful object-level search engines can be built to 
more precisely meet users' information needs. This is especially 
true for vertical search domains, such as academic search, product 
search, people search, and restaurant search. In these vertical 
domains, people are really interested in information about specific 
objects, not the pages themselves. For example, researchers 
always want to find information about conferences, journals and  

 

 

Figure 1. Ranking Relevant Authors, Conferences, and 
Journals in Libra Academic Search 

 

other researchers. If one wanted to find information about the top 
world researchers within a particular domain and tried a query in a 
basic page-level search engine, it could be very difficult to find 
popular researchers. Our object-level search engines, however, 
specifically provide lists of researchers, and extract and integrate 
the desired information (See Figure 1 for an example list of 
researchers for the query “data mining”).  

In Table 1, we compare object-level and page-level search. In 
page-level search, webpages are the basic retrieval units, and the 
information in a page is treated as a bag of words. Information 
retrieval technologies are used as core technologies to answer user 
queries, while object-level search uncovers structured information 
about real-world objects that are the retrieval units. One obvious 
advantage of object-level search is its capability of answering 
complex queries with direct and aggregate answers because of the 
availability of semantics defined by the object schema. Otherwise, 
it could take one several hours to sift through hundreds of 
webpages returned by a page-level search engine.  

The challenge here is where and how to obtain high-quality 
structured data needed by an object-level search engine, and how 
to rank resulting objects to return the most relevant ones. 

To illustrate the power of this new generation of web search, we 
have built a scientific web search engine called Libra (See Figure 
1. http://libra.msra.cn) to evaluate various object-level web search  
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Table 1. Object-Level Search vs. Page-Level Search 

 
techniques undertaken. We believe it is more advanced than the 
existing page-level academic search engines. In Libra, each 
researcher, scientific paper, conference, journal, and interest 
group is treated as a web object. We extract and integrate the 
information from multiple sources including ACM Digital Library, 
DBLP, and CiteSeer, and others.  Objects can be retrieved and 
ranked according to their relevance to the query and their 
popularity. As a result of information extraction and integration, 
the system is essentially a web data warehouse with the capability 
of handling structured queries. We are currently working on 
applying Libra technologies to building Window Live Product 
Search (See Figure 2. http://products.live.com). 

Until now, the Beta release of Window Live Product Search has 
incorporated our product page classification and extraction 
techniques. After the first month running, we have already 
indexed more than 100,000 sellers, 31,627,416 commercial pages, 
and 800 million automatically extracted product records. We 
believe we could make Window Live Product Search the largest 
product catalog in the world by using object-level vertical search 
technologies. 

 

 Figure 2. Window Live Product Search with our Product 
Page Classification and Extraction techniques. 

 

 
The rest of the paper is organized as follows. In the next section, 
we outline the requirements of an object-level vertical search 
engine. Section 3 introduces the system architecture and core 
techniques. We then discuss subsystem integration. In Section 5, 
we emphasize the need for a new infrastructure to support object-
level vertical search. Section 6 discusses related work. Section 7 
presents our conclusion.  
 

2. Requirements 
The requirements for a large-scale object-level vertical search 
engine are as follows: 

1. Reliability: High quality structured data is necessary to 
generate direct and aggregate answers. If the underlying data 
are not reliable, then the users may prefer sifting the 
webpages to find answers rather than trust the noisy direct 
answers returned by an object-level vertical search engine; 

2. Completeness: We want our data to be as complete as 
possible to provide trustworthy answers; 

3. Ranking Accuracy: With billions of potential answers to a 
query, an optimal ranking mechanism is critical for locating 
relevant object information.  

4. Scalability: Since our object-level vertical search engines 
should include all the information within a vertical domain 
both on the web and in local databases, the object warehouse 
could be enormous. For example, according to our empirical 
study of 51,000 randomly crawled webpages, we found that 
more than ten percent of webpages are product pages. So, if 
we include both the product information extracted from 
crawled webpages and product data feeds from e-commerce 
databases in a search engine, this could entail dealing with 
billions of data records. We need to incorporate large-scale 
data processing technologies to make our structured data 
retrieval scalable. 

In the following sections, we will introduce the system 
architecture and infrastructure design with these requirements in 
mind. 

 

3. SYSTEM ARCHITECTURE  & CORE 
TECHNIQUES 
In this section, we discuss the system architecture and core 
techniques of object-level vertical search engines.  

Figure 3 shows the brief architecture of an object-level vertical 
search engine. First, a crawler fetches web data related to the 
targeted objects within a specific vertical domain, and the crawled 
data is classified into different categories, such as papers, authors, 
products, and locations. For each category, a specific entity 
extractor is built to extract objects from the web data. At the same 
time, information about the same object is aggregated from 
multiple different data sources. Once objects are extracted and 
aggregated, they are put into the object warehouses, and vertical 
search engines can be constructed based on the object warehouses. 
Moreover, advanced object-level ranking and mining techniques 
can be applied to make search more accurate and intelligent. 
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Figure 3. System Architecture 

 

3.1 Crawler and Classifier 
The tasks of the crawler and classifier are to automatically collect 
all relevant webpages/documents that contain object information 
for a specific vertical domain. The crawled webpages/documents 
will be passed to the corresponding object extractor for extracting 
the structured object information and building the object 
warehouse. 

