
Moirae: History-Enhanced Monitoring

Magdalena Balazinska1, YongChul Kwon1, Nathan Kuchta1, and Dennis Lee2

1Department of Computer Science and Engineering 2Marchex Inc.
University of Washington, Seattle, WA Seattle, WA

{magda,yongchul,nkuchta}@cs.washington.edu {dlee}@marchex.com

ABSTRACT
In this paper, we investigate the benefits and challenges of integrat-
ing history into a near-real-time monitoring system; and present a
general purpose continuous monitoring engine, called Moirae, that
supports this integration. Moirae is designed to enable different
types of queries over live and historical data. In particular, Moirae
supports (1) queries that look up specific historical information for
each newly detected event and (2) queries that complement new
events with information about similar past events. Moirae focuses
on applications where querying a historical log in its entirety would
be too slow to meet application needs, and could potentially yield
an overwhelming number of results. The goal of the system is to
produce the most relevant approximate results quickly and, when
necessary, additional more precise results incrementally. In this
paper, we discuss the challenges of integrating history into a con-
tinuous monitoring engine, present the design of Moirae, and show
how our proposed architecture supports the above types of queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing

General Terms
Design, Algorithms

Keywords
Stream processing, continuous processing, stream archives, history

1. INTRODUCTION
Monitoring applications enable users to continuously observe the

current state of a system, and receive alerts when interesting com-
binations of events occur. Monitoring applications exist in vari-
ous domains, such as sensor-based environment monitoring (e.g.,
air quality monitoring, car-traffic monitoring), military applications
(e.g., target detection, platoon tracking), network monitoring (e.g.,
intrusion detection), and computer-system monitoring. Although

This publication is licensed under a Creative Commons Attribution 2.5
License; see http://creativecommons.org/licenses/by/2.5/ for further details.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

the current state of the system is the focus of monitoring applica-
tions, when events of interest occur, historical information is usu-
ally necessary to obtain further information about these events, ex-
plain them, and determine appropriate responses.

In this paper, we investigate the benefits and challenges of inte-
grating history into a continuous monitoring system and we pro-
pose the design of a new engine, called Moirae, that supports
such integration. We focus on continuous event-detection systems,
where the goal of continuous queries is to detect interesting events.
However, our definition of an event is broad and includes any out-
put result produced by a continuous query.

Today, Stream Processing Engines (SPEs)1 [1, 2, 11, 16, 17, 20,
32] support monitoring applications by providing efficient near-real
time processing of information that “streams-in” from the moni-
tored environment. SPEs focus on processing data directly as it ar-
rives without storing it first. As such, they offer high-performance
and low-latency continuous processing, but limited or no integrated
access to history. Some SPEs have started to recognize the need for
exploiting history while processing new data and have started to
propose techniques to achieve certain forms of integration [1, 11,
20]. Our goal is to go much further than previous schemes. In
Moirae, we treat integrated processing of live and historical data as
the fundamental query model in the system. We strive to offer sup-
port for a variety of queries over both types of data, and we explore
novel ways in which history can enhance continuous monitoring.

There are many scenarios where historical information is a use-
ful component of continuous monitoring. As an example, con-
sider a researcher conducting long-running experiments on a shared
testbed such as PlanetLab [35]. This researcher may want his ex-
periments to migrate automatically from one node to another upon
failure or overload. However, he may want the experiments to mi-
grate to nodes that are lightly loaded and are likely to remain in
that state. He may thus want to run a continuous query of the form:
“If a node running my experiment fails, find another lightly loaded
node that is running only experiments that have used few resources
in the past.” Upon detecting a node failure, the query produces the
set of currently lightly loaded nodes. Additionally, for each lightly
loaded node, the query looks up historical information about the
experiments running at that node. This example illustrates the most
basic type of integration between real-time events and historical
data: an arbitrary SQL query that executes over the data archive as
part of the continuous event-detection query. We call this type of
integrated query, a standard hybrid query.

