
Object-level Vertical Search
Zaiqing Nie

Ji-Rong Wen
Web Search and Mining Group

Microsoft Research Asia
Beijing, China

{znie, jrwen, wyma} @microsoft.com

Wei-Ying Ma

ABSTRACT
Current web search engines essentially conduct document-level
ranking and retrieval. However, structured information about real-
world objects embedded in static webpages and online databases
exists in huge amounts. We explore a new paradigm to enable
web search at the object level in this paper, extracting and
integrating web information for objects relevant to a specific
application domain. We then rank these objects in terms of their
relevance and popularity in answering user queries. In this paper,
we introduce the overview and core technologies of object-level
vertical search engines that have been implemented in two
working systems: Libra Academic Search (http://libra.msra.cn)
and Windows Live Product Search (http://products.live.com).

Keywords
Web Information Extraction, Information Integration, Web Search,
Object-level Ranking

1. INTRODUCTION
The primary function of current web search engines is essentially
relevance ranking at the webpage level (i.e. Page-level Search), an
information retrieval paradigm for more than 25 years. We believe
that within a few years these types of general web search
technologies will become commodity. In this paper, we are
considering a paradigm shift to enable searching at the object
level.
A large portion of the web is inherently (semi-)structured, and
provides information for various kinds of real-world objects (i.e.
entities). Typical objects are products, people, papers,
organizations, and the like. We can imagine that if these objects
can be extracted from the web and integrated in structured
databases, powerful object-level search engines can be built to
more precisely meet users' information needs. This is especially
true for vertical search domains, such as academic search, product
search, people search, and restaurant search. In these vertical
domains, people are really interested in information about specific
objects, not the pages themselves. For example, researchers
always want to find information about conferences, journals and

Figure 1. Ranking Relevant Authors, Conferences, and
Journals in Libra Academic Search

other researchers. If one wanted to find information about the top
world researchers within a particular domain and tried a query in a
basic page-level search engine, it could be very difficult to find
popular researchers. Our object-level search engines, however,
specifically provide lists of researchers, and extract and integrate
the desired information (See Figure 1 for an example list of
researchers for the query “data mining”).

In Table 1, we compare object-level and page-level search. In
page-level search, webpages are the basic retrieval units, and the
information in a page is treated as a bag of words. Information
retrieval technologies are used as core technologies to answer user
queries, while object-level search uncovers structured information
about real-world objects that are the retrieval units. One obvious
advantage of object-level search is its capability of answering
complex queries with direct and aggregate answers because of the
availability of semantics defined by the object schema. Otherwise,
it could take one several hours to sift through hundreds of
webpages returned by a page-level search engine.

The challenge here is where and how to obtain high-quality
structured data needed by an object-level search engine, and how
to rank resulting objects to return the most relevant ones.

To illustrate the power of this new generation of web search, we
have built a scientific web search engine called Libra (See Figure
1. http://libra.msra.cn) to evaluate various object-level web search

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

235

Table 1. Object-Level Search vs. Page-Level Search

techniques undertaken. We believe it is more advanced than the
existing page-level academic search engines. In Libra, each
researcher, scientific paper, conference, journal, and interest
group is treated as a web object. We extract and integrate the
information from multiple sources including ACM Digital Library,
DBLP, and CiteSeer, and others. Objects can be retrieved and
ranked according to their relevance to the query and their
popularity. As a result of information extraction and integration,
the system is essentially a web data warehouse with the capability
of handling structured queries. We are currently working on
applying Libra technologies to building Window Live Product
Search (See Figure 2. http://products.live.com).

Until now, the Beta release of Window Live Product Search has
incorporated our product page classification and extraction
techniques. After the first month running, we have already
indexed more than 100,000 sellers, 31,627,416 commercial pages,
and 800 million automatically extracted product records. We
believe we could make Window Live Product Search the largest
product catalog in the world by using object-level vertical search
technologies.

 Figure 2. Window Live Product Search with our Product
Page Classification and Extraction techniques.

The rest of the paper is organized as follows. In the next section,
we outline the requirements of an object-level vertical search
engine. Section 3 introduces the system architecture and core
techniques. We then discuss subsystem integration. In Section 5,
we emphasize the need for a new infrastructure to support object-
level vertical search. Section 6 discusses related work. Section 7
presents our conclusion.

2. Requirements
The requirements for a large-scale object-level vertical search
engine are as follows:

1. Reliability: High quality structured data is necessary to
generate direct and aggregate answers. If the underlying data
are not reliable, then the users may prefer sifting the
webpages to find answers rather than trust the noisy direct
answers returned by an object-level vertical search engine;

2. Completeness: We want our data to be as complete as
possible to provide trustworthy answers;

3. Ranking Accuracy: With billions of potential answers to a
query, an optimal ranking mechanism is critical for locating
relevant object information.

4. Scalability: Since our object-level vertical search engines
should include all the information within a vertical domain
both on the web and in local databases, the object warehouse
could be enormous. For example, according to our empirical
study of 51,000 randomly crawled webpages, we found that
more than ten percent of webpages are product pages. So, if
we include both the product information extracted from
crawled webpages and product data feeds from e-commerce
databases in a search engine, this could entail dealing with
billions of data records. We need to incorporate large-scale
data processing technologies to make our structured data
retrieval scalable.

In the following sections, we will introduce the system
architecture and infrastructure design with these requirements in
mind.

3. SYSTEM ARCHITECTURE & CORE
TECHNIQUES
In this section, we discuss the system architecture and core
techniques of object-level vertical search engines.

Figure 3 shows the brief architecture of an object-level vertical
search engine. First, a crawler fetches web data related to the
targeted objects within a specific vertical domain, and the crawled
data is classified into different categories, such as papers, authors,
products, and locations. For each category, a specific entity
extractor is built to extract objects from the web data. At the same
time, information about the same object is aggregated from
multiple different data sources. Once objects are extracted and
aggregated, they are put into the object warehouses, and vertical
search engines can be constructed based on the object warehouses.
Moreover, advanced object-level ranking and mining techniques
can be applied to make search more accurate and intelligent.

 Page-Level Search Object-Level Search

Technology
Information Retrieval ;

Pages as Retrieval Units

Database;

Machine Learning;

Objects as Retrieval Units

Pros
Ease of Authoring;

Ease of Use

Powerful Query Capability;

Direct Answer;

Aggregate Answer

Cons Limited Query Capability
Where and How to Get the
Objects?

Windows Live

Product Search

Product webpage
Classifier

Record Extraction Attribute Labeling

Product Object
Extraction

web

Crawler

236

Figure 3. System Architecture

3.1 Crawler and Classifier
The tasks of the crawler and classifier are to automatically collect
all relevant webpages/documents that contain object information
for a specific vertical domain. The crawled webpages/documents
will be passed to the corresponding object extractor for extracting
the structured object information and building the object
warehouse.

