
Trio-One:
Layering Uncertainty and Lineage on a Conventional DBMS ∗

Michi Mutsuzaki, Martin Theobald, Ander de Keijzer†, Jennifer Widom,
Parag Agrawal, Omar Benjelloun, Anish Das Sarma, RaghothamMurthy, Tomoe Sugihara‡

Stanford University InfoLab
http://infolab.stanford.edu/trio

ABSTRACT
Trio is a new kind of database system that supportsdata, uncer-
tainty, andlineagein a fully integrated manner. The first Trio pro-
totype, dubbedTrio-One, is built on top of a conventional DBMS
using data and query translation techniques together with asmall
number of stored procedures. This paper describes Trio-One’s trans-
lation scheme and system architecture, showing how it efficiently
and easily supports the Trio data model and query language.

1. INTRODUCTION
In the Trio project at Stanford, we are developing a new kind of
database management system—one that handlesdata, uncertainty
of the data, and datalineage together in a fully integrated man-
ner [3, 6]. Some of the application domains targeted by Trio are
data cleaning and integration, information extraction, and scientific
data management [6].

Our first system prototype, dubbedTrio-One, is primarily lay-
ered on top of a conventional relational DBMS. From the user and
application standpoint Trio-One appears to be a “native” implemen-
tation of the Trio data model, query language, and other features.
However, Trio-One encodes the uncertainty and lineage present in
Trio’s data model in conventional relational tables, and ituses a
rewrite-based approach for most data management and query pro-
cessing. A small number of stored procedures are used for specific
functionality and increased efficiency.

This paper, accompanying our system demonstration, captures
the Trio system as of late 2006. A previous overview paper [3]
captured an earlier snapshot of the project, and a previous system
demonstration [1] included a subset of Trio’s query language and a
limited set of additional features. Motivation and technical justifi-
cation for a data model and system that includes both uncertainty
and lineage can be found in [2, 6]. Trio’s query language is speci-
fied in detail in [5].

The remainder of this paper proceeds as follows:

• Section 2 introduces the overall Trio-One system architecture
and briefly describes its application and user interfaces.

• Section 3 reviews Trio’sULDB data model (forUncertainty-
Lineage Databases), introduces a very small running exam-

∗This work was supported by the National Science Foundation un-
der grants IIS-0324431 and IIS-0414762, and by grants from the
Boeing and Hewlett-Packard Corporations.
†Visiting from University of Twente, supported by Netherlands Or-
ganization for Scientific Research (NWO)
‡Visiting from NEC Corporation

This publication is licensed under a Creative Commons Attribution 2.5
License; see http://creativecommons.org/licenses/by/2.5/ for further details.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

Standard relational DBMS

Trio API and translator
(Python)

Trio API and translator
(Python)

Command-line
client

Command-line
client

Trio
Metadata

TrioExplorer
(GUI client)

TrioExplorer
(GUI client)

Trio Stored
Procedures

Encoded
Data Tables

Lineage
Tables

Standard SQL

Figure 1: System Architecture.

ple database, and shows how ULDB databases are encoded
in conventional tables.

• Section 4 describes Trio’s query language,TriQL, and shows
how TriQL queries over ULDBs are translated automatically
to SQL queries over the encoded tables.

• Section 5 describes some Trio-specific features—lineage tra-
cing, on-demand confidence computation, coexistence checks,
and extraneous data removal—covering their functionality
and implementation.

We conclude in Section 6 with future directions for Trio, including
the possibility of aTrio-Twosystem that would take a built-in rather
than layered approach. Due to space constraints this paper does not
include discussion of related work; we refer the reader to [2, 3, 6].

2. THE TRIO-ONE SYSTEM
Figure 1 shows the basic three-layer Trio-One architecture. The
core system is implemented in Python and mediates between the
underlying relational DBMS (currently thePostgreSQLopen-source
DBMS) and Trio interfaces and applications. The Python layer
presents a simple Trio API that extends the standard Python DB
2.0 API for database access (Python’s analog of JDBC). The Trio
API accepts TriQL queries in addition to regular SQL, and query
results may bex-tuplesin the ULDB model (see Section 3) as well
as regular tuples. The API also exposeslineage tracing, along with
the other Trio-specific features covered in Section 5. Usingthe Trio
API, we built a generic command-line interactive client similar to
that provided by most DBMS’s, and a full-featured graphicaluser
interface calledTrioExplorer.