3.1.1 Insight 
If we use the nodes to denote the objects and edges to denote the 
relationship links between the objects, we can see that the objects 
information with a vertical domain forms an object relationship 
graph. For example, in Libra academic search, we have three 
different types of nodes to representing papers, authors,  and 
conferences/journals, and three different types of edges (i.e. links) 
pointing to paper objects that represent three varying types of 
relationships. They are cited-by, authored-by, and published-by. 
The ultimate goal of the crawler is to effectively and efficiently 
collect relevant webpages and to build a complete object 
relationship graph with as many nodes and edges and as many 
attribute values for each node as possible (assuming we have 
perfect extractors and aggregators). 

3.1.2 Our Approach  
We build a “focused” crawler that uses the page classifier and the 
existing partial object relationship graph to guide the crawling 
process. Basically, in addition to the web graph which is used by 
most page-level crawlers, we employ an object relationship graph 
to guide our crawling algorithm.  

Since the classifier is coupled with the crawler, it needs to be very 
fast to ensure efficient crawling. Based on our experience in 
building a classifier for Libra and Windows Live Product Search, 
we found that we could always use some strong heuristics to 
quickly prune most of irrelevant pages. For example, in our 
product pages classifier, we can use the price identifiers (such as 
dollar signs $) to efficiently prune most non-product pages. The 
average time of our product classifier is around 0.1 millisecond, 
and its precision is around 0.8, with recall around 0.9. 

 

Figure 4. An Object Block with 6 Elements (contained in the 
red rectangle) in a Webpage. 

 

3.2 Object Extractor  
Information (e.g. attributes) about a web object is usually 
distributed in many web sources and within small segments of 
webpages. The task of an object extractor is to extract metadata 
about a given type of objects from every web page containing this 
type of objects. For example, for each crawled product web page, 
we extract name, image, price and description of each product. If 
all of these product pages or just half of them are correctly 
extracted, we will have a huge collection of metadata about real-
world products that could be used for further knowledge 
discovery and query answering. Our statistical study on 51,000 
randomly crawled webpages shows that about 12.6 percent are 
product pages. That is, there are about 1 billion product pages 
within a search index containing 9 billion crawled webpages.  

However, how to extract product information from webpages 
generated by many (maybe tens of thousands of) different 
templates is non-trivial. One possible solution is that we first 
distinguish webpages generated by different templates, and then 
build an extractor for each template. We say that this type of 
solution is template-dependent. However, accurately identifying 
webpages for each template is not a trivial task because even 
webpages from the same website may be generated by dozens of 
templates. Even if we can distinguish webpages, template-
dependent methods are still impractical because learning and 
maintenance of so many different extractors for different 
templates will require substantial efforts. 

3.2.1 Insight 
By empirically studying webpages across websites about the same 
type of objects across web sites, we find many template-
independent features. 

 Information about an object in a web page is generally 
grouped together as an object block, as shown in Figure 4. 
Using existing web page segmentation [7] and data record 
extraction technologies [35], we can automatically detect 
these object blocks, which we further segment into atomic 
extraction entities called object elements. Each object 
element provides partial information about a single attribute 
of the web object.  
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Table 2. Statistical Results for Objects from Both Product 

Pages and Homepages. (We have used “DESC” instead of 

“DESC-RIPTION” and “TEL” instead of “TELEPHONE” 

for space.) 

  PRODUCT BEFORE HOMEPAGE BEFORE 

(NAME, DESC) 1.000 (NAME, TEL) 1.000 
(NAME, PRICE) 0.987 (NAME, EMAIL) 1.000 
(IMAGE, NAME) 0.941 (NAME, ADDRESS) 1.000 
(IMAGE, PRICE) 0.964 (ADDRESS, EMAIL) 0.847 
(IMAGE, DESC) 0.977 (ADDRESS, TEL) 0.906 

 

 Our empirical study shows that strong sequencing 
characteristics exist for web objects of the same type across 
different web sites. To demonstrate that strong sequencing 
characteristics exist, we conduct our statistical study on two 
types of web objects, products and researchers’ homepages.  
Specifically, we randomly collect 100 product pages (which 
contain 964 product blocks) and 120 homepages from 
different web sites. For product objects, the attributes 
“name”, “image”, “price” and “description” are surveyed. 
For researchers’ homepages, the attributes “name”, 
“telephone”, “email” and “address” are considered. We 
decide the sequence order of the elements in a web page in a 
top-down and left-right manner based on their position 
information. Basically, the element in the top level will be 
ahead of all the elements below it and for the elements at the 
same level, the left elements will be ahead of their right 
elements. As we can see from Table 2, strong sequence 
characteristics exist for among most attribute pairs in both 
object types. For example, a product’s name is always ahead 
of its description in all the pages. 

3.2.2 Template-Independent Web Object Extraction 
We propose template-independent metadata extraction techniques 
for the same type of objects. Specifically in [43][61][62], we 
extended the linear-chain Conditional Random Fields (CRFs) [31] 
which are the state of the art approaches in information extraction 
taking advantage of the sequencing characteristics to do better 
labeling. 

3.2.2.1 2D Conditional Random Fields 
In order to use the existing linear-chain CRFs for Web object 
extraction, we have to first convert a two-dimensional object 
block (i.e. an object block whose elements are two-dimensionally 
laid out) into a sequence of object elements. Given the two-
dimensional nature of object blocks, how to sequentialize them in 
a meaningful way could be very challenging. Moreover, as shown 
by our empirical evaluation, using the two-dimensional 
neighborhood dependencies (i.e. interactions between labels of an 
element and its neighbors in both vertical and horizontal 
directions) in Web object extraction could significantly improve 
the extraction accuracy. 