In addition to standard hybrid queries, exploiting data archives
opens the door to new types of queries. As an example, consider
an administrator of the PlanetLab testbed who receives alerts when

1These engines are also called data stream management systems
(DSMS) [2, 32] or continuous query processors [11].

375

servers under her control fail. To determine the cause of a failure,
the administrator may want to see, with each alert, similar alerts
that occurred in the past, the context of these alerts, and the so-
lutions that were applied to these failures. Similar alerts could be
those where the type of failure was the same and the state of the
system was similar (e.g., a subset of the same users were logged-in
and a subset of the same processes were running, even though the
failure occurred on a different server or even on a different subnet-
work). By comparing the contexts of the current and past alerts, the
administrator may quickly determine which process and user are
causing the problem and how to fix it. Furthermore, if the number
of similar past events is large, the administrator may want to see
only the k most similar ones. This example illustrates a different
use of historical data. In this case, the historical query is not a stan-
dard query. Instead, it exploits the context of the newly detected
event to find the k past events with the most similar contexts. We
call these queries, contextual hybrid queries.

These two examples illustrate the opportunity for different
types of integration between continuously streaming data and data
archives. Standard hybrid queries provide flexible access to spe-
cific past information. Contextual hybrid queries explore the use
of event context to reduce the volume of relevant historical data by
identifying similar past events. The goal and innovation of Moirae
is to support these different types of queries in a single framework.

In this paper, we present the principled design of Moirae, which
integrates several techniques. To compare the similarity of different
event contexts, Moirae leverages techniques from information re-
trieval (IR). To avoid overwhelming users with excessive numbers
of results, for each newly detected event, Moirae produces only the
k most similar past events according to a context similarity metric
that we define. To maintain low-latency processing and produce
the most important data first, Moirae partitions history and pro-
cesses recent partitions sooner and with higher priority than older
ones. Moirae refines historical information incrementally until it
fully answers a query or until the user explicitly indicates that an
event is no longer interesting. Moirae’s modified stream processing
operators support incrementally produced history, enabling histor-
ical data to be further combined and correlated with live streams.
When new queries enter the system, Moirae pro-actively prepro-
cesses the recent past, to further ensure timely retrieval of recent
historical data. Finally, Moirae ensures that all ongoing events ben-
efit from at least some historical information, even when they must
contend for systems’ resources.

Moirae is currently being developed at the University of Wash-
ington. It is a general-purpose engine that does not rely on any
domain specific knowledge or models. Moirae uses the Bore-
alis [1] stream processing engine (SPE) for continuous monitoring
and PostgreSQL [45] for the historical log. Moirae modifies and
tightly integrates both engines.

The rest of this paper is organized as follows. In Section 2, we
present the challenges of exploiting history during continuous mon-
itoring and overview existing techniques. We describe the types of
queries that Moirae is designed to support in Section 3 and present
Moirae’s system architecture in Section 4. We present related work
in Section 5 and conclude in Section 6.

2. CHALLENGES
The challenge in exploiting historical information as part of con-

tinuous stream processing comes from the sheer volume of histor-
ical data. Monitoring systems can easily produce gigabytes and
even terabytes of data every day. Some processing engines use his-
tory to build a model of the monitored environment [26] and, at
runtime, compare the current state of the monitored environment

to the model. These engines, however, do not support arbitrary
queries over historical data.

TelegraphCQ [10] and HiFi [20] are continuous monitoring
engines with support for integrated queries over streaming and
archived data. TelegraphCQ refers to continuously arriving data
as live data and to historical data as either historical or archived
data [10]. Queries over both live and historical data are called hy-
brid queries. We use the same terminology in this paper. Tele-
graphCQ supports different types of integrated queries, as we dis-
cuss in Section 5, and proposes techniques for sampling streams
during archival or retrieval. When an arbitrary query executes over
the archive, TelegraphCQ assumes the data is properly indexed and
the query can execute sufficiently fast to keep-up with live data.
Frequently, however, historical queries are diverse and it may not
be possible to maintain necessary indexes for all queries; queries
that do not match an index will take a long time to execute. Addi-
tionally, for contextual hybrid queries, querying the entire archive
may produce an overwhelming number of results. With Moirae,
we propose to push the integration much further and effectively
support diverse hybrid queries, including the novel queries that ex-
ploit context similarity to extract relevant past information. More
specifically, Moirae addresses the following challenges:

Responsiveness and fairness. In a naïve implementation,
queries against a growing data archive quickly become slow and
either slow-down live stream processing or produce results long
after they are needed. For example, if the system scans a massive
archive to extract historical information about processes running on
lightly loaded nodes, a user’s task may not migrate to another node
for minutes or even hours after a failure. Instead, the system should
produce approximate results quickly and, if necessary, additional,
more precise results incrementally. This approach would enable the
task to migrate quickly to a good candidate and, if further process-
ing uncovers that the candidate is not quite good enough, to migrate
again to a better node. To achieve this goal, we can leverage tech-
niques from online query processing [23, 24, 25, 36, 40]. These
techniques sample stored data instead of scanning it. They incre-
mentally produce increasingly more accurate and more complete
results. Online query processing can produce at least some histori-
cal data sufficiently fast to correlate it with live data. The question
is what to do with subsequent updates. Normally, stream process-
ing operators perform their computations over windows of data that
slide with time. By the time updates to historical data arrive, opera-
tors have completed processing the corresponding windows. Tech-
niques exist for operators to process updates by retrieving their ear-
lier state from upstream or downstream connection points [37] or
rebuilding their state from a checkpoint [8]. Because each initial tu-
ple is always followed by a group of revisions, Moirae uses instead
a simple technique where operators keep tuples in their state until it
becomes known that they will no longer be modified. Moirae also
offers users the flexibility of joining updated historical data with
either new or old live data, depending on query semantics.

One component of responsiveness is fairness. At any time, mul-
tiple continuous queries execute within Moirae, producing requests
for historical data. Ideally, each request should receive timely
historical information. To achieve this goal, Moirae uses a flexi-
ble scheduler that allocates resources among all ongoing historical
queries in a manner that ensures the timely extraction of at least
some historical information for each newly detected event.

Relevance. One approach to producing partial results is to uni-
formly sample historical data. All historical data, however, is not
uniformly relevant to an event. For example, a node running ex-
periments that recently used few resources is likely to be a better
candidate for migration than a node running experiments whose re-

376

source consumption has been approximated with a small uniform
sample over the past two years of measurements. In general, we ob-
serve that recent historical data is more important than older data
and should be returned first. Recent data is also more frequently
requested by historical queries. The system should thus put more
resources into ensuring that recent data can be retrieved more ef-
fectively. To achieve this goal, we optimize Moirae’s design to
prioritize recent historical data. We incorporates techniques from
multi-level data management [33, 43] and partial indexing [38, 39,
42]. These schemes let a DBMS selectively index data or keep
subsets of data in memory. Moirae keeps current data in memory
and pushes older data to disk. Moirae, however, ensures that recent
data on disk is accompanied by materialized views and indexes.
Older data is also on disk but any associated views and indexes may
be out-of-date with respect to the current workload. During query
execution, Moirae processes data one chunk at a time in reverse
chronological order. Within a chunk, it processes data in order as
stream processing operators rely on that order.

Similarity. A large fraction of relevant historical information for
an event corresponds not just to recent data but to those times in the
past when the state of the system was the same or similar to the state
at the time of the event. Of course, we want to compare only those
parts of the state that are relevant to the current event (e.g., the list
of logged-in users and the list of running processes). We call this
part of the state the context of the event. Moirae supports complex
context definitions, involving multiple relations, by allowing users
to specify a set of queries that together produce the set of tuples
forming the context of an event. Moirae compares event contexts
using techniques adapted from information retrieval (IR).

