
XClean in Action

A Demonstration of Declarative XML Data Cleaning

Melanie Weis
Hasso Plattner Institut Potsdam
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

melanie.weis@hpi.uni-potsdam.de

Ioana Manolescu
INRIA Futurs

4 rue Jacques Monod
91893 Orsay Cedex, France
ioana.manolescu@inria.fr

ABSTRACT
We demonstrate XClean, a data cleaning system specifically geared
towards cleaning XML data. XClean’s approach is based on a set of
cleaning operators. Users may specify cleaning programs by com-
bining operators using the declarative XClean/PL language, which
is then compiled into XQuery. We plan to show XClean in action
on several scenarios based on real-world data. A graphical user in-
terface supports users in writing XClean/PL programs and guides
them through the process to obtain the clean data.

1. MOTIVATION
Data cleaning is the process of correcting anomalies in a data

source, that may for instance be due to typographical errors, for-
matting differences, or duplicate representations of an entity. It is a
crucial task in customer relationship management, data mining, and
data integration. Relational data cleaning is performed in special-
ized frameworks [6, 10, 14], or by specialized modules in modern
relational database management systems [3].
With the growing popularity of XML and the large volumes of

XML data becoming available, approaches to effectively and ef-
ficiently clean XML data are needed. In developing such an ap-
proach, some of the lessons learned from the relational data clean-
ing experience clearly apply.
Modularity. Data cleaning processes should be modular in order
to allow the composition of such processes from a set of smaller, in-
terchangeable building blocks. Modularity brings several benefits.
It facilitates reusing existing cleaning transformations, simplifies
the process of debugging and inspecting the data transformation
process, and it allows incremental development, maintenance and
evolution of the cleaning process.
Declarativity. By declaratively describing the cleaning process,
its logic can be decoupled from the actual processing and its imple-
mentation. This makes data cleaning processes easier to write and
to debug than alternative approaches, based on imperative code.
Declarative cleaning programs allow concentrating on the cleaning
tasks, while delegating the storage and optimization issues to the
underlying data management systems.
DBMS-backed data cleaning. Many transformations involved in

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/.) You may copy, distribute,
display, and perform the work, make derivative works and make commercial
use of the work, but, you must attribute the work to the author and CIDR
2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

data cleaning are closely related to those typically applied inside
database management systems (DBMSs). Therefore, cleaning data
on top of a DBMS allows taking advantage of its functionalities,
including persistence, transactions etc. but also query optimization,
which may speed up the cleaning.
Some XML data cleaning features make a departure from its re-

lational counterpart, raising new challenges and opportunities:
Cleaning rich-structure data. Different XML representations
of similar real-world objects may exhibit bigger differences among
them than similar tuple-based ones. Thus, object properties may be
multi-valued, the order and the hierarchical organization of data in-
side elements may vary. Furthermore, crucial information describ-
ing the way XML nodes relate to one another is encapsulated by
their parent-child relationships. Thus, XML data cleaning needs to
preserve and exploit these relationships, whereas relations between
tuples were fully captured by the values they contained.
Cleaning XML with XQuery? Relational data cleaning’s re-
liance on RDBMSs was limited by expressive power mismatches
between the cleaning primitives and SQL. Features such as user-
defined aggregate functions, transitive closure computation, nested
tables etc. are either not fully supported by the language, or not
well supported by existing systems. In contrast, the standard XML
query language, XQuery, is Turing-complete, raising the question
whether simply writing XQuery queries may not suffice for data
cleaning? While this approach can be made to work, it amounts to
writing fresh code for every new cleaning problem, which does not
agree with our modularity requirement.
XML cleaning functions. Typical data cleaning steps, such as
distance computation or duplicate detection, are quite complex
and/or expensive [11, 13], and the best way to implement them
may not be via XQuery. XQuery supports external functions [15],
and RDBMSs feature robust execution techniques for queries using
such functions [7], which can be easily adopted by XQuery proces-
sors, too. Thus, valuable, non query-like libraries useful for XML
cleaning can still be exploited while cleaning XML with XQuery.
We present XClean, the first modular, declarative system for na-

tive XML data cleaning. In XClean, cleaning processes are mod-
eled using a a set of cleaning operators, that can be combined in ar-
bitrarily complex cleaning processes. The operators’ specification
is expressed in a high-level operator definition language, called
XClean/PL. Writing XClean programs is supported by a graphical
user interface. An XClean/PL program is compiled into XQuery, to
be executed on top of any XQuery processor. The demo shows the
expressive power and ease of use of XClean by means of several
case studies.
The paper is organized as follows. We present the overall system

in Sec. 2. We then describe the proposed demo scenarios in Sec. 3.
Related work is discussed in Sec. 4, and Sec. 5 concludes.