To better incorporate the two-dimensional neighborhood 
dependencies, a two-dimensional Conditional Random Field (2D 
CRF) model is proposed in [61]. We present the graphical 
representation of the 2D CRF model as a 2D grid (See Figure 5)  

 

 

 

 

 

 

 

 

 

Figure 5. The Graphical Structure of 2D CRFs 

 

and reformulate the conditional distribution by defining some 
matrix random variables. Then we deduce the forward-backward 
vectors based on the reformulated conditional distribution for 
efficient parameter estimation and labeling. Since the sizes of the 
elements in an object block can be arbitrary, we introduce the 
concept of virtual states to model an object block as a 2D grid. 
We compare our model with linear-chain CRF models for product 
information extraction and the experimental results show that our 
model significantly outperforms linear-chain CRF models in 
scenarios with two-dimensional neighborhood dependencies. 

3.2.2.2 Hierarchical Conditional Random Fields 
In traditional information extraction work, there is no clear 
definition of object extraction, and hence no discussion on how to 
link data record (i.e. object block) detection work with object 
attribute labeling. Although we can build a template-independent 
object extractor by first using the techniques in [7] or [35] to 
detect the data records and then use the techniques in [61] to label 
the data elements within the detected records. However, it is 
highly ineffective to use decoupled strategies – attempting to do 
data record detection and attribute labeling in two separate phases. 
This is because: 

Error Propagation: Since record detection and attribute labeling 
are two separate phases, the errors in record detection will be 
propagated to attribute labeling. Thus, the overall performance is 
limited and up-bounded by that of record detection. Suppose the 
record detection and attribute labeling have precisions 0.8 and 0.9 
respectively, then the overall precision will be no more than 0.8. 
And, if they also perform independently, the precision will be 
0.72. 

Lack of Semantics in Record Detection: Human readers always 
take into account the semantics of the text to understand 
Webpages. For instance, in Figure 4, when claiming a block is a 
data record, we use the evidence that it contains a product's name, 
image, price and description. Thus, a more effective record 
detection algorithm should take into account the semantics of the 
text, but existing methods [7][35][34] do not consider that. 

Lack of Mutual Interactions in Attribute Labeling: The data 
records in the same page are related. They always share a common 
template and the elements at the same position of different records 
always have similar features and semantics. For example, in 
Figure 6(a) the button "Add to Cart" appears in the same position 
in all three data records and the element on the left-top of each 
record is an image. So, if we label the elements of the records 
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within the same page together in a collective manner, it is easier 
for us to detect that the repeated elements "Add to Cart" are less 
informative and more likely to be noise. However, our 2D CRF 
approach [61] fails to consider that because the data records are 
independently labeled. 

First-Order Markov Assumption: For Webpages and especially 
for detail pages (i.e. Webpages only containing detailed 
information about a single object), long distance dependencies 
always exist between different attribute elements. This is because 
there are always many irrelevant elements (i.e. noise) appearing 
between the attributes of an object. For example, in Figure 6(b) 
there is substantial noise, such as "Add to Cart" and "Select 
Quantity" between the price and description. However, 2D CRFs 
[61] cannot incorporate these long distance dependencies because 
of its first-order Markov assumption (i.e. only the dependencies of 
neighboring nodes are considered and represented. 

In [62], we introduce a novel graphical model called Hierarchical 
Conditional Random Field (HCRF) model to jointly optimize 
record detection and attribute labeling.  

By using the vision-based page segmentation (VIPS) technology 
[7], which makes use of page layout features such as font, color, 
and size to construct a vision-tree for a Web page, we can get a 
better representation of a page compared with commonly used 
tag-tree. Given a vision-tree, record detection can be considered 
as the task of locating the minimum set of elements that contain 
the content of a record. In this way, both record detection and 
attribute labeling become the task of assigning labels to the nodes 
on a vision-tree, so they can be integrated in one probabilistic 
model as in this paper. In contrast to existing decoupled strategies 
that perform record detection and attribute labeling as two 
separate phases, our approach leverages the labeling results of 
attribute labeling for record detection, and at the same time 
benefits from the incorporation of some global features based on 
tree-alignment for attribute labeling. As a conditional model [31], 
HCRF can efficiently incorporate any useful features for Web data 
extraction. By incorporating hierarchical interactions, HCRF 
could incorporate long distance dependencies and achieve 
promising results on detail Webpages. 

Our Empirical studies show that mutual enhancement of record 
detection and attribute labeling could be achieved in our joint 
approach, and HCRFs could perform very promisingly on detail 
webpages. 

 

3.3 Object Aggregator 
Each extracted web object need to be mapped to a real world 
object and stored into a web data warehouse. To do so, the object 
aggregator needs to integrate information about the same object 
and disambiguate different objects. This is a typical 
information/data integration problem and usually includes two 
subproblems: 

 An object has multiple inconsistent attribute values, arising 
from the inconsistent formats, spelling mistakes, and so on. 
For instance, both “WWW” and “World Wide web 
Conference” could refer to the same conference; 

 An object type has few other attributes other than its name, 
and targets to distinguish among two or more objects which 
share the same name. For example, when you search for the 
publications of “Lei Zhang”, a very common Chinese name, 
in DBLP, different author objects are mixed in the same 
webpage (see Figure 7). 