Trio DDL commands are translated via Python to SQL DDL
commands based on the encoding described in Section 3. The
translation is fairly straightforward, as is the corresponding trans-
lation ofinsert statements and bulk load.

269

Figure 2: TrioExplorer Screenshot.

TriQL query processing proceeds in two phases. In thetransla-
tion phase, a TriQL parse tree is created and progressively trans-
formed into a tree representing one or more standard SQL state-
ments, based on the data encoding scheme. In theexecutionphase,
the SQL statements are executed against the relational database en-
coding. Depending on the original TriQL query, Trio stored pro-
cedures may be invoked and some post-processing may occur. For
efficiency, most additional runtime processing is written in C and
executes in the DBMS server via the PostgresSPI interface.

TriQL query results can either bestoredor transient. Stored
query results are placed in a new persistent table, and lineage rela-
tionships from the query’s result data to data in the query’sinput ta-
bles also is stored persistently. Transient query results are accessed
through the Trio API in a typical cursor-oriented fashion, with an
additional method that can be invoked to explore the lineageof
each returned tuple. For transient queries, query result processing
and lineage creation occurs in response to cursorfetchcalls, and
neither the result data nor its lineage are persistent.

TrioExploreroffers a rich interface for interacting with the Trio
system. It implements a Python-generated, multi-threadedweb
server usingCherryPy, and it supports multiple users logged into
private and/or shared databases. It accepts Trio DDL and DML
commands and provides numerous features for browsing and ex-
ploring schema, data, uncertainty, and lineage. It also enables on-
demand confidence computation, coexistence checks, and extrane-
ous data removal. Finally, it supports loading of scripts, command
recall, and other user conveniences. Figure 2 shows a snapshot
of TrioExplorer’s schema visualizer including schema-level lineage
relationships among tables.

3. TRIO DATA
We briefly reviewULDBs (Uncertainty-Lineage Databases), the
data model forming the basis of the Trio system. More detailsand
examples can be found in [2, 3]. ULDBs extend the standard SQL
relational model with four new constructs:

1. tuple alternatives, representing uncertainty about the con-
tents of a tuple

2. maybe(“?”) annotations, representing uncertainty about the
presence of a tuple

3. numericalconfidencevalues, optionally attached to alterna-
tives and “?”

4. lineage, connecting tuple alternatives to other alternatives
from which they were derived

A formal semantics for ULDBs based onpossible instancesis spec-
ified in [2], which also shows that the ULDB model iscomplete:
any finite set of possible instances can be represented as a ULDB.

The following example illustrates a ULDB for a highly simpli-
fied “crime-solver” application.1 TablesSaw(witness,car)
andDrives(person,car) capture (possibly uncertain) driver
information and crime vehicle sightings, respectively. Table
Suspects(person) is derived by joiningSaw andDrives,
so it contains (possible) drivers of (possibly) sighted cars. Confi-
dence values are optional in ULDB tables—for now imagine that
they are not present in tablesSaw andDrives. Confidences will
be discussed in Section 3.1.

ID Saw (witness, car)
51 (Cathy,Honda):0.6 || (Cathy,Mazda):0.4

ID Drives (person, car)
61 (Jimmy,Mazda):0.3 || (Freddy,Mazda):0.7
62 (Billy,Honda):0.8
63 (Hank,Honda):1.0

?

ID Suspects (person)
71 Jimmy || Freddy
72 Billy
73 Hank

λ(71,1) =(51, 2) ∧ (61, 1)
? λ(71,2) =(51, 2) ∧ (61, 2)
? λ(72,1) =(51, 1) ∧ (62, 1)
? λ(73,1) =(51, 1) ∧ (63, 1)

Tuples 51, 61, and 71 have twoalternativeswhich are mutually
exclusive in our model. Tuple 62 and all threeSuspects tuples
havemaybe(“?”) annotations. The Booleanλ functions on the
derivedSuspects table represent the lineage of individual alter-
natives. For example, Jimmy or Freddy may be a suspect, because
one of them drives a Mazda and Cathy may have seen a Mazda
(alternatives (71,1) and (71,2) with lineage(51, 2) ∧ (61, 1) and
(51, 2) ∧ (61, 2) respectively). If Cathy saw a Honda, then nei-
ther Jimmy nor Freddy is a suspect, captured by the “?” annotation
on tuple 71. Hank definitely drives a Honda, so he is a suspect if
Cathy saw a Honda (tuple 73 with lineage(51, 1) ∧ (63, 1)), and
Billy may also be a suspect (tuple 72 with lineage(51, 1)∧(62, 1)).