259

Figure 1: XClean Architecture

2. XCLEAN IN A NUTSHELL
In this section, we introduce XClean, the first declarative and

modular XML data cleaning system. We outline its architecture,
then describe its cleaning operators, and briefly present XClean/PL,
a programming language to specify these operators.
Due to space constraints, we are very brief on these descrip-

tions. Further details are available at [1].

2.1 XClean Architecture
The architecture of the XClean system is depicted in Fig. 1.

A user specifies an XClean program in our proposed declarative
XClean/PL language (see Sec. 2.3). An XClean/PL program de-
scribes a set of XClean operators, and the way their inputs and
outputs are connected. The system provides a function library in-
cluding commonly used functions (e.g., date formatting for scrub-
bing, edit distance for string similarity, transitive closure for clus-
tering), which may be used in XClean/PL programs. The function
library can be extended by user defined cleaning functions, defined
as XQuery functions and implemented either in XQuery or in an
external language [15].
We compile XClean/PL programs into XQuery; executing such

an XQuery then outputs the clean XML data. This allows to execute
the programs on top of any XQuery-enabled platform. The XQuery
standard language [15] is a feature-rich language widely imple-
mented by major DBMS vendors (such as IBM, Oracle, Microsoft
etc.), and free-source projects (e.g. Saxon, BerkeleyDB/XML etc.).
The interest of the XClean/PL language in itself is to provide cus-
tom syntax for cleaning-specific operators, increasing the readabil-
ity and ease of maintenance of cleaning programs, while being sig-
nificantly more concise than the resulting XQuery programs. The
XQuery is input to an XQuery optimizer before it is executed by an
XQuery processor, who outputs a clean representation of the dirty
input XML data.
The focus of the demo is on the expressive power of the few

XClean operators and XClean/PL. The current implementation
does not feature any optimizations but the underlying XQuery en-
gine’s. We plan to use Saxon B and/or MonetDB.

2.2 Operators
XClean’s cleaning operators are summarized in Tab. 1. Any

XClean operator inputs and outputs collections of (nested) tuples.
A tuple consists of attribute-value pairs; values may be XML nodes,
atomic values, or tuple sets. We use tuples as they are convenient
for modeling associations of nodes and values which must be con-
sidered jointly during cleaning, as we demonstrate on the following
example.
Fig. 2 (bottom) presents a sample XML document containing

three versions of the same real-world object (in this example, a
movie), with their respective title, year and actor sets. The ad-
ditional labels m1, a1 etc. uniquely identify an element and are
used to reference them in our example. Assume that the goal of
the cleaning process is: (i) obtaining one representation for each
movie, including all alternative titles, one year, and all actors (but
each actor only once), and (ii) restructuring each actor element
into a firstname and a lastname element. A possible result of this
process is shown at the top of Fig. 2.
We now explain how this cleaning process is implemented in

Operator Goal
Candidate Selection (CS) Select elements to be cleaned.

Scrubbing (SC) Remove errors in text (typos, format, ...).
Enrichment (EN) Specify data that supports cleaning.

Duplicate filtering (DF) Filter non-duplicate element pairs.
Pairwise duplicate Classify pairs of elements as duplicates,
classification (DD) non-duplicates, ...

Duplicate clustering (DC) Determine clusters of duplicates.
Fusion (FU) Create unique representation of an entity.

XML view (XV) Create XML view of clean data.