Although both of the subproblems need to be dealt with in 
practical applications, the latter one relies more on additional 
information in addition to the attribute values, and is challenging 
especially when there are few attributes. The former subproblem 
has attracted extensive attention, while relatively little work has 
been done in the latter one. Unfortunately, the latter is a common 
problem in our object-level vertical search scenarios. For example, 
in our Libra academic search scenario, we seem to have little 
information about author objects except their names, which is 
reliable indicator for use in disambiguating different real-world 
authors for two different papers. In our Product search scenario 
we face the same problem of product name disambiguation 
problem. 

Some recent work [11] proposes the exploitation of connection 
via object relationships in the object-relationship graph, in 
addition to the available object attribute values, for name 
disambiguation. The assumption behind their approaches is that, if 
two identical names in different contexts refer to the same object, 
they are more likely to be strongly connected on the entity-
relationship graph. For example, if two "Lei Zhangs" refer to the 
same person, it is very likely that they share some coauthors, 
references, or are indirectly related by a chain of relationships. 
Based on this assumption, two identical names are detected as 
referring to the same object only when the connection strength 
between them is stronger than a predefined threshold. 

 

Figure 6(b). A Detail Page Containing Detailed 
Information about a Product. 

Figure 6(a). A Sample Webpage with Two Similar Data 
Records Which are Contained in Red Boxes. 
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3.3.1 Insight 
In real applications, many relationships may be missing in local 
datasets. For example, some citation links between papers are 
missing in Libra because of the limitation of reference extraction 
techniques. In such cases, for two author name appearances that 
refer to the same author, the connection strength  may not be 
strong enough and the existing connection-based approaches will 
fail to detect them as a match. Therefore, an approach that 
leverages more information besides the connection evidence in the 
local dataset (i.e. local connection) is desired. 

Based on our experience with author name disambiguation in 
Libra academic search and product name disambiguation in 
Window Live Product Search, we found that, for different object 
appearances with identical names referring to the same object, 
their contexts should be strongly connected with each other on the 
web. We call such connections web Connections. For example, in 
the Libra scenarios, we find that authors may list their papers on 
their homepages. So if two papers are listed together on the same 
web page, their authors with the same name are more likely to be 
the same real-world author. In product search scenarios, we find 
that different offers from multiple ecommerce websites about the 
same product are generally listed together by various shopping 
aggregator websites for comparison. 

3.3.2 Object Identification using Web Connections 
We measure the web connection between two object appearances 
based on the co-occurrences of their contexts in a website (or 
webpage). The co-occurrence information could be easily 
obtained by sending the context information as queries to a search 
engine (e.g., Google, MSN Search). However it is non-trivial to 
measure the web connection strength based on the co-occurrence 
information, since co-occurrences in different websites usually 
indicate quite different connection strengths. For example, to 
determine whether two identical author names of two papers refer 
to the same person, the co-occurrences of their papers in the 
website of a small research lab usually provides stronger 
connection than the co-occurrences in DBLP. This is because the 
former co-occurrence most likely indicates that the papers are 
related to the small lab, while the latter one only shows that these 
papers are in the computer science domain. Moreover, even 
different co-occurrences in the same website need to be 
discriminated (e.g., co-occurrences in the same webpage usually 
indicate stronger connection than those in different webpages.). 
To handle these issues, our measure of web connection not only 

discriminates the relative importance of different websites, but 
also considers the URL distance between webpages inside a 
website. 

Practical Considerations: There are still some issues in 
computing the Web connection. First, when only a search engine 
is given, all the Web sites are "hidden" behind the search interface, 
and cannot be obtained beforehand. Second, even if all the Web 
sites are known beforehand (e.g., we have already indexed the 
Web corpora locally), there are usually billions of Web sites in 
Web corpora, and to train a connection function handling such a 
high dimension is infeasible. We introduce a practical solution to 
compute web connections based on our observations on the Web 
corpora according to a study in Libra: 

First of all, the coverage distribution of a given type of objects 
among different websites usually obeys a power-law distribution. 
By the study on the distribution of around 1 million papers of 
Libra in the Web corpora (using the paper titles to get the Web 
occurrences of paper objects), as illustrated in Figure 8, only a 
few sites are the ones with high coverage (i.e. large number of 
academic papers); while the “massive many” are the sites which 
rarely contain papers. Most of the websites with relatively higher 
coverage are the ones which provide paper search service or the 
websites of prestigious research organizations. 

Second, although co-occurrences of two context-objects in 
different sites are of different importance for name disambiguation 
and are not necessarily proportional to the inverse coverage score, 
we find that co-occurrences of context-objects in sites with 
extremely low coverage score (i.e., the sites whose coverage 
scores are below a certain threshold) always provide strong 
enough evidence for a correct match. For example, we found that 
the following two papers "Emergent Semantics from 
Folksonomies: A Quantitative Study" and "Integrating Web 
Services into Ontology-based Web Portal" could both be found in 
http://apex.sjtu.edu.cn/, a site of a small research group focusing 
on knowledge management,  and the authors "Lei Zhang" of those 
two papers are actually the same person. For the purpose of 
convenience, we call these sites as small hubs, while the ones with 
high coverage score are called as big hubs. 

Based on the prior observations, we can make the following 
assumption for name disambiguation:  

For two name appearances 1A and 2A   with the same name, if their 

context-objects are found to co-occur in one of the small hubs 
(whose coverage scores are below a certain threshold), 1A and 2A  

most likely refer to the same object. 