3.1 Confidence Values
Confidencevalues may optionally be attached to alternatives, as il-
lustrated in tablesSaw andDrives above. By default, ULDBs use
a probabilistic interpretation of confidence values, although alter-
nate user-specified interpretations are allowed (briefly discussed in
Section 4). Using the sample confidence values on the base data, in
theSuspects join result above,Jimmy, Freddy, Billy, and
Hank have confidence values 0.12, 0.28, 0.48, and 0.6 respectively.

Particularly noteworthy is the fact that confidence values on join
results (and other query results) can be computed based on lin-
eage. For example, the lineage of tuple 72 (Billy) is the for-
mula(51, 1) ∧ (62, 1). Treating (51,1) and (62,1) as symbols with
probabilities 0.6 and 0.8 (the confidence values associatedwith
(Cathy,Honda) and(Billy,Honda)), the probability of the
formula, and therefore the confidence of suspectBilly, is 0.48.

3.2 Disjunctive Lineage
Suppose we add a fourth tuple to tableDrives:

64 (Frank,Honda):0.7 || (Frank,Mazda):0.3

yielding a newSuspects tuple:
1Apologies for incessant use of the same toy application, butit’s by
far the best vehicle we have found for compact, easily-understood
examples of Trio features. The actual system demonstrationuses a
more complex movie-recommendation application.

270

74 Frank || Frank ? λ(74,1) =(51, 1) ∧ (64, 1)
λ(74,2) =(51, 2) ∧ (64, 2)

In the TriQL query language (Section 4), the default is for “horizon-
tal duplicates” to be merged in query results, producing disjunctive
lineage. Thus, tuple 74 would actually contain a singleFrank al-
ternative (still with a “?”), and its lineage would be:

((51, 1) ∧ (64, 1)) ∨ ((51, 2) ∧ (64, 2))

We can still compute the confidence ofFrank based on lineage,
i.e., as the probability of the above formula. Notice that here the
variables in the lineage formula are not independent: (51,1) and
(51,2) are mutually exclusive, and so are (64,1) and (64,2).Taking
mutual exclusion into account, the probability of the aboveformula
is (0.6 ·0.7)+(0.4 ·0.3) = 0.54. In other words, the probability of
Cathy seeing the same car Frank drives, and therefore Frank being
a suspect, is 0.54.

3.3 Encoding ULDB Data
We now describe how ULDB databases are encoded in regular re-
lational tables. Hereafter we usex-tuple to refer to a tuple in the
ULDB model, i.e., a tuple that may include alternatives, “?”, and
confidence values, andtuple to denote a regular relational tuple.

Let T (A1, . . . , An) be a ULDB table that may include both con-
fidences and lineage. We store the data portion ofT as a conven-
tional table (which we will also refer to asT) with four additional
attributes:T (aid, xid, conf, num, A1, . . . , An). Each alterna-
tive in the original ULDB table is stored as its own tuple inT , and
the additional attributes function as follows:

• aid is a unique alternative identifier.

• xid identifies the x-tuple that this alternative belongs to.

• conf stores the confidence of the alternative, orNULL if
there are no confidence values or if this confidence value has
not yet been computed. (Each table either permits confidence
values on all alternatives or on none of them; thistable type
is part of the schema information.)

• num efficiently tracks whether the alternative’s x-tuple has a
“?”. (Some details are given in Section 4.1.)

The system always creates indexes onaid andxid. In addition,
Trio users may create indexes on any of the original data attributes
A1, . . . , An using standardCREATE INDEX commands that are
simply passed through Trio to the underlying DBMS.

The lineage information for each tableT is stored in a separate
table lin T (aid, src aid, src table), indexed onaid and
src aid. A tuple (a1, a2, T2) in lin T denotes thatT ’s alterna-
tive a1 has alternativea2 from tableT2 in its lineage. Additional
flags (details omitted) encode whether multiple lineage relation-
ships for alternatives are conjunctive or disjunctive.