3.1.1 Insight
If we use the nodes to denote the objects and edges to denote the
relationship links between the objects, we can see that the objects
information with a vertical domain forms an object relationship
graph. For example, in Libra academic search, we have three
different types of nodes to representing papers, authors, and
conferences/journals, and three different types of edges (i.e. links)
pointing to paper objects that represent three varying types of
relationships. They are cited-by, authored-by, and published-by.
The ultimate goal of the crawler is to effectively and efficiently
collect relevant webpages and to build a complete object
relationship graph with as many nodes and edges and as many
attribute values for each node as possible (assuming we have
perfect extractors and aggregators).

3.1.2 Our Approach
We build a “focused” crawler that uses the page classifier and the
existing partial object relationship graph to guide the crawling
process. Basically, in addition to the web graph which is used by
most page-level crawlers, we employ an object relationship graph
to guide our crawling algorithm.

Since the classifier is coupled with the crawler, it needs to be very
fast to ensure efficient crawling. Based on our experience in
building a classifier for Libra and Windows Live Product Search,
we found that we could always use some strong heuristics to
quickly prune most of irrelevant pages. For example, in our
product pages classifier, we can use the price identifiers (such as
dollar signs $) to efficiently prune most non-product pages. The
average time of our product classifier is around 0.1 millisecond,
and its precision is around 0.8, with recall around 0.9.

Figure 4. An Object Block with 6 Elements (contained in the
red rectangle) in a Webpage.

3.2 Object Extractor
Information (e.g. attributes) about a web object is usually
distributed in many web sources and within small segments of
webpages. The task of an object extractor is to extract metadata
about a given type of objects from every web page containing this
type of objects. For example, for each crawled product web page,
we extract name, image, price and description of each product. If
all of these product pages or just half of them are correctly
extracted, we will have a huge collection of metadata about real-
world products that could be used for further knowledge
discovery and query answering. Our statistical study on 51,000
randomly crawled webpages shows that about 12.6 percent are
product pages. That is, there are about 1 billion product pages
within a search index containing 9 billion crawled webpages.

However, how to extract product information from webpages
generated by many (maybe tens of thousands of) different
templates is non-trivial. One possible solution is that we first
distinguish webpages generated by different templates, and then
build an extractor for each template. We say that this type of
solution is template-dependent. However, accurately identifying
webpages for each template is not a trivial task because even
webpages from the same website may be generated by dozens of
templates. Even if we can distinguish webpages, template-
dependent methods are still impractical because learning and
maintenance of so many different extractors for different
templates will require substantial efforts.

3.2.1 Insight
By empirically studying webpages across websites about the same
type of objects across web sites, we find many template-
independent features.

 Information about an object in a web page is generally
grouped together as an object block, as shown in Figure 4.
Using existing web page segmentation [7] and data record
extraction technologies [35], we can automatically detect
these object blocks, which we further segment into atomic
extraction entities called object elements. Each object
element provides partial information about a single attribute
of the web object.

Crawler

Classifier

Location
Extractor

Product
Extractor

Conference
Extractor

Author
Extractor

Paper
Extractor

Paper
Aggregator

Location
Aggregator

Product
Aggregator

Scientific web
Object Warehouse

Product Object
Warehouse web Objects

PopRank Object Relevance Object Community Mining Object Categorization

Conference
Aggregator

Author
Aggregator

237

Table 2. Statistical Results for Objects from Both Product

Pages and Homepages. (We have used “DESC” instead of

“DESC-RIPTION” and “TEL” instead of “TELEPHONE”

for space.)

 PRODUCT BEFORE HOMEPAGE BEFORE

(NAME, DESC) 1.000 (NAME, TEL) 1.000
(NAME, PRICE) 0.987 (NAME, EMAIL) 1.000
(IMAGE, NAME) 0.941 (NAME, ADDRESS) 1.000
(IMAGE, PRICE) 0.964 (ADDRESS, EMAIL) 0.847
(IMAGE, DESC) 0.977 (ADDRESS, TEL) 0.906

 Our empirical study shows that strong sequencing
characteristics exist for web objects of the same type across
different web sites. To demonstrate that strong sequencing
characteristics exist, we conduct our statistical study on two
types of web objects, products and researchers’ homepages.
Specifically, we randomly collect 100 product pages (which
contain 964 product blocks) and 120 homepages from
different web sites. For product objects, the attributes
“name”, “image”, “price” and “description” are surveyed.
For researchers’ homepages, the attributes “name”,
“telephone”, “email” and “address” are considered. We
decide the sequence order of the elements in a web page in a
top-down and left-right manner based on their position
information. Basically, the element in the top level will be
ahead of all the elements below it and for the elements at the
same level, the left elements will be ahead of their right
elements. As we can see from Table 2, strong sequence
characteristics exist for among most attribute pairs in both
object types. For example, a product’s name is always ahead
of its description in all the pages.

3.2.2 Template-Independent Web Object Extraction
We propose template-independent metadata extraction techniques
for the same type of objects. Specifically in [43][61][62], we
extended the linear-chain Conditional Random Fields (CRFs) [31]
which are the state of the art approaches in information extraction
taking advantage of the sequencing characteristics to do better
labeling.

3.2.2.1 2D Conditional Random Fields
In order to use the existing linear-chain CRFs for Web object
extraction, we have to first convert a two-dimensional object
block (i.e. an object block whose elements are two-dimensionally
laid out) into a sequence of object elements. Given the two-
dimensional nature of object blocks, how to sequentialize them in
a meaningful way could be very challenging. Moreover, as shown
by our empirical evaluation, using the two-dimensional
neighborhood dependencies (i.e. interactions between labels of an
element and its neighbors in both vertical and horizontal
directions) in Web object extraction could significantly improve
the extraction accuracy.

To better incorporate the two-dimensional neighborhood
dependencies, a two-dimensional Conditional Random Field (2D
CRF) model is proposed in [61]. We present the graphical
representation of the 2D CRF model as a 2D grid (See Figure 5)

Figure 5. The Graphical Structure of 2D CRFs

and reformulate the conditional distribution by defining some
matrix random variables. Then we deduce the forward-backward
vectors based on the reformulated conditional distribution for
efficient parameter estimation and labeling. Since the sizes of the
elements in an object block can be arbitrary, we introduce the
concept of virtual states to model an object block as a 2D grid.
We compare our model with linear-chain CRF models for product
information extraction and the experimental results show that our
model significantly outperforms linear-chain CRF models in
scenarios with two-dimensional neighborhood dependencies.

3.2.2.2 Hierarchical Conditional Random Fields
In traditional information extraction work, there is no clear
definition of object extraction, and hence no discussion on how to
link data record (i.e. object block) detection work with object
attribute labeling. Although we can build a template-independent
object extractor by first using the techniques in [7] or [35] to
detect the data records and then use the techniques in [61] to label
the data elements within the detected records. However, it is
highly ineffective to use decoupled strategies – attempting to do
data record detection and attribute labeling in two separate phases.
This is because:

Error Propagation: Since record detection and attribute labeling
are two separate phases, the errors in record detection will be
propagated to attribute labeling. Thus, the overall performance is
limited and up-bounded by that of record detection. Suppose the
record detection and attribute labeling have precisions 0.8 and 0.9
respectively, then the overall precision will be no more than 0.8.
And, if they also perform independently, the precision will be
0.72.