Because the historical log is large, when looking for similar past
events, the size of the query result can be overwhelming to appli-
cations. For example, large numbers of similar failures can occur
in a given year. To avoid overwhelming the user, Moirae’s goal is
to extract only a small set of k most similar events and their own
contexts . These types of queries are often called k-NN queries as
they retrieve the k nearest neighbors of an object. Here the object
is the current event and its context. The k nearest neighbors are
the k past events with the most similar contexts. Supporting such
k-NN queries is challenging. Because the historical log is large,
the straightforward solution of computing all past events with their
contexts either during query execution or when a query is first de-
ployed would impose a large runtime overhead. On the other hand,
we argue that accurate results are not necessary. For many appli-
cations, rapid access to k events among the most similar and most
recent ones is more important than an exact set of k most similar
events returned with low latency. Moirae supports approximate k-
NN queries that return the best results among the most recent ones
by exploiting the partitioned history and query execution described
above. If necessary, Moirae further improve results incrementally.

Overall, Moirae uses a set of different techniques that together
form an integrated system for effectively exploiting historical data
during live stream processing. In Section 4, we describe Moirae’s
design and discuss how it addresses the above challenges. But first,
we present Moirae’s queries in more detail in the next section.

3. TYPES OF QUERIES
In this section, we present the types of queries that Moirae is

designed to support. We first describe how applications specify
continuous monitoring queries, which we call event-queries. We
then show how event-queries can be extended with subqueries that
extract historical information. The extended queries correspond to
what we call standard hybrid queries. Third, we turn toward the
novel types of queries that extract similar past events for each newly

Server 1

Server 2

Server n

...

Union
Filter

avg(bw) > X

Aggregate
avg(bw)

grp by sid

w = 5min

Alerts: server
using too much
network bw

Tuples: (time, sid, bw, other metrics)

Tuples: (eid, time, sid, bw)

Figure 1: Example of continuous query (event-query).

detected event. We show how applications specify the context of an
event by specifying what we call context-queries. We also present
the resulting contextual hybrid queries. Finally, we discuss tech-
niques for computing the similarity between two event contexts.

3.1 Event-Queries
We define an event as a tuple in a stream that takes the form:

(eid, timestamp, a1, . . ., an) where eid is an attribute
that uniquely identifies the event, timestamp is the time when the
event occurred, and a1, . . . ,an are the other attributes of the event.

An event-query is a stream processing query expressed in the
language of an SPE. For a stream processing query to be an event-
query, the only requirement is that it produces tuples with unique
eid’s and timestamps. These attributes are defined by the user
as part of the query. For the continuous stream processing part
of the system, we use the Borealis SPE [1]. In Borealis, appli-
cations express continuous queries with a boxes-and-arrows data
flow, where boxes represent operators and arrows stand for streams.
We thus express event-queries as boxes-and-arrows diagrams. Fig-
ure 1 shows an example event-query. This query produces an alert
when the 5-minute average network traffic generated by a server
exceeds a pre-defined threshold, X . In this example, eid is the
unique event identifier, time is the event timestamp, sid denotes
the server identifier, and bw is the bandwidth utilization of the
server.

3.2 Standard Hybrid Queries
A standard hybrid query intertwines an event-query with one

or more historical queries, which are standard SQL queries over
the data archive. Figure 2 shows an example of standard hybrid
query based on the event-query from Figure 1. For each event pro-
duced by the event-query, the historical query looks up the average
and standard deviation of the historical network utilization of the
server. The hybrid query then filters out alerts where the resource
consumption is within some historical norm. The query over the
data archive is encapsulated in a new operator that we call Recall.
The Recall operator is analogous to Aurora’s Read operator [7]. For
each input tuple, e, Recall executes a pre-defined SQL query. How-
ever, as we discuss later, the Recall operator has different properties
than a standard Read operator. In the example, the Recall operator
could be executing the following SQL query:

SELECT h.sid, avg(h.bw), stddev(h.bw)
FROM History h
GROUP BY h.sid
HAVING h.sid=e.sid

where stddev(bw) is a user-defined function that returns the
standard deviation of all values for a given attribute, History is
the relation corresponding to the raw stream archive, and e.sid
is the sid of the server identified in the input event e. His-
torical queries can execute over the raw stream archive, or over
other currently-defined intermediate streams. These intermediate

377

Server 1Server 1

Server 2Server 2

Server nServer n

...