4. TRIO QUERIES
TriQL [3, 5], Trio’s query language for ULDBs, is an extension of
SQL. TriQL queries return uncertain relations in the ULDB model,
with lineage that connects query result data to the queried data. As
mentioned in Section 2, a TriQL query result may betransient, of-
fering a cursor interface and a special method for retrieving lineage,
or the query result and its lineage may be stored in persistent tables
according to the encoding scheme described in Section 3.3. As a
first example, the join query from Section 3 with its result stored in
tableSuspects would be written in TriQL simply as:

TriQL> CREATE TABLE Suspects AS
TriQL> SELECT person
TriQL> FROM Saw, Drives
TriQL> WHERE Saw.car = Drives.car

In addition to modifying SQL semantics for ULDBs, TriQL adds
a number of new constructs for querying and manipulating both un-
certainty and lineage. A comprehensive specification for TriQL’s
query and update language appears in [5]. In the remainder ofthis
section we use examples to illustrate TriQL semantics and func-
tionality, and how TriQL queries are rewritten automatically into
standard SQL over the relationally-encoded ULDB data.

4.1 Basic Rewriting Scheme
Consider theSuspects query shown above, first in its transient
form (i.e., withoutCREATE TABLE). The Trio Python layer trans-
lates the TriQL query into the following SQL query, sends it to the
underlying DBMS, and opens a cursor on the result:

SQL> SELECT Drives.person,
SQL> Saw.aid, Drives.aid,
SQL> Saw.xid, Drives.xid,
SQL> (Saw.num * Drives.num) AS num
SQL> FROM Saw, Drives
SQL> WHERE Saw.car = Drives.car
SQL> ORDER BY Saw.xid, Drives.xid

LetTfetchdenote a cursor call to the Trio API for the original TriQL
query, and letSfetchdenote a cursor call to the underlying DBMS
for the translated SQL query. Each call toTfetchmust return a com-
plete x-tuple, which may entail several calls toSfetch: Each tuple
returned fromSfetchon the SQL query corresponds to one alterna-
tive in the TriQL query result, and the set of alternatives with the
same returnedSaw.xid andDrives.xid pair comprise a sin-
gle result x-tuple. (The TriQL operational join semantics presented
in [3] makes this property very clear.) Thus, onTfetch, Trio col-
lects all SQL result tuples for a singleSaw.xid/Drives.xid
pair (enabled by theORDER BY clause in the SQL query), gen-
erates a newxid and newaid’s, and constructs and returns the
result x-tuple.

Note that the underlying SQL query also returns theaid’s from
Saw andDrives. These values (together with the table names)
comprise the lineage for the alternatives in the result x-tuple. As
mentioned earlier, thenum field is used to encode the presence or
absence of “?”.2 Finally, since result confidence values for joins
are not computed until they are explicitly requested (see Section 5),
Tfetchinitially returnsNULL confidence for all alternatives, whether
or not the query result logically contains confidence values.

For the stored (CREATE TABLE) version of the query, Trio first
issues DDL commands to create new tables for the query resultand
its lineage. Trio then executes the same SQL query shown above,
except instead of constructing and returning x-tuples one at a time,
the system directly inserts the new alternatives and their lineage
into the result and lineage tables, already in their encodedform. All
processing occurs within an SPI stored procedure on the database
server, thus avoiding unnecessary roundtrips between the Python
module and the underlying DBMS.

4.2 Duplicate Elimination
Like the “horizontal” merging of duplicate alternatives shown in
Section 3.2, TriQL queries can perform more conventional “verti-
cal” duplicate elimination, which also results in disjunctive lineage:

TriQL> SELECT DISTINCT car
TriQL> FROM Drives

Considering the version ofDrives without confidences, we get:
2Our scheme essentially maintains the invariant that an alterna-
tive’s x-tuple has a “?” if and only if itsnum field exceeds the
x-tuple’s number of alternatives.

271

ID car
81 Mazda
82 Honda

λ(81,1) =(61, 1) ∨ (61, 2)
λ(82,1) =(62, 1) ∨ (63, 1)

In general, horizontal and/or vertical duplicate elimination oc-
curs as the final step in a query that may also include filtering,
joins, and other operations. Two related issues must be addressed:
(1) how the resulting disjunctive lineage is encoded, and (2) how
the TriQL queries are translated. In the currently supported version
of TriQL, all lineage generated by a query prior to duplicateelimi-
nation is conjunctive. Thus, after duplicate elimination,the lineage
of each result alternative is a formula in disjunctive normal form:

(a1 ∧· · ·∧ai)∨ (b1 ∧· · · ∧ bj)∨· · · ∨ (c1 ∧· · · ∧ ck)

Trio encodes these DNF formulas by introducing dummy identi-
fiers for each disjunct and storing flags to indicate whether aset of
lineage relationships is conjunctive or disjunctive. (Further details
are omitted due to space constraints.)