Lack of Semantics in Record Detection: Human readers always
take into account the semantics of the text to understand
Webpages. For instance, in Figure 4, when claiming a block is a
data record, we use the evidence that it contains a product's name,
image, price and description. Thus, a more effective record
detection algorithm should take into account the semantics of the
text, but existing methods [7][35][34] do not consider that.

Lack of Mutual Interactions in Attribute Labeling: The data
records in the same page are related. They always share a common
template and the elements at the same position of different records
always have similar features and semantics. For example, in
Figure 6(a) the button "Add to Cart" appears in the same position
in all three data records and the element on the left-top of each
record is an image. So, if we label the elements of the records

(0:
1)

i
N

−

(0: 1)j M −

X

,i jY

238

within the same page together in a collective manner, it is easier
for us to detect that the repeated elements "Add to Cart" are less
informative and more likely to be noise. However, our 2D CRF
approach [61] fails to consider that because the data records are
independently labeled.

First-Order Markov Assumption: For Webpages and especially
for detail pages (i.e. Webpages only containing detailed
information about a single object), long distance dependencies
always exist between different attribute elements. This is because
there are always many irrelevant elements (i.e. noise) appearing
between the attributes of an object. For example, in Figure 6(b)
there is substantial noise, such as "Add to Cart" and "Select
Quantity" between the price and description. However, 2D CRFs
[61] cannot incorporate these long distance dependencies because
of its first-order Markov assumption (i.e. only the dependencies of
neighboring nodes are considered and represented.

In [62], we introduce a novel graphical model called Hierarchical
Conditional Random Field (HCRF) model to jointly optimize
record detection and attribute labeling.

By using the vision-based page segmentation (VIPS) technology
[7], which makes use of page layout features such as font, color,
and size to construct a vision-tree for a Web page, we can get a
better representation of a page compared with commonly used
tag-tree. Given a vision-tree, record detection can be considered
as the task of locating the minimum set of elements that contain
the content of a record. In this way, both record detection and
attribute labeling become the task of assigning labels to the nodes
on a vision-tree, so they can be integrated in one probabilistic
model as in this paper. In contrast to existing decoupled strategies
that perform record detection and attribute labeling as two
separate phases, our approach leverages the labeling results of
attribute labeling for record detection, and at the same time
benefits from the incorporation of some global features based on
tree-alignment for attribute labeling. As a conditional model [31],
HCRF can efficiently incorporate any useful features for Web data
extraction. By incorporating hierarchical interactions, HCRF
could incorporate long distance dependencies and achieve
promising results on detail Webpages.

Our Empirical studies show that mutual enhancement of record
detection and attribute labeling could be achieved in our joint
approach, and HCRFs could perform very promisingly on detail
webpages.

3.3 Object Aggregator
Each extracted web object need to be mapped to a real world
object and stored into a web data warehouse. To do so, the object
aggregator needs to integrate information about the same object
and disambiguate different objects. This is a typical
information/data integration problem and usually includes two
subproblems:

 An object has multiple inconsistent attribute values, arising
from the inconsistent formats, spelling mistakes, and so on.
For instance, both “WWW” and “World Wide web
Conference” could refer to the same conference;

 An object type has few other attributes other than its name,
and targets to distinguish among two or more objects which
share the same name. For example, when you search for the
publications of “Lei Zhang”, a very common Chinese name,
in DBLP, different author objects are mixed in the same
webpage (see Figure 7).

Although both of the subproblems need to be dealt with in
practical applications, the latter one relies more on additional
information in addition to the attribute values, and is challenging
especially when there are few attributes. The former subproblem
has attracted extensive attention, while relatively little work has
been done in the latter one. Unfortunately, the latter is a common
problem in our object-level vertical search scenarios. For example,
in our Libra academic search scenario, we seem to have little
information about author objects except their names, which is
reliable indicator for use in disambiguating different real-world
authors for two different papers. In our Product search scenario
we face the same problem of product name disambiguation
problem.

Some recent work [11] proposes the exploitation of connection
via object relationships in the object-relationship graph, in
addition to the available object attribute values, for name
disambiguation. The assumption behind their approaches is that, if
two identical names in different contexts refer to the same object,
they are more likely to be strongly connected on the entity-
relationship graph. For example, if two "Lei Zhangs" refer to the
same person, it is very likely that they share some coauthors,
references, or are indirectly related by a chain of relationships.
Based on this assumption, two identical names are detected as
referring to the same object only when the connection strength
between them is stronger than a predefined threshold.

Figure 6(b). A Detail Page Containing Detailed
Information about a Product.

Figure 6(a). A Sample Webpage with Two Similar Data
Records Which are Contained in Red Boxes.

239

3.3.1 Insight
In real applications, many relationships may be missing in local
datasets. For example, some citation links between papers are
missing in Libra because of the limitation of reference extraction
techniques. In such cases, for two author name appearances that
refer to the same author, the connection strength may not be
strong enough and the existing connection-based approaches will
fail to detect them as a match. Therefore, an approach that
leverages more information besides the connection evidence in the
local dataset (i.e. local connection) is desired.

Based on our experience with author name disambiguation in
Libra academic search and product name disambiguation in
Window Live Product Search, we found that, for different object
appearances with identical names referring to the same object,
their contexts should be strongly connected with each other on the
web. We call such connections web Connections. For example, in
the Libra scenarios, we find that authors may list their papers on
their homepages. So if two papers are listed together on the same
web page, their authors with the same name are more likely to be
the same real-world author. In product search scenarios, we find
that different offers from multiple ecommerce websites about the
same product are generally listed together by various shopping
aggregator websites for comparison.

3.3.2 Object Identification using Web Connections
We measure the web connection between two object appearances
based on the co-occurrences of their contexts in a website (or
webpage). The co-occurrence information could be easily
obtained by sending the context information as queries to a search
engine (e.g., Google, MSN Search). However it is non-trivial to
measure the web connection strength based on the co-occurrence
information, since co-occurrences in different websites usually
indicate quite different connection strengths. For example, to
determine whether two identical author names of two papers refer
to the same person, the co-occurrences of their papers in the
website of a small research lab usually provides stronger
connection than the co-occurrences in DBLP. This is because the
former co-occurrence most likely indicates that the papers are
related to the small lab, while the latter one only shows that these
papers are in the computer science domain. Moreover, even
different co-occurrences in the same website need to be
discriminated (e.g., co-occurrences in the same webpage usually
indicate stronger connection than those in different webpages.).
To handle these issues, our measure of web connection not only

discriminates the relative importance of different websites, but
also considers the URL distance between webpages inside a
website.