UnionUnion
Filter

avg(bw) > X
Filter

avg(bw) > X

Aggregate
avg(bw)

grp by sid

w = 5min

Aggregate
avg(bw)

grp by sid

w = 5min

Alerts: server
using much
more network
bw than usual

Tuples: (time, sid, bw, other metrics) Tuples: (eid, time, sid, bw)

Filter
bw > a + 2s

Filter
bw > a + 2s

Recall
For each sid

avg(h.bw) as a
stddev(h.bw) as s

from History h

Recall
For each sid

avg(h.bw) as a
stddev(h.bw) as s

from History h

Tuples: (eid, time, sid, bw, a, s)

Figure 2: Example of standard hybrid query.

Filter
avg(bw) > X

...

Logged on users:
(time, sid, user)

Join on
time and sid

Project
eid, time, user

Alert: (evt, time, sid, bw)

Context: logged on users

Running processes:
(time, sid, proc) Join on

time and sid

Project
eid, time, proc

Context: running procs

Figure 3: Example of query extracting the context of an event
(context-query).

streams must explicitly be archived by inserting Archive operators
into the query diagram.

Standard hybrid queries are thus simply event-queries that in-
clude one or more Recall operators. Their output is a stream that
can further be combined and correlated with other streams. Note
that the system does not know nor care whether a stream processing
query is an event-query until the output of that query is connected
to the input of a Recall operator. At that time, the user must specify
which attributes serve the role of event identifier and timestamp.

3.3 Context-Queries
We define the context of an event to be a set of tuples, each one

of the form: (eid, timestamp, c1, . . ., cn), where eid
and timestamp are the identifier and timestamp of the event, and
c1, . . . ,cn are the attributes of the tuple in the event context. Differ-
ent tuples that belong to the same event context can have different
attributes.

To specify the context of an event, applications submit one or
more context-queries that join each output tuple produced by an
event-query (i.e., each event) with tuples on other streams that fall
within the same time-window. Using terminology from temporal
databases [41], these other tuples are basically all valid tuples at
the time when the event happens (e.g., the users that are logged on,
the system load at the time of the event). Context-queries can also
include arbitrary SQL queries over small static relations. For exam-
ple, a context-query can look up the specifications (CPU, memory,
etc.) of the server experiencing the failure. A subset of attributes
of the event itself, such as the name of the failed server, can also
be part of the event context. Context-queries can even be stan-
dard hybrid queries. For a stream processing query to be a context
query, the only requirement is that it produces tuples of the form
described above. The union of all tuples that satisfy a group of
context-queries and share an eid forms the context of the event
with the given eid. The context of an event can be the empty set.
Figure 3 shows an example of context defined as the set of logged-
in users and running processes.

In most cases, applications will also need to specify additional
queries for information surrounding events other than context-

Event
SimilarityRecall

Context

Similar events

Similar contexts

Figure 4: Similarity Recall operator.

queries. Typically, users will request the sequence of events pre-
ceding or following each alert. Such additional information can be
treated in the same manner as the context, with the only exception
that the resulting tuples are not used in the similarity comparison.

Finally, in some applications, the context of an event, or at least
some components of that context, can be independent of the event
itself. For example, the context of a server failure could include the
overall request-rate on the system, the time of day, the time since
the release of a new feature, etc. Using explicit continuous queries
to compute the context of an event is sufficiently flexible to enable
such context definitions as well.

3.4 Contextual Hybrid Queries
A contextual hybrid query comprises the following subqueries

(a) an event-query, as described above; (b) one or more context-
queries, as describe above; and (c) a new operator, called Similarity
Recall. Similarity Recall takes an event-query and context-queries
as input. For each newly detected event, it retrieves from history
all events of the same type along with their contexts. It then com-
pares the context of these old events with that of the new event and
returns past events ranked by context similarity. Figure 4 shows a
Similarity Recall operator. The events and contexts output by Sim-
ilarity Recall or of the same type as its inputs with one exception:
each output tuple also carries the identifier of the newly detected
event that it complements.