Merging “horizontal” duplicates and creating the corresponding
disjunctive lineage can occur entirely within theTfetchmethod (re-
call the basic rewriting scheme in Section 4.1): All alternatives for
each result x-tuple, together with their lineage, already need to be
collected withinTfetchbefore the x-tuple is returned. Thus,Tfetch
can merge all duplicate alternatives and create the disjunctive lin-
eage for them, then return the modified x-tuple. If the query in-
cludesUNMERGED, indicating that horizontal duplicate-elimination
should not occur, the extra steps are simply skipped.
SELECTDISTINCT is more complicated, requiring two phases.

First, a translated SQL query is produced as ifDISTINCTwere not
present, except the result is ordered by the data attributesinstead
of xid’s. One scan through this SQL result is required to merge
duplicates and create disjunctive lineage. This intermediate result
must then be reordered byxid’s, in order to construct the correct
x-tuples in the final result. For our very simple example above, the
following two SQL queries are generated.Temp holds the tempo-
rary result after the first query is used to eliminate duplicates and
create disjunctive lineage.

SQL> SELECT person, car, aid, xid, num
SQL> FROM Drives
SQL> ORDER BY person, car

SQL> SELECT person, car, aid, xid, num
SQL> FROM Temp
SQL> ORDER BY xid

4.3 Aggregation
TriQL supports standard SQL grouping and aggregation. Consider
the following query:

TriQL> SELECT car, count(*)
TriQL> FROM Drives GROUP BY car

The query result appears fairly straightforward for our very simple
example, although notice that tuple 91 is the result of merging two
duplicate alternatives.

ID (car, count)
91 (Mazda,1)
92 (Honda,1) || (Honda,2)

λ(91,1) =(61, 1) ∨ (61, 2)
λ(92,1) = (63,1)
λ(92,2) =(62, 1) ∧ (63, 1)

In general, aggregation can be an exponential operation in ULDBs
(and in other data models for uncertainty). Thus, TriQL includes
built-in approximateaggregation functions, includinglow andhigh
bounds for the aggregate result, andexpectedvalues that take con-
fidence into account. For example, the following query returns ex-
pected values for the number of occurrences of each type of car in
Drives.

TriQL> SELECT car, ecount(*)
TriQL> FROM Drives GROUP BY car

The result on our exampleDrives table with confidence values is
(Mazda,1.0), (Honda,1.8).

TriQL supports 20 different aggregation functions: four versions
(full, low, high, andexpected) for each of the five standard func-
tions (count, min, max, sum, avg). (Distinct versions of the ag-
gregation functions currently are not supported.) All of the full
functions and some of the approximations unfortunately cannot be
translated to SQL queries over the encoded data, and thus areim-
plemented as algorithmic stored procedures. Furthermore,several
of the low/high bounds and one of theexpectedvalues are them-
selves approximations to the tightest bound or value, because find-
ing the exact answer based on possible-instances can be extremely
expensive. (We expect the approximations to do well in practice,
but details are far beyond the scope of this description.) Many of
the approximate functions can be implemented exactly and trans-
lated very easily. For example, for theecount TriQL example
above, the SQL query over the encoded data is simply:

SQL> SELECT car, sum(conf)
SQL> FROM Drives GROUP BY car

Note that with approximate aggregation, query results are regular
tables and not ULDB tables: they do not include alternatives, “?”,
confidence values, or lineage.

4.4 Reorganizing Alternatives
TriQL has two constructs for reorganizing the alternativesin a query
result:

• Flattenturns each alternative of a table into its own tuple.

• GroupAltsregroups alternatives into new x-tuples based on a
set of attributes.

As simple examples, and omitting lineage (which in both cases is
a straightforward one-to-one mapping from result alternatives to
source alternatives), “SELECT FLATTEN * FROM Saw” gives us:

(witness, car)
(Cathy,Honda)
(Cathy,Mazda)

and “SELECT GROUPALTS(car)* FROM Drives” gives us:

(person, car)
(Jimmy,Mazda) || (Freddy,Mazda)
(Billy,Honda) || (Hank,Honda)

The translation scheme for queries withFlatten is a simple modi-
fication to the basic scheme in which each result alternativeis as-
signed its ownxid. GroupAltsis also a straightforward modifica-
tion: Instead of the translated SQL query grouping byxid’s from
the input tables to create result x-tuples, it groups by the attributes
specified inGROUPALTS.