Practical Considerations: There are still some issues in
computing the Web connection. First, when only a search engine
is given, all the Web sites are "hidden" behind the search interface,
and cannot be obtained beforehand. Second, even if all the Web
sites are known beforehand (e.g., we have already indexed the
Web corpora locally), there are usually billions of Web sites in
Web corpora, and to train a connection function handling such a
high dimension is infeasible. We introduce a practical solution to
compute web connections based on our observations on the Web
corpora according to a study in Libra:

First of all, the coverage distribution of a given type of objects
among different websites usually obeys a power-law distribution.
By the study on the distribution of around 1 million papers of
Libra in the Web corpora (using the paper titles to get the Web
occurrences of paper objects), as illustrated in Figure 8, only a
few sites are the ones with high coverage (i.e. large number of
academic papers); while the “massive many” are the sites which
rarely contain papers. Most of the websites with relatively higher
coverage are the ones which provide paper search service or the
websites of prestigious research organizations.

Second, although co-occurrences of two context-objects in
different sites are of different importance for name disambiguation
and are not necessarily proportional to the inverse coverage score,
we find that co-occurrences of context-objects in sites with
extremely low coverage score (i.e., the sites whose coverage
scores are below a certain threshold) always provide strong
enough evidence for a correct match. For example, we found that
the following two papers "Emergent Semantics from
Folksonomies: A Quantitative Study" and "Integrating Web
Services into Ontology-based Web Portal" could both be found in
http://apex.sjtu.edu.cn/, a site of a small research group focusing
on knowledge management, and the authors "Lei Zhang" of those
two papers are actually the same person. For the purpose of
convenience, we call these sites as small hubs, while the ones with
high coverage score are called as big hubs.

Based on the prior observations, we can make the following
assumption for name disambiguation:

For two name appearances 1A and 2A with the same name, if their

context-objects are found to co-occur in one of the small hubs
(whose coverage scores are below a certain threshold), 1A and 2A

most likely refer to the same object.

The assumption above is more likely to be valid when a
conservative threshold is set.

Third, it is feasible to discover the big hubs for a certain type of
objects with a few times of probing. Figure 9 shows the growth of
the number of newly discovered big hubs (i.e. Websites with
coverage scores greater than 1%) when we use paper titles to
probe the Web corpora. We observe that the newly discovered big
hubs tends to converge after only around 600 probes of papers,
while there are around 1 million papers in our dataset. Note that
the sample papers for probing are randomly selected, and there is
no bias in it.

Based on the above three observations, our name disambiguation
approach considers two object appearances with the same name as

Figure 7. Three Persons Found in the DBLP Page for
“Lei Zhang”.

240

!

"

#

$

%

&

'

! " # $ % & '
()*+,-./0120/34/5678()*+,-./0120/34/5678()*+,-./0120/34/5678()*+,-./0120/34/5678

(
)
*
+
9
4
:
;
/
0
1
)
<
1
=
>
?
/
@
8

(
)
*
+
9
4
:
;
/
0
1
)
<
1
=
>
?
/
@
8

(
)
*
+
9
4
:
;
/
0
1
)
<
1
=
>
?
/
@
8

(
)
*
+
9
4
:
;
/
0
1
)
<
1
=
>
?
/
@
8

Figure 8. Power Law Distribution of Paper Frequencies of

Websites.

!

&!

"!!

"&!

#!!

#&!

$!!

$&!

%!!

%&!

&!!

! $!! '!! A!! "#!! "&!!

94:;/01)<1,0);/@94:;/01)<1,0);/@94:;/01)<1,0);/@94:;/01)<1,0);/@

9
4
:
;
/
0
1
)
<
1
B
>
@
6
)
C
/
0
/
D
1
E
>
*
1

9
4
:
;
/
0
1
)
<
1
B
>
@
6
)
C
/
0
/
D
1
E
>
*
1

9
4
:
;
/
0
1
)
<
1
B
>
@
6
)
C
/
0
/
D
1
E
>
*
1

9
4
:
;
/
0
1
)
<
1
B
>
@
6
)
C
/
0
/
D
1
E
>
*
1

F
4
;
@

F
4
;
@

F
4
;
@

F
4
;
@

Figure 9. The Growth of Big Hub (>1%) Numbers by

Randomly Probing

the same object once their context-object information is found in a
small hub. For the appearance pairs where there is no co-
occurrence in any small hub, we need to compute the Web
connection strength for all their co-occurrences in big hubs. As
shown in the above observation, the number of big hubs is
relatively limited, so it becomes feasible to train an adaptive
connection function which gives suitable weights to the co-
occurrences in these big hubs.

As we mentioned before, we use a coverage threshold to
determine which websites/webpages are small hubs. We use the
labeled dataset (i.e. training data) to empirically select a good
coverage threshold. Specifically, we try several different coverage
thresholds, and for each threshold, we simply use the co-
occurrences in small hubs for name disambiguation in the labeled
dataset without considering the co-occurrences in the big hubs.
For each tried coverage threshold setting, we observe the
precision result. Generally, the higher the threshold is, the lower
the precision will be. We usually set a relatively conservative
threshold to ensure the precision.

3.4 Object-level Ranking and Analysis
After information extraction and integration we construct the
relationship graph between web objects. By performing link
analysis on this object relationship graph, we can compute the
importance of a web object or discover other interesting
knowledge or patterns that are impossible to obtain in the
traditional web graph.

On the traditional web graph, different pages have different
popularity according to their in-links. Technologies such as
PageRank [46] and HITS [29] have been successfully applied to
distinguish the popularity of different webpages through
analyzing the link structure in the web graph. It is obvious that, in

Figure 10. Paper Object Relationship Graph

the object graph, objects are also not equally popular. Take the
research domain as an example. Only several top conferences
within a research field can attract high quality papers, and their
papers are more likely to be read. To help users quickly locate
their interested objects, we should calculate the popularity of
collected objects. Because it is clear that the more popular the
objects are, the more likely they will be interested by a user. So a
natural question is: could the popularity of web objects be
effectively computed by also applying link analysis techniques?
According to our experience in building Libra academic search,
the answer to the question is yes, but quite different technologies
are required because of the unique characteristics of object graph.
For link analysis, the most unique characteristics of the object
graph is the heterogeneity of links, i.e., objects are related to each
other through different types of relationships. For example, a
paper object may be cited by a set of other paper objects, written
by a set of author objects, and published in a conference/journal
object (See Figure 10). So there are three kinds of different links
in the graph: cited-by, authored-by and published-by and they
have quite different semantics. The traditional link analysis
methods including PageRank and HITS assume that all the links
are with the same "endorsement" semantics and equally important,
directly applying these methods would result in unreasonable
popularity ranking. For example, the popularity of a paper should
not be affected too much by the number of authors, and the
number of citations does have a large impact on it. We add a
popularity propagation factor (PPF) to each link of the object
relationship graph pointing to an object, and uses different
propagation factors for links of different types of relationships
[42]. For example, for the links pointing to a paper object, we
need three propagation factors for the three different types of
relationships: cited-by, authored-by, and published-by,
respectively. However manually assigning these factors to make
the popularity ranking reasonable is extremely challenging. With a
huge link graph, it is difficult for us to tell which types of links are
more important and even harder to quantify their exact importance.