As above, the system does not know nor care that a query is a
context-query unless its output is connected to the input of a Sim-
ilarity Recall operator. At that time, the user must specify which
attributes serve the role of the event identifier and timestamp.

We present the Recall and Similarity Recall operators further in
Section 4.5.

3.5 Computing Context Similarity
As described above, the context of an event is a set of tuples

coming from one or more streams and relations. Therefore, com-
puting a similarity score for two contexts corresponds to computing
a similarity score for two sets of tuples.

Different techniques for computing context similarity are pos-
sible. We propose to use a technique from information retrieval.
We consider each context as a document, where the tuple attribute-
values correspond to terms.2 We measure the similarity between
contexts by measuring their cosine similarity [6]. The cosine simi-
larity metric from information retrieval has successfully been used
in the past for ranking query results in a database [3]. As we dis-
cuss in Section 5, the main difference with our approach is that we
compare groups of tuples together rather than comparing individual
tuples to a query. As such, our problem is even more closely tied to
information retrieval.

With the cosine similarity metric, two contexts are similar to
each other if they contain a larger number of the same “terms”

2Each term is a concatenation of the attribute name and the attribute
value. With this technique, if two different attributes have the same
value (e.g., a user name and a process name), they still remain dis-
tinct terms.

378

(same attribute-values in our case). If two contexts contain the
same rare term, that term is weighted more heavily. Intuitively, in
our computer-system monitoring scenario, if a rare process is ex-
ecuting when a given type of failure occurs, then past events with
this same rare process should be considered as more relevant to the
newly detected event. We compute the weight of each attribute-
value as its TF-IDF product [6]. TF denotes the term frequency,
or, in our case, the number of times an attribute-value appears in
the context of an event. IDF denotes the inverse document fre-
quency, or, in our case, the frequency of event contexts containing
that attribute-value. We use the following two standard formulas:

IDFk = log
(

E
Ck

)
and wkc = TFkc · IDFk

where IDFk is the inverse document frequency of attribute-value
k, E is the total number of events in the log, Ck is the number of
event-contexts containing attribute-value k, TFkc is the frequency
with which attribute-value k occurs in context c, and wkc is the
resulting weight of attribute-value k in context c. To increase the
accuracy of the IDFk values, we compute these values separately
for each type of event. By doing so, values that are infrequent in
the context of a certain type of event are weighted more heavily
even if they appear frequently in the context of other events.

The cosine-similarity score between two contexts is the value
of the cosine angle between the vectors of weights of the two
contexts, where each attribute-value corresponds to one dimension.
The cosine-similarity of two contexts C1 and C2 is thus given by:

SIM(C1,C2) =

(
∑k=n

k=1 wkc1 wkc2

)

(√
∑k=n

k=1 w2
kc1

)(√
∑k=n

k=1 w2
kc2

)

where n is the total number of attribute-values in the two contexts.
Figure 5 shows an example of similarity computation. In this

example, the contexts of events e2 and e3 are most similar as they
share a common logged-in user and running process, and all con-
texts are roughly of the same magnitude.

The TFk for each attribute-value k in a context can be computed
once and stored with the context. Computing the IDFk score for
each element of the domain and for each event type requires scan-
ning all events of that type. Instead, we propose to compute these
values incrementally. As a new event occurs, we increment the to-
tal number of events, E, and, for each attribute-value k in the event,
we update the total number of contexts, Ck, containing k. We then
recompute IDFk for each k.

For continuous-domain attributes (such as temperature read-
ings), we use the “generalized IDF similarity for numeric data”
metric defined by Agrawal et al. [3]. They use kernel density
estimation techniques to define extensions to the cosine similarity
metric for numeric attributes. They derive the following equation:

IDFk = log
(n

∑n
i=1 e−

1
2

(
ki−k

h

)2

)

where n is the number of tuples in the database, the ki’s are all
the values of the attribute that appear in the database, and h is a
bandwidth parameter [3]. They also weigh the similarity of two
attribute-values by a factor that captures a notion of “distance”
between the compared values:

e−
1
2

(
k1−k2

h

)2

where k1 is the value of the attribute in context c1 and k2 is the
value of the attribute in c2. These extended metrics nicely capture