4.5 Horizontal Subqueries
“Horizontal” subqueries in TriQL enable querying across the alter-
natives that comprise individual x-tuples. As a (meaningless con-
trived) example, we can select from tableSaw all vehicles sighted
that are not Mazdas, but a Mazda sighting appears as another alter-
native of the same x-tuple:

TriQL> SELECT car
TriQL> FROM Saw
TriQL> WHERE car <> ’Mazda’
TriQL> AND EXISTS [car = ’Mazda’]

272

On our example data, this query would return just the first alterna-
tive,Honda, of tuple 51.

In general, enclosing a subquery in[] instead of() causes the
subquery to be evaluated over the “current” x-tuple, treating its al-
ternatives as if they are a table. Syntactic shortcuts are provided
for common cases, such as simple filtering predicates as in the ex-
ample above. Full details of horizontal subqueries and numerous
examples can be found in [5].

Horizontal subqueries are very powerful, but surprisinglyeasy
to implement based on our data encoding. First, syntactic shortcuts
are expanded. In our example above,[car = ’Mazda’] is a
shortcut for[SELECT * FROM Saw WHERE car=’Mazda’].
Here,Sawwithin the horizontal subquery refers to theSaw alterna-
tives in the current x-tuple being evaluated [5].) Second, the hori-
zontal subquery is replaced with a standard SQL subquery that adds
aliases for inner tables and a condition correlatingxid’s with the
outer query:

SQL> ... AND EXISTS (SELECT * FROM Saw S
SQL> WHERE car = ’Mazda’
SQL> AND S.xid = Saw.xid)

S.xid=Saw.xid restricts the horizontal subquery to operate on
the data in the current x-tuple. Translation for the generalcase in-
volves a fair amount of context and bookkeeping to ensure proper
aliasing and ambiguity checks, but all horizontal subqueries, re-
gardless of their complexity, have a direct translation to regular
SQL subqueries with additionalxid equality conditions.

4.6 Built-In Predicates and Functions
TriQL currently includes three built-in predicates and functions:
Conf(), Maybe(), andLineage(). FunctionConf() can be
used to filter query results based on the confidence of the input data
(e.g.,Conf(Saw)) and the confidence of the result (Conf(*)).
For example, if we want to compute suspects only considering
sightings with confidence> 0.5 and only retaining results whose
confidence would be> 0.4, we add the following conjuncts to our
original join query:

TriQL> AND Conf(Saw) > 0.5 AND Conf(*) > 0.4

Built-in predicateMaybe() takes no arguments and is true if and
only if the current x-tuple has a “?”.

Built-in predicateLineage() allows lineage to be traced as
part of a TriQL query. For example, we can ask for all witnesses
contributing to Hank being a suspect:

TriQL> SELECT Saw.witness
TriQL> FROM Suspects, Saw
TriQL> WHERE Lineage(Suspects,Saw)
TriQL> AND Suspects.person = ’Hank’

Lineage(X,Y) (which can also be written as “X==>Y”) is true
wheneverY is reachable fromX by one or more lineage steps. That
is, it considers the transitive closure of the lineage function λ.

FunctionConf() is implemented as an SPI stored procedure.
If it has just one argumentT, the procedure first examines the cur-
rent T.conf field to see if a value is present. If so, that value
is returned. If theT.conf is NULL, on-demand confidence com-
putation is invoked (see Section 5.2), and the resulting confidence
value is stored permanently and returned.Conf(*) always ac-
tivates confidence computation, and includes the resultingconfi-
dence value in the query result (instead ofNULL) as well as return-
ing it from the function. An “intermediate” version ofConf() can
also be called, with multiple table arguments but not the full “*”;
details are omitted due to space constraints [5].

TheMaybe() andLineage() predicates are incorporated into
the query translation phase (recall Section 2). PredicateMaybe()
is straightforward: It translates to a simple comparion between the
num attribute and the number of alternatives in the current x-tuple.
(One subtlety is thatMaybe() returnstrue even when a tuple’s
question mark is “extraneous”—that is, the tuple in fact always has
an alternative present, due to its lineage. See Section 5.4 for a brief
discussion.)