3.4.1 Insight
Base on our experience in building Libra academic search, it is
always easier for us to collect some partial ranking of the objects
from domain experts. For example, as researchers, we know the
order of the top conferences or journals within our research field,
and we may also know which papers are more popular.

3.4.2 PopRank Model
We propose PopRank, a method to measure the popularity of web
objects in an object graph. It extends the PageRank model by
using different propagation factors for links of different types of
relationships. We propose a learning based approach to
automatically learn the popularity propagation factors for different
types of links using the partial ranking of the objects given by
domain experts. The simulated annealing algorithm is used to
explore the search space of all possible combinations of
propagation factors and to iteratively reduce the difference

241

between the partial ranking from the domain experts and that from
our learned model.
One major challenging problem facing our learning approach is
that it is prohibitively expensive to try hundreds of combinations
of feasible factors which are normally needed for us to get a
reasonable assignment of the propagation factors. It may take
hours to compute the PopRank of the objects to test the optimality
of a PPF factor assignment. In order to make the learning time
manageable, we propose the use of a subgraph of the entire object
link graph in the learning process. As soon as we have most of the
related objects and their links surrounding the training objects, we
should be able to calculate a close approximation of the PopRank
of these training objects. Since we are not interested in finding the
exact rank scores but the relative rank of these training objects,
little reduction of accuracy will not affect the optimality of the
assignment too much. However, in cases where the object link
graph is prohibitively large, one might have to trade optimality for
efficiency. The PopRank link analysis model has been evaluated
in the context of Libra academic search. Our experimental results
on Libra show that PopRank can achieve significantly better
ranking results than naively applying PageRank on the object
graph.

4. Putting Together: Integrating Subsystems
In this section, we mainly discuss how we integrate all the
subsystems together to achieve overall high performance. Since
data quality is the most important factor to evaluate the overall
performance of object-level vertical search engine, we will focus
on how to improve the overall data quality, mainly on improving
the extraction accuracy.

4.1 Validation across Multiple Sources and
Subsystems
Because of the arbitrary nature of the web data, it’s challenging to
achieve perfect extraction, especially when we want to only train a
single extractor for all webpages containing the same type of
objects. Fortunately, the information on the web is always
redundant, and could be used for validation across these
redundant sources. For example, the paper meta-data could be
extracted from author homepages and from PDF files. From PDF
files, we could extract the paper metadata both from their header
and from their references. At the same time these metadata are
also available from web databases such as ACM Digital Library,
IEEE Digital Library.

If we could find the same metadata twice we could be ensured that
our extraction is correct. Of course, here we have to use the object
integration subsystem to match difference occurrences about the
same paper to enable the validation function.

4.2 Object Retrieval Model Insensitive to
Extraction Error
In traditional IR models, documents are taken as the retrieval units
and the content of documents is considered reliable. However, the
reliability assumption is no longer valid in the object retrieval
context. There are several possible routes to introduce errors in
object contents during the process of object extraction:

• Source-level error: Since the quality of web sources can
vary significantly, some information about an object in some
sources may be simply wrong.

• Record-level error: Due to the huge number of web sources,
automatic approaches are commonly used to locate and extract the
data records from webpages or web databases. It is inevitable that
the record extraction (i.e. detection) process will introduce
additional errors. The extracted records may miss some key
information or include some irrelevant information, or both.

• Attribute-level error: Even if the web source is reliable and
the object contents are correctly detected, the description of an
object (i.e. object element labeling) may be still wrong because of
incorrect attribute value extraction. For example, it is very
common to label a product name by brand, or vice versa. In
Citeseer, we usually find that author names are concatenated to
paper titles, or some names are missing.

We focus on this unreliability problem in web object retrieval.
Our basic ideas are based on two principles. First, as described
above, errors can be introduced in both the record level and
attribute level. Moreover, as errors will be propagated along the
extraction process in decoupled object extraction techniques, the
accuracy of attribute extraction is surely lower than that of record
extraction. However, separating record contents into multiple
attributes will bring more information than just treating all
contents in a record as a unit. Therefore, it is desirable to combine
both record-level representation and attribute-level representation.
We hope that by combing representations of multiple levels our
method is insensitive to extraction error. Second, multiple copies
of information about the same object usually exist. These copies
may be inconsistent because of diverse web site qualities and the
limited performance of current information extraction techniques.
If we simply combine the noisy and inaccurate object information
extracted from different sources, we will not be able to achieve
satisfactory ranking results. Therefore, we need to distinguish the
quality of the records and attributes from different sources and
trust data of high reliability more and data of low reliability less.
We hope that even when data from some sites have low reliability,
we can still get good retrieval performance if some copies of the
objects have higher reliability. In other words, our method should
also take advantage of multiple copies of one object to achieve
stable performance despite varying qualities of the copies.

Based on the above arguments, our goal is to design retrieval
models insensitive to data errors and that can achieve stable
performance for data with varying extraction accuracies.
Specifically, we propose several language models for Web object
retrieval, namely a record-level representation model, an attribute-
level representation model, and a model balancing record-level
and attribute-level representations. We test these models on our
Libra Academic Search and compare their performance. We
conclude that the best model is the one combining both record-
level and attribute-level evidence and taking into account of the
errors at different levels.

5. Infrastructure
Once we crawl, extract, and integrate objects from the web, we
need an effective infrastructure to store, index, query, and analyze
them. In our object-level vertical search scenarios, a good
infrastructure should provide support to the following
requirements:

1. It can accommodate large amount of (semi-)structured
data with flexible schemas. It should also support sparse
columns and on-line schema changes. To provide a

242

uniform infrastructure to support different vertical domains,
a flexible scheme definition mechanism is needed. In
addition, we usually need to change the schemas in real
applications. For example, when we first built the product
search engine, the initial schema contains attributes like
name, price, description, and image. Then, for objects about
digital cameras, we want to add more attributes, such as
pixel, memory, resolution, etc., and for some other objects
about cars, we want to add attributes like color, engine, seats,
safety, etc. So, the schemas may change frequently and at
the same time some columns are unavoidably sparse since
they are only meaningful for subsets of data.

2. It needs to support rich queries that exploit both the
structure and content information. In other words, both
(limited) SQL-style structured query and IR-style
keyword query should be supported and combined. In
search scenarios, all of the data will be directly retrieved by
end users. So, query syntax needs to be user-friendly and
simple. Keyword query will be commonly used to search
across the objects. On the other hand, advanced users would
like to leverage structure information to get more accurate
and focused answers. Therefore, structured query capability,
such as range query and aggregation, is also necessary.