The assumption above is more likely to be valid when a 
conservative threshold is set. 

Third, it is feasible to discover the big hubs for a certain type of 
objects with a few times of probing. Figure 9 shows the growth of 
the number of newly discovered big hubs (i.e. Websites with 
coverage scores greater than 1%) when we use paper titles to 
probe the Web corpora. We observe that the newly discovered big 
hubs tends to converge after only around 600 probes of papers, 
while there are around 1 million papers in our dataset. Note that 
the sample papers for probing are randomly selected, and there is 
no bias in it. 

Based on the above three observations, our name disambiguation 
approach considers two object appearances with the same name as  

Figure 7. Three Persons Found in the DBLP Page for 
“Lei Zhang”. 
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Figure 8.  Power Law Distribution of Paper Frequencies of 

Websites. 
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Figure 9.  The Growth of Big Hub (>1%) Numbers by 

Randomly Probing 

 

the same object once their context-object information is found in a 
small hub. For the appearance pairs where there is no co-
occurrence in any small hub, we need to compute the Web 
connection strength for all their co-occurrences in big hubs. As 
shown in the above observation, the number of big hubs is 
relatively limited, so it becomes feasible to train an adaptive 
connection function which gives suitable weights to the co-
occurrences in these big hubs. 

As we mentioned before, we use a coverage threshold to 
determine which websites/webpages are small hubs. We use the 
labeled dataset (i.e. training data) to empirically select a good 
coverage threshold. Specifically, we try several different coverage 
thresholds, and for each threshold, we simply use the co-
occurrences in small hubs for name disambiguation in the labeled 
dataset without considering the co-occurrences in the big hubs. 
For each tried coverage threshold setting, we observe the 
precision result. Generally, the higher the threshold is, the lower 
the precision will be. We usually set a relatively conservative 
threshold to ensure the precision. 

 

3.4 Object-level Ranking and Analysis  
After information extraction and integration we construct the 
relationship graph between web objects. By performing link 
analysis on this object relationship graph, we can compute the 
importance of a web object or discover other interesting 
knowledge or patterns that are impossible to obtain in the 
traditional web graph. 

On the traditional web graph, different pages have different 
popularity according to their in-links. Technologies such as 
PageRank [46] and HITS [29] have been successfully applied to 
distinguish the popularity of different webpages through 
analyzing the link structure in the web graph. It is obvious that, in  

 

 
 

Figure 10. Paper Object Relationship Graph 
 
the object graph, objects are also not equally popular. Take the 
research domain as an example. Only several top conferences 
within a research field can attract high quality papers, and their 
papers are more likely to be read. To help users quickly locate 
their interested objects, we should calculate the popularity of 
collected objects. Because it is clear that the more popular the 
objects are, the more likely they will be interested by a user. So a 
natural question is: could the popularity of web objects be 
effectively computed by also applying link analysis techniques? 
According to our experience in building Libra academic search, 
the answer to the question is yes, but quite different technologies 
are required because of the unique characteristics of object graph. 
For link analysis, the most unique characteristics of the object 
graph is the heterogeneity of links, i.e., objects are related to each 
other through different types of relationships. For example, a 
paper object may be cited by a set of other paper objects, written 
by a set of author objects, and published in a conference/journal 
object (See Figure 10). So there are three kinds of different links 
in the graph: cited-by, authored-by and published-by and they 
have quite different semantics. The traditional link analysis 
methods including PageRank and HITS assume that all the links 
are with the same "endorsement" semantics and equally important, 
directly applying these methods would result in unreasonable 
popularity ranking. For example, the popularity of a paper should 
not be affected too much by the number of authors, and the 
number of citations does have a large impact on it. We add a 
popularity propagation factor (PPF) to each link of the object 
relationship graph pointing to an object, and uses different 
propagation factors for links of different types of relationships 
[42]. For example, for the links pointing to a paper object, we 
need three propagation factors for the three different types of 
relationships: cited-by, authored-by, and published-by, 
respectively. However manually assigning these factors to make 
the popularity ranking reasonable is extremely challenging. With a 
huge link graph, it is difficult for us to tell which types of links are 
more important and even harder to quantify their exact importance. 

3.4.1 Insight 
Base on our experience in building Libra academic search, it is 
always easier for us to collect some partial ranking of the objects 
from domain experts. For example, as researchers, we know the 
order of the top conferences or journals within our research field, 
and we may also know which papers are more popular. 

3.4.2 PopRank Model  
We propose PopRank, a method to measure the popularity of web 
objects in an object graph. It extends the PageRank model by 
using different propagation factors for links of different types of 
relationships. We propose a learning based approach to 
automatically learn the popularity propagation factors for different 
types of links using the partial ranking of the objects given by 
domain experts. The simulated annealing algorithm is used to 
explore the search space of all possible combinations of 
propagation factors and to iteratively reduce the difference 
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between the partial ranking from the domain experts and that from 
our learned model. 
One major challenging problem facing our learning approach is 
that it is prohibitively expensive to try hundreds of combinations 
of feasible factors which are normally needed for us to get a 
reasonable assignment of the propagation factors. It may take 
hours to compute the PopRank of the objects to test the optimality 
of a PPF factor assignment. In order to make the learning time 
manageable, we propose the use of a subgraph of the entire object 
link graph in the learning process. As soon as we have most of the 
related objects and their links surrounding the training objects, we 
should be able to calculate a close approximation of the PopRank 
of these training objects. Since we are not interested in finding the 
exact rank scores but the relative rank of these training objects, 
little reduction of accuracy will not affect the optimality of the 
assignment too much. However, in cases where the object link 
graph is prohibitively large, one might have to trade optimality for 
efficiency. The PopRank link analysis model has been evaluated 
in the context of Libra academic search. Our experimental results 
on Libra show that PopRank can achieve significantly better 
ranking results than naively applying PageRank on the object 
graph. 