PredicateLineage(X,Y) is translated into one or more SQL
subqueries that check if the lineage relationship holds: Schema-
level lineage information is used to determine the possibletable-
level “paths” fromX to Y. Each path produces a subquery that
joins lineage tables along that path, withX andY at the endpoints.
Suppose for the sake of illustration that a tableSaw2 was derived
from Saw, and thenSuspects was derived fromSaw2. Then
Lineage(Suspects,Saw) would be translated as follows, re-
calling the lineage encoding described in Section 3.

SQL> EXISTS (SELECT *
SQL> FROM lin_Suspects L1, lin_Saw2 L2
SQL> WHERE Suspects.aid = L1.aid
SQL> AND L1.src_table = ’Saw2’
SQL> AND L1.src_aid = L2.aid
SQL> AND L2.src_table = ’Saw’
SQL> AND L2.src_aid = Saw.aid)

4.7 Query-Defined Result Confidences
By default, confidence values on query results respect a probabilis-
tic interpretation, and they are computed by the system on-demand.
(A “COMPUTE CONFIDENCES” clause can be added to a query
force confidence compuation as part of query execution.) Algo-
rithms for confidence computation are discussed in Section 5.2.

A query can override the default result confidence values by
assigning values in itsSELECT clause to the reserved attribute
nameconf. Suppose in ourSuspects join query we prefer re-
sult confidences to be the lesser of the two input confidences,in-
stead of their (probabilistic) product. Assuming a built-in function
lesser, we write:

TriQL> SELECT person,
TriQL> lesser(Conf(S),Conf(D)) AS conf
TriQL> FROM Saw S, Drives D
TriQL> WHERE S.car = D.car

Referring back to Section 3.1 to see the difference, nowJimmy,
Freddy, Billy, andHank in the join result have confidence val-
ues 0.3, 0.4, 0.6, and 0.6 respectively.

Recall from Section 3.3 that our data encoding scheme adds a
columnconf to each underlying table to store confidence values.
Consequently, “AS conf” clauses simply pass through the query
translation phase unmodified.

5. ADDITIONAL TRIO FEATURES
TriQL queries and updates are the typical way of interactingwith
Trio data, just as SQL is used in a standard relational DBMS. How-
ever, uncertainty and lineage in ULDBs introduce several interest-
ing features beyond just query execution.

5.1 Lineage
As TriQL queries are executed and their results are stored, and
additional queries are posed over previous results, complex lin-
eage relationships can arise. As we have seen, data-level lineage
is used for confidence computation andLineage() predicates;
it is also used for coexistence checks (Section 5.3) and extrane-
ous data removal (Section 5.4). Trio also maintains aschema-level

273

lineage graphthat is used forLineage() predicate translation
(Section 4.6) and for some confidence-computation optimizations.
This graph can also be a useful tool for the user; it is depicted by
TrioExplorer in Figure 2.

TrioExplorer supports data-level lineage tracing throughspecial
buttons next to each displayed alternative. This feature isbuilt on
a methodExplainLineage() in the Trio API: For any alter-
nativea, ExplainLineage(a) returns a representation of the
boolean formulaλ(a), containing the alternatives ina’s immedi-
ate lineage. Lineage can be traced further by callingExplain-
Lineage() on the alternatives from the first-level result. An-
other method,BaseLineage(a), returnsa’s lineage formula
traced and “unfolded” all the way to the base data—the resultof
aBaseLineage() call is comprised of alternatives that have no
further lineage.

5.2 Confidence Computation
In the formalization of ULDBs [2], eachpossible instancehas a
probability based on the confidences of the data in that instance. In
query results, lineage ties the possible result instances to the possi-
ble instances of the queried data. Thus, using lineage, eachresult
alternative has a confidence value that captures the fraction of pos-
sible instances in which its lineage appears. This confidence value
is correctly computed by constructing an alternative’s lineage for-
mula in terms of base data (i.e., the result of theBaseLineage()
method described above) and then evaluating the probability of the
formula using the confidence values on the base alternatives[2].
Some simple examples were given in Section 3.

Thus, when confidence computation is invoked for an alterna-
tive a, the system effectively invokesBaseLineage(a) and then
evaluates the probability of the resulting formula using base-data
confidences. We have developed several improvements to thisnaive
approach:

• Whenever confidence values are computed, they arememo-
izedfor future use.