3. The infrastructure should run on clusters of commodity
machines. Distributed data processing capabilities like
data partition, load balancing, parallel execution,
replication, fail-over, and recovery should be supported.
The huge data volume and huge query volume make
distributed system the best choice for building a search
engine. Google File System [22] demonstrates that a robust
and efficient storage system built on thousands of
commodity machines is the key to the success of a modern
search engine. For object-level vertical search, such a kind
of large-scale distributed system is also crucial.

We argue that both the existing search engine infrastructures and
relational database systems cannot fully meet the above
requirements. We are working on building a new infrastructure
from scratch to manage large-scale web objects. This
infrastructure can be either viewed as a light and scalable
distributed database system, or a search engine supporting
structured data processing. Moreover, we are also exploiting some
new technologies (e.g. C-Store [51]) to see if they are compatible
with our requirements.

Currently, there is a strong tendency to combine or merge
database system and information retrieval system. The
infrastructure we are building can be taken as one case of the
DB+IR movement, in a more concrete application scenario.

6. Related Work
We classify the related work into the following categories align
with the core techniques in object-level vertical search: Web
object extraction, name disambiguation, object-level link analysis,
and object relevance ranking.

6.1 Web Object Extraction
Wrapper learning approaches like [40][30] are template-
dependent. They take in some manually labeled Webpages and
learn some extraction rules (i.e. wrappers). Since the learned
wrappers can only be used to extract data from similar pages,

maintaining the wrappers as Web sites change will require great
efforts. Furthermore, in wrapper learning, a user must provide
explicit information about each template. Even if the wrapper
learning is efficient, a system that extracts data from many Web
sites, as in our application, will be expensive to train. [60][18]
[6][10] are also template-dependent, but they do not need
manually labeled training samples. They automatically produce
wrappers from a collection of similar Webpages. [1][14] take a
collection of pages which are assumed to be generated by a
common template to deduce the unknown template. Then, the
deduced template is used to extract data from similar Webpages.

[59][34] are two template-independent methods. [34] segments
data on list pages using the information contained in their detail
pages. The need of detail pages is a limitation because
automatically identifying links that point to detail pages is non-
trivial and there are also many pages that do not have detail pages
behind them. [59] mines data records by string matching and also
incorporates some visual features to achieve better performance.
However, [59] detects data records only using tree regularities and
not consider semantics. Furthermore, the data extracted by
[34][59] have no semantic labels.

[21] treats Web information extraction as a classification problem.
It uses support vector machine to identify the start and end tags
for a single attribute. For the task of extracting multiple attributes,
this single-attribute extraction method loses the dependencies
between different attributes.

The idea of exploring the mutual benefits by integrating two tasks
has been attempted in previous work. [41] attempts a mutually
beneficial integration of information extraction and data mining.
Information extraction makes possible the text mining which
needs to handle unstructured text documents, and data mining
could provide additional clues to improve the recall of an IE
system. [53] proposes an integrated model to do information
extraction and coreference. Incorporating extraction uncertainty
could help coreference, and leveraging the identified coreference
could improve extraction accuracy. However, [53] is not a fully
closed integration. As the model could be very complex, separate
learning and inference for different substructures is employed in
[53]. [52] proposes a factorial CRF to jointly solve two NLP tasks
(noun phrase chunking and part of speech tagging) on the same
observation sequence. The difference is that our data are
hierarchical trees and the data in [52] are sequences.

[49] uses Hierarchical Hidden Markov models (HHMMs) [20] to
extract relation instances from biomedical articles. Our work
differs from this in two key aspects. First, HHMMs are generative
models and HCRFs are discriminative models. Discriminative
models could result in better performance in information
extraction for their flexibility to incorporate arbitrary and non-
independent features of the observations, but generative models
must make some strong independence assumption of the
observations to achieve inference tractability. This is the key idea
underlying the Conditional Random Fields [31]. Second, the data
in [49] are two-level representations of sentences, but our data are
arbitrary vision-trees. Other work on hierarchical and multi-scale
models can be found in Computer Vision and Image Processing
[27][58]. Unlike [27], the proposed HCRF model is not a simple
multi-scale model because it has inter-level interactions. Our
model is also different from [58] in both the graph representation
and inference algorithm.

243

Other work, such as collective information extraction [5] and
Semi-Markov extraction models [12][48], could achieve higher
performance in named entity extraction problems on flat text
documents. However, it’s not easy or impossible to adapt them for
the integrated Web data extraction, where the data are
hierarchically represented. In contrast, the proposed hierarchical
HCRF model is the natural and efficient method for it.

6.2 Name Disambiguation
The traditional work on name disambiguation is usually based on
the string similarity of the attribute value, such as [24][28][37].
These approaches couldn’t work for scenarios where there are few
attribute values available for disambiguation.

Recently, the relationship information among different types of
objects in a local dataset has started to be exploited for name
disambiguation, such as [3][11][17][36][45]. The limitation of
these approaches is that they depend too much on the
completeness of relationship information, and probably result in
low recall.

Some previous research on name disambiguation exploits some
specific additional information according to the characteristic of
the application. Among them, [33] works based on a concept
hierarchy structure; [15] explores the profile for some constraints
to improve matching accuracy; [16] uses personal homepages in
the reference reconciliation of a PIM system; [39] uses the
predefined Website providing zip code for the unsupervised
record linkage of restaurant record. Besides, [26] explores the
features specific to the citation dataset, such as similarity of paper
title words. In contrast, WebNaD exploits the local connection and
the Web connection, both of which are general information.

Web appearance disambiguation [3] is another work related to
ours. It is different from our work in that [3] uses the local
structure information for name disambiguation in Web corpora,
while our methods can be seen as using the Web corpora for name
disambiguation in local structure data. Another kind of Web
connection can be derived from the link structure model in [3],
and we believe the framework of using web connections can result
in higher recall if we could leverage these kinds of evidence.
However, for name disambiguation in a local dataset, especially
when only a general search engine is given, a more practical Web
connection such as Website co-occurrence should be used as an
alternative.

6.3 Object-level Link Analysis
Brin and Page first introduce the PageRank technique [46] to
calculate the importance of a Web page based on the scores of the
pages pointing to the page. Hence, Webpages pointed by many
high quality pages become important as well. Alternatively, the
importance score of a Web page is equal to the probability that a
random surfer, starting from a random page, will reach the Web
page at a specific time. Since the PageRank model considers that
all the links have the same authority propagation factors, it could
not be directly applied to our object-level ranking problem.

The PageRank model has also been adapted to structure databases.
Guo et al. [25] introduce XRANK to rank XML elements using
the link structure of the database. Balmin et al. propose the
ObjectRank system [2] which applies the random walk model to
keyword search in databases modelled as labelled graphs. A

similar notion of our popularity propagation factors called
authority transfer rates is introduced. In their relevance feedback
survey study, the authors find out that using different transfer
rates for different edge types is effective. However the papers did
not discuss how these authority transfer rates could be assigned.