4. Putting Together: Integrating Subsystems 
In this section, we mainly discuss how we integrate all the 
subsystems together to achieve overall high performance. Since 
data quality is the most important factor to evaluate the overall 
performance of object-level vertical search engine, we will focus 
on how to improve the overall data quality, mainly on improving 
the extraction accuracy.   

4.1 Validation across Multiple Sources and 
Subsystems 
Because of the arbitrary nature of the web data, it’s challenging to 
achieve perfect extraction, especially when we want to only train a 
single extractor for all webpages containing the same type of 
objects.  Fortunately, the information on the web is always 
redundant, and could be used for validation across these 
redundant sources. For example, the paper meta-data could be 
extracted from author homepages and from PDF files. From PDF 
files, we could extract the paper metadata both from their header 
and from their references. At the same time these metadata are 
also available from web databases such as ACM Digital Library, 
IEEE Digital Library. 

If we could find the same metadata twice we could be ensured that 
our extraction is correct. Of course, here we have to use the object 
integration subsystem to match difference occurrences about the 
same paper to enable the validation function.   

 

4.2 Object Retrieval Model Insensitive to 
Extraction Error 
In traditional IR models, documents are taken as the retrieval units 
and the content of documents is considered reliable. However, the 
reliability assumption is no longer valid in the object retrieval 
context. There are several possible routes to introduce errors in 
object contents during the process of object extraction:  

• Source-level error: Since the quality of web sources can 
vary significantly, some information about an object in some 
sources may be simply wrong. 

• Record-level error: Due to the huge number of web sources, 
automatic approaches are commonly used to locate and extract the 
data records from webpages or web databases. It is inevitable that 
the record extraction (i.e. detection) process will introduce 
additional errors. The extracted records may miss some key 
information or include some irrelevant information, or both. 

• Attribute-level error: Even if the web source is reliable and 
the object contents are correctly detected, the description of an 
object (i.e. object element labeling) may be still wrong because of 
incorrect attribute value extraction. For example, it is very 
common to label a product name by brand, or vice versa. In 
Citeseer, we usually find that author names are concatenated to 
paper titles, or some names are missing. 

We focus on this unreliability problem in web object retrieval. 
Our basic ideas are based on two principles. First, as described 
above, errors can be introduced in both the record level and 
attribute level. Moreover, as errors will be propagated along the 
extraction process in decoupled object extraction techniques, the 
accuracy of attribute extraction is surely lower than that of record 
extraction. However, separating record contents into multiple 
attributes will bring more information than just treating all 
contents in a record as a unit. Therefore, it is desirable to combine 
both record-level representation and attribute-level representation. 
We hope that by combing representations of multiple levels our 
method is insensitive to extraction error. Second, multiple copies 
of information about the same object usually exist. These copies 
may be inconsistent because of diverse web site qualities and the 
limited performance of current information extraction techniques. 
If we simply combine the noisy and inaccurate object information 
extracted from different sources, we will not be able to achieve 
satisfactory ranking results. Therefore, we need to distinguish the 
quality of the records and attributes from different sources and 
trust data of high reliability more and data of low reliability less. 
We hope that even when data from some sites have low reliability, 
we can still get good retrieval performance if some copies of the 
objects have higher reliability. In other words, our method should 
also take advantage of multiple copies of one object to achieve 
stable performance despite varying qualities of the copies. 

Based on the above arguments, our goal is to design retrieval 
models insensitive to data errors and that can achieve stable 
performance for data with varying extraction accuracies. 
Specifically, we propose several language models for Web object 
retrieval, namely a record-level representation model, an attribute-
level representation model, and a model balancing record-level 
and attribute-level representations. We test these models on our 
Libra Academic Search and compare their performance. We 
conclude that the best model is the one combining both record-
level and attribute-level evidence and taking into account of the 
errors at different levels.  

5. Infrastructure 
Once we crawl, extract, and integrate objects from the web, we 
need an effective infrastructure to store, index, query, and analyze 
them. In our object-level vertical search scenarios, a good 
infrastructure should provide support to the following 
requirements: 

1. It can accommodate large amount of (semi-)structured 
data with flexible schemas. It should also support sparse 
columns and on-line schema changes. To provide a 
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uniform infrastructure to support different vertical domains, 
a flexible scheme definition mechanism is needed. In 
addition, we usually need to change the schemas in real 
applications. For example, when we first built the product 
search engine, the initial schema contains attributes like 
name, price, description, and image. Then, for objects about 
digital cameras, we want to add more attributes, such as 
pixel, memory, resolution, etc., and for some other objects 
about cars, we want to add attributes like color, engine, seats, 
safety, etc. So, the schemas may change frequently and at 
the same time some columns are unavoidably sparse since 
they are only meaningful for subsets of data. 

2. It needs to support rich queries that exploit both the 
structure and content information. In other words, both 
(limited) SQL-style structured query and IR-style 
keyword query should be supported and combined. In 
search scenarios, all of the data will be directly retrieved by 
end users. So, query syntax needs to be user-friendly and 
simple. Keyword query will be commonly used to search 
across the objects. On the other hand, advanced users would 
like to leverage structure information to get more accurate 
and focused answers. Therefore, structured query capability, 
such as range query and aggregation, is also necessary.  