• It is not always necessary to traverse lineage all the way to the
base data. If non-base alternatives ina’s lineage are known
to be independent, and their confidences have already been
computed, there is no need to go further. Even when their
confidences have not been computed, the lineage formula can
be split, reducing overall complexity.

• We have developed algorithms forbatchconfidence compu-
tation that are implemented through SQL queries. These al-
gorithms are appropriate and efficient when confidence val-
ues are desired for a significant portion of a result table.

5.3 Coexistence Checks
A user may wish to select a set of alternatives from one or moreta-
bles and ask whether those alternatives can all coexist. Twoalterna-
tives from the same x-tuple clearly cannot coexist, but the general
case must take into account arbitrarily complex lineage relation-
ships as well as tuple alternatives. For example, if we askedabout
alternatives (51,2) and (72,1) in our sample database, the system
would tell us these alternatives cannot coexist. Coexistence check-
ing can be performed by generating base-lineage formulas for the
set of alternatives, augmenting them with formulas capturing mu-
tual exclusion of tuple-alternatives, and then checking satisfiability.

5.4 Extraneous Data Removal
The natural execution of TriQL queries can generateextraneous
data: a tuple alternative is extraneous if it can never be chosen (i.e.,

its lineage includes the conjunction of data that cannot coexist); a
“?” annotation is extraneous if its tuple is always present.It is
possible to check for extraneous alternatives and ?’s immediately
after query execution (and, sometimes, as part of query execution).
However, like confidence computation and coexisistence checks,
extraneous data detection may require tracing lineage to the base
data. Because we expect extraneous data and ?’s to be relatively
uncommon, and users may not be concerned about their presence,
we have chosen to implement extraneous data removal as a separate
operation, roughly akin to garbage collection.

The astute reader may note that all of the features discussedin
this section are interconnected. In fact they share code in the sys-
tem, and they can share some of the optimizations discussed in Sec-
tion 5.2 as well. For example, we can determine if an alternative
is extraneous by computing its confidence and checking if it’s= 0,
while conversely a “?” is extraneous if the confidence valuesfor
its tuple sum to 1. Similarly, a set of alternatives can coexist iff,
when treated as conjunctive lineage for a dummy alternativea, the
confidence ofa is > 0.

6. FUTURE DIRECTIONS
The Trio prototype is available online for anyone to experiment
with; please visit the project home page (search “stanford trio”) for
a link. We are pursuing—or plan to pursue—a number of directions
of future work, including:

• Efficiently processing queries that either provide a confidence
threshold or ask for the top-k results by confidence.

• Extending the data model to includecontinuous uncertainty
(e.g., intervals, Gaussians) andincomplete relations.

• Capturingor-sets[4] as a special-case of tuple alternatives
that can be handled more efficiently.

• Completing the translation-based implementation of the full
TriQL language [5], including regular (“vertical”) subqueries,
set operators, and data modification statements.

• Extending lineage to external relationships, and perhaps to
track updates and support versioning.

• Considering a less layered and more “native” approach (Trio-
Two), for which we would develop specialized storage meth-
ods, indexes, statistics, and query optimization techniques
geared specifically to ULDB data and TriQL queries.

7. REFERENCES
[1] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,

S. Nabar, T. Sugihara, and J. Widom. Trio: A system for data,
uncertainty, and lineage. InProc. of VLDB, pages 1151–1154,
Seoul, Korea, September 2006.Demonstration description.

[2] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom.
ULDBs: Databases with uncertainty and lineage. InProc. of
VLDB, pages 953–964, Seoul, Korea, September 2006.

[3] O. Benjelloun, A. Das Sarma, C. Hayworth, and J. Widom.
An introduction to ULDBs and the Trio system.IEEE Data
Engineering Bulletin, Special Issue on Probabilistic
Databases, 29(1):5–16, March 2006.

[4] A. Das Sarma, O. Benjelloun, A. Halevy, and J. Widom.
Working models for uncertain data. InProc. of ICDE, Atlanta,
Georgia, April 2006.

[5] TriQL: The Trio Query Language. Available from
http://infolab.stanford.edu/trio.

[6] J. Widom. Trio: A system for integrated management of data,
accuracy, and lineage. InProc. of CIDR, Pacific Grove,
California, 2005.

274