Xi et al. [56] propose a unified link analysis framework called
``link fusion" to consider both the inter- and intra- type link
structure among multi-type inter-related datan objects. The
PageRank and HITS algorithms [29] are shown to be special cases
of the unified link analysis framework. Although the paper
mentioned some similar notion of our popularity propagation
factor, however how to assign these factors is considered as the
most important future research work in the paper. Furthermore,
our PopRank model itself is also significantly different from the
link fusion framework. In our PopRank model we take both the
Web popularity of an object and the popularity from the object
relationship graph into account. Combining both types of
popularity is important, especially for application domains where
objects are widely available on Web databases and Webpages. For
example, if we want to build a product search engine to rank the
product related objects, the Web popularity of these objects could
be very useful to calculate the popularity of these products, only
using the object relationship graph could lead to unreasonable
ranking.

6.4 Object Relevance Ranking
In recent years, researchers began to segment webpages into
blocks [8][35] to promote retrieval precision in web search. In
passage retrieval or block retrieval works, researchers primarily
care about the way of segmenting documents or webpages, and
usually use the highest relevance score of a passage or block as
the score of whole document or page. There are also many studies
on structured document retrieval [32][55] and utilizing multiple
fields of webpages for web page retrieval [44][54]. These methods
linearly combine the relevance score of each field to solve the
problem of scoring structured documents with multiple weighted
fields. In [47], the authors show that the type of score linear
combination methods is not as effective as the linear combination
of term frequencies. In our work, we follow this way of handling
the multiple attributes problem.

However, our work focuses on object level retrieval, which is
much closer to users’ requirements and considers the quality of
each data source and the accuracy of the extracted object
information during retrieval. This is a completely new perspective,
and differs significantly from the structured document retrieval
and passage/block retrieval work we discussed above.

We noticed that a need exists for document-level Web page
retrieval to handle the anchor text field of a page, which is
extracted from multiple Webpages [13][19]. Researchers in this
area often treat all of the anchor texts as a bag of words for
retrieval. There is little work which considers the quality of
extracted anchor text. Moreover, since anchor text is a single field
independently extracted from multiple Webpages, there is no need
for unstructured retrieval. Because ignoring the structure
information will not help improving the quality of the anchor text,
there is no need for balancing structured and unstructured
retrieval models.

The work on distributed information retrieval [9][23][38][57] is
related to our work in the sense that it combines information from

244

multiple sources to answer user queries. However, other
researchers focus on selecting the most relevant search engines for
queries and rank query results instead of integrating object
information.

7. Conclusion
In this paper, we propose a new paradigm called object-level
vertical search to enable web search at the object level.
Specifically, we introduce the system architecture of such an
object-level search engine and its core techniques. More
importantly, we share our experience in building two real vertical
search engines: Libra academic search and Window Live Product
Search. Some of the techniques described in the paper including
name disambiguation are still in the process of transferring to
these two search engines.

We are currently working on evaluating the model in a more
general way and in other application domains. We believe that our
approach is generally applicable for most vertical search domains,
such as Yellow Page Search, Blog Search, People Search, Job
Search, and Restaurant Search.

8. Reference
[1] Arasu, A., and Garcia-Molina, H. Extracting Structured Data

from Webpages. In Proc. of ACM SIGMOD, 2003.

[2] Balmin, A., Hristidis, V., and Papakonstantinou, Y.
ObjectRank: Authority-based keyword search in databases.
In Proc. of VLDB, 2004.

[3] Bekkerman, R., and McCallum, A. Disambiguating Web
Appearances of People in a Social Network. In Proc. of the
WWW, 2005.

[4] Bhattacharya, I., and Getoor, L. Iterative record linkage for
cleaning and integration. In DMKD, 2004.

[5] Bunescu, R. C., and Mooney, R. J. Collective information
extraction with relational Markov networks. In Proc. of ACL,
2004.

[6] Buttler, D., Liu, L., and Pu, C. A Fully Automated Object
Extraction System for the World Wide Web. In Proc. of
IEEE ICDCS, 2001.

[7] Cai, D., Yu, S., Wen, J.-R. and Ma, W.-Y. VIPS: a Vision-
based Page Segmentation Algorithm, Microsoft Technical
Report, MSR-TR-2003-79, 2003.

[8] Cai, D., Yu, S., Wen, J. R., and Ma, W. Y. Block-based web
search. In ACM SIGIR Conference, 2004.

[9] Callan, J. Distributed information retrieval. In Advances in
Information Retrieval: Recent Research from the Center for
Intelligent Information Retrieval, edited by W. Bruce Croft.
Kluwer Academic Publisher, pp. 127-150, 2000.

[10] Chang, C.-H., and Liu, S.-L. IEPAD: Information Extraction
Based on Pattern Discovery. In Proc. of WWW, 2001.

[11] Chen, Z., Kalashnikov, D.V., and Mehrotra, S. Exploiting
relationships for object consolidation. In ACM IQIS, 2005.

[12] Cohen, W. W., and Sarawagi, S. Exploiting Dictionaries in
Named Entity Extraction: Combining Semi-Markov

Extraction Processes and Data Integration Methods. In Proc.
of SIGKDD, 2004.

[13] Craswell, N., Hawking, D., and Roberson, S. Effective Site
Finding using Link Anchor Information. In Proceedings of
SIGIR, 2001.

[14] Crescenzi, V., Mecca, G., and Merialdo, P. ROADRUNNER:
Towards Automatic Data Extraction from Large Web Sites.
In Proc. of VLDB, 2001.

[15] Doan, A., Lu, Y., Lee, Y., and Han, J. Object matching for
information integration: a profiler-based approach. In
IIWeb, 2003.

[16] Dong, X., and Halevy, A. A Platform for Personal

Information Management and Integration In CIDR, 2004.

[17] Dong, X., Halevy, A., and Madhavan, J.. Reference
econciliation in Complex Information Spaces. In Proc. Of
SIGMOD, 2005.

[18] Embley, D. W., Jiang, Y., and Ng, Y.-K. Record-Boundary
Discovery in Web Documents. In Proc. of SIGMOD, 1999.

[19] Fagin, R., Kumar, R., McCurley, K., Novak, J., Sivakumar,
D., Tomlin, J., and Williamson, D. Searching the Workplace
Web. In Proceedings of the Twelfth International World
Wide Web Conference, 2003.

[20] Fine, S., Singer Y., and Tishby, N. The hierarchical hidden
Markov model: Analysis and applications. Machine Learning,
32:41-62, 1998.

[21] Finn, A., and Kushmerick, N. Multi-level boundary classi-
fication for information extraction. In Proc. ECML, 2004.

[22] Ghemawat, S., Gobioff, H., and Leung, S.-T., The Google
File System, In Proc. of SOSP, 2003.