 Context: logged users

event id user id
e1 u1

e2 u2

e2 u3

 Context: running procs

event id proc id
e1 p1

e2 p2

e2 p3

e3 u2 e3 p1

similarity(e1,e2) = 0
similarity(e1,e3) = 0.203
similarity(e2,e3) = 0.287

Cu1=1 IDFu1=0.48
Cu2=2 IDFu2=0.18
Cu3=1 IDFu3=0.48
Cp1=2 IDFp1=0.18
Cp2=1 IDFp2=0.48
Cp3=2 IDFp3=0.18e3 p3

E=3

Figure 5: Example of similarity computation for three event contexts.

similarity as a function of the numeric distance between values.
The only problem is that computing IDFk for a new numeric value
k requires scanning all earlier events. Since we do not need exact
values, however, we can maintain a synopsis structure over the his-
torical data [5] (e.g., a histogram) and use that structure to compute
an approximate value of IDFk.

We thus compute the similarity of contexts by treating them
purely as bags. Bags with more common categorical values, es-
pecially rare values, or numerically closer attribute-values have
higher similarity scores. With this approach, we do not exploit any
possible time-series structure of event contexts. Indeed, we con-
sider that events contexts will typically not have any such structure.
We envision that an event context will contain the attribute-values
of various entities involved in the event or present in the environ-
ment at the moment when the event occurred. Such contexts will
be simple bags of attribute-values without structure.

There are other possible techniques for comparing and exploiting
event contexts. We plan to investigate such techniques in future
work.

4. Moirae DESIGN
In this section, we describe Moirae’s design. We present an

overview of Moirae’s system architecture, shown in Figure 6, and
discuss the details of the different components.

At a high level, Moirae is a continuous query processor that can
handle hybrid queries. It consists of an SPE for continuous stream
processing and an RDBMS for the storage of historical streams,
events, and contexts. Moirae, however, integrates and extends both
engines in several ways.

Moirae’s users submit hybrid queries in the form of Borealis
boxes-and-arrows diagrams as described in the previous section.
We assume that users know about Recall operators and explicitly
place them in appropriate locations in the query diagram.

To support hybrid queries, Moirae adds a new Archiver com-
ponent to the storage manager of the RDBMS. This component
enables archival and retrieval of streams in a manner that effec-
tively supports hybrid queries. The Archiver is essentially an access
method. We present Moirae’s overall history-processing technique
and the Archiver module in Section 4.1.

Inside the SPE, when queries enter the system, the Deploy Man-
ager controls their deployment and later their tear down. Moirae
modifies this component in three ways. First, the new Deploy Man-
ager splits SQL query templates specified in Recall operators into
pieces to facilitate independent processing of different parts of his-
torical data. Second, it infers which raw streams and intermediate
streams must be archived, inserts explicit Archive operators into
the query diagram, and lets the Archiver know about these streams.
Third, the Deploy Manager inserts event and context materializa-

379

Materialized
Events

& Context

Stream Processor

RDBMS

MOIRAE

Recall Manager

Deploy Manager

Other
Materialized

Views

Raw
Stream
Archive

Present

Chunk

Storage Manager

Raw
Streams

Approximate
& incrementally
improving results

SPE

Stop
Improving
Query

Contextual
& Standard
hybrid queries

Application

Figure 6: Moirae System architecture.

tion queries to precompute a subset of past events with their con-
texts and speed-up their retrieval at runtime. We further discussed
why and how the Deploy Manager performs all these tasks in Sec-
tion 4.2.

Once a new hybrid query is deployed, its event-query runs in
the SPE like an ordinary stream-processing query. When events
occur that require historical data, Recall operators generate Recall
tasks and submit them to a new component, called the Recall Man-
ager. This latter component controls the execution of all historical
queries requested by Recall operators. A Recall task consists of a
parametrized SQL query template and the query parameters, i.e.,
the associated event and context. For each Recall task, the Recall
Manager issues queries to the RDBMS and delivers the results to
the originating Recall operator. We discussed the details of the Re-
call Manager and the Recall task execution in Section 4.3.