Table 1: Overview of XClean Operators

XClean. The process and its intermediary results can be followed
from the bottom up on Fig. 2.
The candidate selection (CS) operator is used to define the ele-

ments subject to data cleaning. In our case, these are the 〈movie〉
and 〈actor〉 elements in the sample dirty XML document doc at the
bottom of Fig. 2. Candidate selection operators ((1) and (2) in the
figure) generate two separate tuple sets for movie and actor candi-
dates, respectively.
To split the texts appearing inside 〈actor〉 elements into first name

and last name components, we apply a scrubbing operator (2.1).
Scrubbing is reserved to simple processing of atomic values (that
is, text nodes or attribute values). Similarly, to prepare for the task
of choosing a single year per movie, we standardize date formats to
a four-digit representation, using another scrubbing operator (1.1).
To help decide which 〈movie〉 elements represent the same real-

world object, we annotate each movie with some extra information:
its title, and set of actors. We use an enrichment (EN) operator
to associate such extra information to cleaning candidates. In this
simple example, movies were enriched with information extracted
from the same document (1.2), namely their title and their actor set.
In general, enrichment may add to cleaning candidates interesting
data from other sources, such as, e.g., alternative titles, or direc-
tors, which in our case may be obtained from a source such as the
Internet Movie Database.
A central task in data cleaning is duplicate detection, i.e. de-

tecting multiple representations of a same real-world object. In
its most general form, this process involves pairwise comparisons
among the cleaning candidates. To support flexible specification of
duplicate detection tasks, while allowing for their efficient imple-
mentation, XClean provides three distinct operators.
Duplicate filtering (DF) allows to prune pairs of cleaning can-

didates of which it can be declared with certainty that they do not
represent the same real-world object. In our example, we could, for
instance, specify that actors whose last names do not start with the
same letter, and whose first names do not start with the same letter,
either, are not duplicates (2.2). We model such pair pruning by a
separate operator to provide a way for users to inject their knowl-
edge of the application domain in the cleaning process. This leads
to avoiding expensive computations (such as sophisticated distance
measures, or the application of clustering procedures) whenever
possible, and also has the advantage of minimizing intermediary
cleaning results. Clearly, the quality of the filter influences the qual-
ity of duplicate detection, because pairs falsely filtered will never
be found to be duplicate. For the pairs surviving duplicate filtering,
we provide two duplicate detection approaches.
Pairwise duplicate detection (DD) considers one pair of clean-

ing candidates at a time, and classifies it in one class among: du-
plicates, non-duplicates, and possibly other classes, e.g., reflecting
confidence levels such as possible, unlikely etc. In our example, we
use pairwise duplicate detection to decide that two actors are dupli-
cates if either their firstname or their lastname are equal, otherwise,
they are non-duplicates, i.e., correspond to distinct real-world ob-
jects (2.3).

260

Figure 2: Sample cleaning process overview.
Pairwise duplicate detection is simple and natural to use, how-

ever, it does not fit all application scenarios and duplicate detection
algorithms. Whereas pairwise duplicate detection applies locally
on one pair of (possibly enriched) candidates at a time, we define
our duplicate clustering (DC) operator to work globally, taking as
input sets of candidate pairs. Duplicate clustering can be applied
to perform transitive closure over a set of detected duplicate pairs
returned by a pairwise duplicate detection method [8], but it also
supports the detection of duplicates using algorithms that rely on
relationships between them [4]. In our example, duplicate cluster-
ing produces both actor clusters, and movie clusters (3). Their de-
tection relies on the observation that relationships between movies
and actors may be used to help cleaning both.
From every cluster, a unique cleaned representation is obtained

using the fusion (FU) operator. In our example, 〈actor〉 fusion
(3.2) must reconcile the exact spelling of their first and last names,
whereas 〈movie〉 fusion (3.1) requires resolving conflicts in their
actor sets, years, and titles.
Our last operator, called XML view (XV), is used for XML re-

structuring operations, e.g., to put together the partial results of
various cleaning operators into a cleaned document, or to align
differently-structured candidates into a unique syntax. In our ex-
ample, XML view encapsulates scrubbed firstnames and lastnames
into elements, keeps alternative movie titles and associates fused
actors with fused movies (4).

ENRICH $m IN $scrubbedMovies
INTO $enrichedMovies
BY $m.mCand/movie/title/text() AS $title,

$m.mCand/movie/set/actor AS $set;
CLUSTER CLASSIFICATION USING
$xcl:radc($actorDups, $candMovieDups)

INTO $movieClusters SCHEMA [$movieCluster],
$actorClusters SCHEMA [$actorCluster];

Table 2: Sample XClean/PL clauses.