[23] Gravano, L., and Garcia-Molina, H. Generalizing gloss to
vector-space databases and broker hierarchies. In Proceeding
of the International Conference on Very Large Data Bases
(VLDB), 1995.

[24] Gravano, L., Lpeirotism, P., Koudas, N., Srivastava, D. Text
Joins in an RDBMS for Web Data Integration. In Proc. Of
WWW, 2003.

[25] Guo, L., Shao, F., Botev, C., and Shanmugasundaram, J.
XRANK: Ranked keyword search over XML documents. In
ACM SIGMOD, 2003.

[26] Han, H., Giles, L., Zha, H., Li, C. and Tsioutsiouliklis, K.
Two supervised learning approaches for name
disambiguation in author citations. In JCDL 2004.

[27] He, X., Zemel, R. S., and Carreira-Perpiñán, M. Á. Multi-
scale Conditional Random Fields for Image Labeling. In
Proc. of CVPR, 2004.

[28] Hernandez, M., and Stolfo, S. The merge/purge problem for
large datasets. In Proc. Of the SIGMOD, 1995.

[29] Kleinberg, J. Authoritative Sources in a Hyperlinked
Environment, in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, 1998

[30] Kushmerick, N. Wrapper induction: efficiency and
expressiveness. Artificial Intelligence, 118:15-68, 2000.

245

[31] Lafferty, J., McCallum, A., and Pereira, F. Conditional
random fields: Probabilistic models for segmenting and
labelling sequence data. In Proc. of ICML, 2001.

[32] Lalmas, M. Dempster-Shafer's Theory of Evidence Applied
to Structured Documents: Modeling Uncertainty. In
Proceedings of SIGIR, 1997

[33] Lee, M., Hsu, W., and Kothari, V. Cleaning the spurious
links in data. IEEE Intelligent Systems, Mar-Apr, 2004.

[34] Lerman, K., Getoor, L., Minton, S., and Knoblock, C. Using
the Structure of Web Sites for Automatic Segmentation of
Tables. In Proc. of ACM SIGMOD, 2004.

[35] Liu, B., Grossman, R. and Zhai, Y. Mining data records in
webpages. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2003.

[36] Malin, B. Unsupervised name disambiguation via social
network similarity. In Proc. Of the Workshop on Link
Analysis, Counterterrorism, and Security, in conjunction
with SDM, 2005.

[37] McCallum, A., Nigam, K., and Ungar, L. Efficient Clustering
of High-Dimensional Data Sets with Application to
Reference Matching. In Proc. Of SIGKDD, 2000.

[38] Meng, M., Liu, K., Yu, C., Wu, W., and Rishe, N.
Estimating the usefulness of search engines. In ICDE
Conference, 1999.

[39] Michalowski, M., Thakkar, S., and Knoblock, C. Exploiting
secondary sources for unsupervised record linkage. In IIWeb,
2004.

[40] Muslea, I., Minton, S., and Knoblock C. A. Hierarchical
Wrapper Induction for Semi-structured Information Sources.
Autonomous Agents and Multi-Agent 4, 1/2 (2001), 2001.

[41] Nahm, U. Y., and Mooney, R. J. A Mutually Beneficial
Integration of Data Mining and Information Extraction. In
Proc. of AAAI, 2001.

[42] Nie, Z., Zhang, Y., Wen, J.-R., and Ma, W.-Y. Object-level
Ranking: Bringing Order to web Objects. In Proc. WWW,
2005.

[43] Nie, Z., Wu, F., Wen, J.-R., and Ma, W.-Y. Extracting
Objects from the Web. In Proc. of ICDE. 2006.

[44] Ogilvie, P., and Callan, J. Combining Document
Representations for known item search. In Proceedings of
SIGIR, 2003.

[45] On, B., Elmacioglu, E., Lee, D., Kang, J., and Pei, J. An
Effective Approach to Entity Resolution Problem Using
QuasiClique and its Application to Digital Libraries. In
JCDL 2006.

[46] Page, L., Brin, S., Motwani, R.,Winograd, T. The PageRank
Citation Ranking: Bringing Order to the Web. Technical
Report, Stanford Digital Library Technologies Project, 1998

[47] Robertson, S., Zaragoza, H., and Taylor, M. Simple BM25
Extension to Multiple Weighted Fields. ACM CIKM, 2004.

[48] Sarawagi, S., and Cohen, W. W. Semi-Markov Conditional
Random Fields for Information Extraction. In Proc. of NIPS,
2004.

[49] Skounakis, M., Craven, M., and Ray S. Hierarchical Hidden
Markov Models for Information Extraction. In Proc. of
IJCAI, 2003.

[50] Song, R., Liu, H., Wen, J. R., and Ma, W. Y. Learning Block
Importance Models for Webpages. In Proc. of WWW, 2004.

[51] Stonebraker, M., et al., C-Store: A Column Oriented DBMS.
In Proc. of VLDB, pages 553-564, 2005.

[52] Sutton, C., Rohanimanesh, K., and McCallum, A. Dynamic
Conditional Random Fields: Factorized Probabilistic Models
for Labeling and Segmenting Sequence Data. In Proc. ICML,
2004.

[53] Wellner, B., McCallum, A., Peng, F., and Hay, M. An
Integrated, Conditional Model of Information Extraction and
Coreference with Application to Citation Matching. In Proc.
of UAI, 2004.

[54] Westerveld, T., Kraaij, W., and Hiemstra, D. Retrieving
Webpages using Content, Links, URLs and Anchors. In The
Tenth Text REtrieval Conference (TREC2001), 2001.

[55] Wilkinson, R. Effective Retrieval of Structured Documents.
In Proceedings of SIGIR, 1994.

[56] Xi, W., Zhang, B., Chen, Z., Lu, Y., Yan, S., Ma, W.-Y.
Link Fusion: A Unified Link Analysis Framework for Multi-
type Inter-related Data Objects. In Proc. of WWW 2004.

[57] Xu, J., and Callan, J. Effective retrieval with distributed
collections. In Proceedings of SIGIR, 1998.

[58] Yu, S. X., Lee, T., and Kanade, T. A Hierarchical Markov
Random Field Model for Figure-Ground Segregation. Third
International Workshop on Energy Minimization Methods in
Computer Vision and Pattern Recognition, September, 2001.

[59] Zhai, Y., and Liu, B. Web Data Extraction Based on Partial
Tree Alignment. In Proc. of WWW, 2005.

[60] Zhao, H., Meng, W., Wu, Z., Raghavan, V., and Yu, C. Fully
Automatic Wrapper Generation for Search Engines. In Proc.
of WWW, 2005.

[61] Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y. 2D
Conditional Random Fields for web Information Extraction.
In Proc. of ICML, 2005.

[62] Zhu, J., Nie, Z., Wen, J.-R., Zhang, B., and Ma, W.-Y.
Simultaneous Record Detection and Attribute Labeling in
web Data Extraction. In Proc. of SIGKDD, 2006.

246