3. The infrastructure should run on clusters of commodity 
machines. Distributed data processing capabilities like 
data partition, load balancing, parallel execution, 
replication, fail-over, and recovery should be supported. 
The huge data volume and huge query volume make 
distributed system the best choice for building a search 
engine. Google File System [22] demonstrates that a robust 
and efficient storage system built on thousands of 
commodity machines is the key to the success of a modern 
search engine. For object-level vertical search, such a kind 
of large-scale distributed system is also crucial. 

We argue that both the existing search engine infrastructures and 
relational database systems cannot fully meet the above 
requirements. We are working on building a new infrastructure 
from scratch to manage large-scale web objects. This 
infrastructure can be either viewed as a light and scalable 
distributed database system, or a search engine supporting 
structured data processing. Moreover, we are also exploiting some 
new technologies (e.g. C-Store [51]) to see if they are compatible 
with our requirements. 

Currently, there is a strong tendency to combine or merge 
database system and information retrieval system. The 
infrastructure we are building can be taken as one case of the 
DB+IR movement, in a more concrete application scenario. 

6. Related Work 
We classify the related work into the following categories align 
with the core techniques in object-level vertical search: Web 
object extraction, name disambiguation, object-level link analysis, 
and object relevance ranking. 

6.1 Web Object Extraction 
Wrapper learning approaches like [40][30] are template-
dependent. They take in some manually labeled Webpages and 
learn some extraction rules (i.e. wrappers). Since the learned 
wrappers can only be used to extract data from similar pages, 

maintaining the wrappers as Web sites change will require great 
efforts. Furthermore, in wrapper learning, a user must provide 
explicit information about each template. Even if the wrapper 
learning is efficient, a system that extracts data from many Web 
sites, as in our application, will be expensive to train. [60][18] 
[6][10] are also template-dependent, but they do not need 
manually labeled training samples. They automatically produce 
wrappers from a collection of similar Webpages. [1][14] take a 
collection of pages which are assumed to be generated by a 
common template to deduce the unknown template. Then, the 
deduced template is used to extract data from similar Webpages. 

[59][34] are two template-independent methods. [34] segments 
data on list pages using the information contained in their detail 
pages. The need of detail pages is a limitation because 
automatically identifying links that point to detail pages is non-
trivial and there are also many pages that do not have detail pages 
behind them. [59] mines data records by string matching and also 
incorporates some visual features to achieve better performance. 
However, [59] detects data records only using tree regularities and 
not consider semantics. Furthermore, the data extracted by 
[34][59] have no semantic labels.  

[21] treats Web information extraction as a classification problem. 
It uses support vector machine to identify the start and end tags 
for a single attribute. For the task of extracting multiple attributes, 
this single-attribute extraction method loses the dependencies 
between different attributes.  

The idea of exploring the mutual benefits by integrating two tasks 
has been attempted in previous work. [41] attempts a mutually 
beneficial integration of information extraction and data mining. 
Information extraction makes possible the text mining which 
needs to handle unstructured text documents, and data mining 
could provide additional clues to improve the recall of an IE 
system. [53] proposes an integrated model to do information 
extraction and coreference. Incorporating extraction uncertainty 
could help coreference, and leveraging the identified coreference 
could improve extraction accuracy. However, [53] is not a fully 
closed integration. As the model could be very complex, separate 
learning and inference for different substructures is employed in 
[53]. [52] proposes a factorial CRF to jointly solve two NLP tasks 
(noun phrase chunking and part of speech tagging) on the same 
observation sequence. The difference is that our data are 
hierarchical trees and the data in [52] are sequences. 

[49] uses Hierarchical Hidden Markov models (HHMMs) [20] to 
extract relation instances from biomedical articles. Our work 
differs from this in two key aspects. First, HHMMs are generative 
models and HCRFs are discriminative models. Discriminative 
models could result in better performance in information 
extraction for their flexibility to incorporate arbitrary and non-
independent features of the observations, but generative models 
must make some strong independence assumption of the 
observations to achieve inference tractability. This is the key idea 
underlying the Conditional Random Fields [31]. Second, the data 
in [49] are two-level representations of sentences, but our data are 
arbitrary vision-trees. Other work on hierarchical and multi-scale 
models can be found in Computer Vision and Image Processing 
[27][58]. Unlike [27], the proposed HCRF model is not a simple 
multi-scale model because it has inter-level interactions. Our 
model is also different from [58] in both the graph representation 
and inference algorithm. 
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Other work, such as collective information extraction [5] and 
Semi-Markov extraction models [12][48], could achieve higher 
performance in named entity extraction problems on flat text 
documents. However, it’s not easy or impossible to adapt them for 
the integrated Web data extraction, where the data are 
hierarchically represented. In contrast, the proposed hierarchical 
HCRF model is the natural and efficient method for it. 

6.2 Name Disambiguation 
The traditional work on name disambiguation is usually based on 
the string similarity of the attribute value, such as [24][28][37]. 
These approaches couldn’t work for scenarios where there are few 
attribute values available for disambiguation. 

Recently, the relationship information among different types of 
objects in a local dataset has started to be exploited for name 
disambiguation, such as [3][11][17][36][45]. The limitation of 
these approaches is that they depend too much on the 
completeness of relationship information, and probably result in 
low recall. 