2.3 XClean Programming Language
The specification of a cleaning process can be decomposed in

two parts: (i) the specific filters, distance functions, duplicate de-
tection algorithms, clustering algorithms etc. that the user chooses;
(ii) and the “surrounding” code necessary to implement the oper-
ators based on the functions (as described in the previous section),
and to glue the operators among them.
Previous experience in data cleaning [6, 10, 14] demonstrates

that creating or choosing the cleaning functions and algorithms re-
quires a human expert, and cannot be automated. In contrast, the
second task is repetitive, and amenable to automation. Based on
this observation, we designed the XClean/PL language as follows.
An XClean/PL program is a set of clauses, each of which defines

a cleaning operator. Operators input and output tuples from shared,
global XClean/PL variables. Sample XClean/PL clauses appear in
Tab. 2. XClean/PL keywords appear in bold font.
The top enrichment clause defines the operator labeled (1.2) in

Fig. 2. The clause refers to two named tuple sets, globally visible
in the XClean/PL program: $scrubbedMovies, the operator’s input,
and $enrichedMovies, its output. The tuple variable $m iterates over
the input. The BY clause introduces the two enrichments: the result
of each query is added as a new variable, part of the output flow.
The cluster classification clause defines the operator labeled (3)

in Fig. 2. The classifier function $xcl:radc denotes a relationship-
aware duplicate clustering function [13], which is one among the
possible classifiers to be used here. The classification function re-
turns two sets of clusters, one containing movies and another one
actors. The INTO keyword is used, as previously, to capture the out-
puts of $xcl:radc, and make them visible in the XClean program for
further usage. Furthermore, this clause explicitly renames the at-
tributes in each set of cluster’s schema, through the SCHEMA clause.
The full description of XClean/PL’s syntax, its translation to

XQuery, and more detailed examples are delegated to [1].

3. DEMO SCENARIOS
The demo will focus on XClean’s expressive power, and high-

light the benefits of modular and declarative XML data cleaning,
by means of several real-life dirty XML data sets, outlined in this
section. Use case details, sample data sets, full XClean/PL pro-
grams, and their resulting XQueries, are available at [1].
FreeDB Use Case. This use case concerns CD description data
from the FreeDB site (http://www.freedb.org). The cleaning pro-
cess (Fig. 3) includes correcting errors in artist names (e.g., differ-
ent capitalization schemes, Various Artists is also represented by
V.A., Various), standardizing dates, correcting titles (e.g., the title
element often includes Artist/Title), and track titles (again, capital-
ization). Furthermore, the text including a comma separated list
of track titles is split into several track title elements. The final
task is to de-duplicate CDs: if both 〈artist〉 and 〈title〉 are equal, we
consider CDs to be duplicates. Clusters of duplicates are formed,
and fused to a single representative for every CD. During fusion,
conflicts may appear in category, genre, year, and track titles: dif-
ferent categories, genres, and years are concatenated, whereas sets
of 〈title〉 elements are unified. Note that the table representation in
Fig. 3 has only been used for readability, the actual data is XML.

261

Figure 3: FreeDB Use Case

MOVIE Use Case. This is a data integration scenario, in which
movies from two sources are first mapped to a common schema,
and then de-duplicated. The source data originates from the
Internet Movie Database IMDB (http://www.imdb.com) and the
German Movie Repository FILMDIENST (http://film-dienst.kim-
info.de/). Fig. 4 outlines the two source schema and the target
schema. In IMDB titles, the possible leading “The” or “An” in a
paper’s title is separated in an 〈article〉 element. Non-trivial corre-
spondences between source and target types are rendered by curved
arrows, possibly annotated with transformation functions. For ex-
ample, IMDB names are split into a firstname and a lastname, and
the gender is set to “m” for actor, or to “f” for actresses. In ad-
dition to performing the transformation into the target schema, we
also scrub and de-duplicate the data using the same duplicate de-
tection algorithm used in our motivating example.