Some previous research on name disambiguation exploits some 
specific additional information according to the characteristic of 
the application. Among them, [33] works based on a concept 
hierarchy structure; [15] explores the profile for some constraints 
to improve matching accuracy; [16] uses personal homepages in 
the reference reconciliation of a PIM system; [39] uses the 
predefined Website providing zip code for the unsupervised 
record linkage of restaurant record. Besides, [26] explores the 
features specific to the citation dataset, such as similarity of paper 
title words. In contrast, WebNaD exploits the local connection and 
the Web connection, both of which are general information.  

Web appearance disambiguation [3] is another work related to 
ours. It is different from our work in that [3] uses the local 
structure information for name disambiguation in Web corpora, 
while our methods can be seen as using the Web corpora for name 
disambiguation in local structure data. Another kind of Web 
connection can be derived from the link structure model in [3], 
and we believe the framework of using web connections can result 
in higher recall if we could leverage these kinds of evidence. 
However, for name disambiguation in a local dataset, especially 
when only a general search engine is given, a more practical Web 
connection such as Website co-occurrence should be used as an 
alternative. 

 

6.3 Object-level Link Analysis 
Brin and Page  first introduce the PageRank technique [46] to 
calculate the importance of a Web page based on the scores of the 
pages pointing to the page. Hence, Webpages pointed by many 
high quality pages become important as well. Alternatively, the 
importance score of a Web page is equal to the probability that a 
random surfer, starting from a random page, will reach the Web 
page at a specific time. Since the PageRank model considers that 
all the links have the same authority propagation factors, it could 
not be directly applied to our object-level ranking problem. 

The PageRank model has also been adapted to structure databases. 
Guo et al. [25] introduce XRANK to rank XML elements using 
the link structure of the database. Balmin et al. propose the 
ObjectRank system [2] which applies the random walk model to 
keyword search in databases modelled as labelled graphs. A 

similar notion of our popularity propagation factors called 
authority transfer rates is introduced. In their relevance feedback 
survey study, the authors find out that using different transfer 
rates for different edge types is effective. However the papers did 
not discuss how these authority transfer rates could be assigned. 

Xi et al. [56] propose a unified link analysis framework called 
``link fusion" to consider both the inter- and intra- type link 
structure among multi-type inter-related datan objects. The 
PageRank and HITS algorithms [29] are shown to be special cases 
of the unified link analysis framework. Although the paper 
mentioned some similar notion of our popularity propagation 
factor, however how to assign these factors is considered as the 
most important future research work in the paper. Furthermore, 
our PopRank model itself is also significantly different from the 
link fusion framework. In our PopRank model we take both the 
Web popularity of an object and the popularity from the object 
relationship graph into account. Combining both types of 
popularity is important, especially for application domains where 
objects are widely available on Web databases and Webpages. For 
example, if we want to build a product search engine to rank the 
product related objects, the Web popularity of these objects could 
be very useful to calculate the popularity of these products, only 
using the object relationship graph could lead to unreasonable 
ranking. 

6.4 Object Relevance Ranking 
In recent years, researchers began to segment webpages into 
blocks [8][35] to promote retrieval precision in web search. In 
passage retrieval or block retrieval works, researchers primarily 
care about the way of segmenting documents or webpages, and 
usually use the highest relevance score of a passage or block as 
the score of whole document or page. There are also many studies 
on structured document retrieval [32][55] and utilizing multiple 
fields of webpages for web page retrieval [44][54]. These methods 
linearly combine the relevance score of each field to solve the 
problem of scoring structured documents with multiple weighted 
fields. In [47], the authors show that the type of score linear 
combination methods is not as effective as the linear combination 
of term frequencies. In our work, we follow this way of handling 
the multiple attributes problem. 

However, our work focuses on object level retrieval, which is 
much closer to users’ requirements and considers the quality of 
each data source and the accuracy of the extracted object 
information during retrieval. This is a completely new perspective, 
and differs significantly from the structured document retrieval 
and passage/block retrieval work we discussed above.   

We noticed that a need exists for document-level Web page 
retrieval to handle the anchor text field of a page, which is 
extracted from multiple Webpages [13][19]. Researchers in this 
area often treat all of the anchor texts as a bag of words for 
retrieval. There is little work which considers the quality of 
extracted anchor text. Moreover, since anchor text is a single field 
independently extracted from multiple Webpages, there is no need 
for unstructured retrieval. Because ignoring the structure 
information will not help improving the quality of the anchor text, 
there is no need for balancing structured and unstructured 
retrieval models. 

The work on distributed information retrieval [9][23][38][57] is 
related to our work in the sense that it combines information from 
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multiple sources to answer user queries. However, other 
researchers focus on selecting the most relevant search engines for 
queries and rank query results instead of integrating object 
information.  

 

7. Conclusion 
In this paper, we propose a new paradigm called object-level 
vertical search to enable web search at the object level. 
Specifically, we introduce the system architecture of such an 
object-level search engine and its core techniques. More 
importantly, we share our experience in building two real vertical 
search engines: Libra academic search and Window Live Product 
Search. Some of the techniques described in the paper including 
name disambiguation are still in the process of transferring to 
these two search engines. 

We are currently working on evaluating the model in a more 
general way and in other application domains. We believe that our 
approach is generally applicable for most vertical search domains, 
such as Yellow Page Search, Blog Search, People Search, Job 
Search, and Restaurant Search. 
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