Figure 4: MOVIE Use Case
DBLP Use Case. In the well-known DBLP data source some au-
thors with identical names (e.g., Albrecht Schmidt) share the same
page, whereas some researchers’ works are split across several
pages due to different name spellings. The co-authors of an au-
thor are a good starting point to fix these data problems: the co-
author sets of the two same-name researchers are disjoint, while
the co-author sets of a single person (whose name is spelled in dif-
ferent ways) may overlap. A clustering algorithm working on the
co-author relationship is designed to repair these problems, and ap-
plied within XClean.
CORA Use Case. The CORA bibliographic data set is frequently
used to evaluate duplicate detection algorithms [4, 12]. The sam-
ple XClean process scrubs, enriches and restructures the dirty data.
Using the restructured data, publications, dates, authors and venues
are deduplicated, and are assigned an identifier. In this example,
we again scrub dates, reusing a standard function available in the
XClean function library already used in theMOVIE scenario. Also,
detecting duplicates in author names is similar to detecting dupli-

cates in actor names, so we can reuse the same pairwise duplicate
detection function as in the MOVIE scenario, showing the advan-
tage of modularity.

4. RELATED WORK
We only briefly discuss selected related work to data cleaning

systems, and refer to [9] for a survey on relational data cleaning.
More recent approaches approaches include AJAX [6] and Pot-
ter’s Wheel [10]. XClean is conceptually close to AJAX by its
operator-based approach, however the XML context lifts the ex-
pressive power barriers that confronted AJAX. In our context, ad-
vantages of a declarative, modular approach are: ease of specifica-
tion and maintenance, and opportunities for optimization. AJAX
moreover provided an exception handling mechanism, which we
plan to consider as well in the future. In the data integration con-
text, systems dealing with data cleaning have been proposed as
well. These include [2, 5].

5. CONCLUSION
The advent of XML data, dirty repositories of which already

abound, requires adapted cleaning tools. With XClean, we take ad-
vantage of the expressive power of XQuery to express XML clean-
ing programs, while providing to the user (i) a set of modular clean-
ing operators and (ii) a compact cleaning language (which XClean
compiles into XQuery) to specify these operators. The main focus
of the demo we propose is on XClean’s flexibility, modularity, ex-
pressive power, and ease of use, based on a variety of use cases.
We also plan to present some interesting XQuery performance is-
sues raised by the kinds of XQuery queries (rich in grouping and
function calls) that XClean produces.
Acknowledgements This research was partly funded by a “DAAD
Doktorandenstipendium” scholarship.

6. REFERENCES
[1] XClean: A system for declarative XML data cleaning.

http://www.informatik.hu-berlin.de/˜mweis/xclean/.
[2] A. Bilke, J. Bleiholder, C. Böhm, K. Draba, F. Naumann, and

M. Weis. Automatic data fusion with HumMer. In VLDB, 2005.
[3] S. Chaudhuri, K. Ganjam, V. Ganti, R. Kapoor, V. Narasayya, and

T. Vassilakis. Data cleaning in Microsoft SQL server 2005. In
SIGMOD, 2005.

[4] X. Dong, A. Halevy, and J. Madhavan. Reference reconciliation in
complex information spaces. In SIGMOD, 2005.

[5] A. Fuxman, E. Fazli, and R. J. Miller. ConQuer: Efficient
management of inconsistent databases. In SIGMOD, 2005.

[6] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C. Saita.
Declarative data cleaning: Language, model, and algorithms. In
VLDB, 2001.

[7] J. Hellerstein and J. Naughton. Query Execution Techniques for
Caching Expensive Methods. In SIGMOD, 1996.

[8] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large
databases. In SIGMOD, May 1995.

[9] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Engineering Bulletin, Volume 23, 2000.

[10] V. Raman and J. Hellerstein. Potter’s wheel: An interactive data
cleaning system. In VLDB, 2001.

[11] D. Shasha, J. Wang, K. Zhang, and F. Shih. Exact and approximate
algorithms for unordered tree matching. IEEE Transactions on
Systems, Man, and Cybernetics, 24, 1994.

[12] P. Singla and P. Domingos. Object identification with
attribute-mediated dependences. In PKDD, 2005.

[13] M. Weis and F. Naumann. DogmatiX tracks down duplicates in
XML. In SIGMOD, 2005.

[14] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. In CIDR, 2005.

[15] XQuery 1.0. http://www.w3.org/TR/XQuery, 2006.

262