While executing hybrid queries, Moirae allows users to tell
whether they want higher quality results or whether they are no
longer interested in an event. If the user signals that an event is
important, the Recall Manager puts more resources into process-
ing Recall tasks related to that event. More importantly, if a user
indicates that an event is no longer interesting, the Recall Man-
ager cancels all related Recall tasks and reclaims any associated
resources. We discuss the scheduling of Recall tasks and user in-
teractions with the system in Section 4.4. We also provide further
details on how Recall operators process the historical data they re-
ceive in Section 4.5.

Finally, because Recall operators produce historical data incre-
mentally to ensure responsiveness, stream processing operators
downstream from Recall must be modified to support such incre-
mentally improving data streams. We discuss these modifications
in Section 4.6.

4.1 Partitioned History
Moirae archives three types of streams: raw streams that enter

the system, event and context streams that feed Similarity Recall
operators (because these streams will later be reprocessed when
looking for similar past events), and any other streams explicitly
specified by the user.3 For the first two types of streams, the De-
ploy Manager inserts special Archive operators at the appropriate

3The user needs to explicitly archive intermediate streams if she
wishes to perform standard historical queries on these intermediate
streams instead of raw streams directly as discussed in Section 3.2

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Number of Requested Tuples

Ti
m

e
(s

)

Fully Indexed Partitions

Half Indexed Partitions

Traditionally Indexed

Non-Indexed

Figure 7: Illustration of performance of partitioned indexing. The
“traditionally indexed” and “fully indexed partitions” curves overlap.

locations into the query diagram. These Archive operators simply
forward their input streams to the Archiver. For the last type of
archived streams, the user inserts explicit Archive operators into
the query diagram.

Raw streams are archived continuously. Intermediate streams,
however, can only start to be archived when the user submits a
query that defines them. At this point, no history exists for these
streams even if the raw stream archive is large. If an event occurs,
the lack of history either causes old events to be ignored or imposes
a high overhead during query execution because the raw streams
are reprocessed to rebuild past events. An alternate technique is for
the Deploy Manager and Archiver to reprocess the entire history
every time a new intermediate stream starts to be archived. This
approach, however, imposes a high runtime overhead every time
users define new streams to archive. Clearly, a good strategy lies
somewhere between these two extremes.

Furthermore, a naïve approach to exploiting archived data would
be for the Recall Manager to execute queries requested by Recall
operators over the entire archive at once. Because of the size of
the archive, this approach would lead to slow response times for all
Recall operators. It could also lead to an overwhelming number of
results for Similarity Recall operators.

To address the above challenges, Moirae partitions the archive
into three types of chunks: (1) Present chunk: the most recent
chunk of the historical log, typically incomplete. The Archiver
keeps the present chunk for all archived streams in memory to en-
sure fast retrieval. (2) Recent chunks: a small set of relatively re-
cent chunks frequently searched when looking for relevant histor-
ical data. These chunks are on disk but, for these chunks, Moirae
pre-processes and stores all intermediate streams currently archived
by continuous queries. This materialization ensures fast histori-
cal query execution over these chunks. Moirae can further index
these chunks for an even faster access. (3) Old chunks: rarely ac-
cessed older parts of the log. These chunks may be accompanied by
some older indexes and materialized views, but the system makes
no guarantees: any old materialized views may no longer match the
current workload. Any access to these chunks is thus much slower
than access to more recent chunks. At runtime, Moirae processes
chunks incrementally, prioritizing recent chunks over older chunks.
The chunk size is defined by the administrator. For example, each
chunk could correspond to a few hundred megabytes of data.

As we discuss in Section 5, multi-level storage, partial indexing,
and view materialization are all known techniques. The innovation
in Moirae is in the integration of these schemes and in the use of
the resulting infrastructure for effective execution of hybrid queries
as we discuss in Section 4.3.

380

To illustrate the goals of this partitioning, partial materialization
and indexing, Figure 7 shows the results of a simple benchmark
retrieving k tuples from a 1GB log partitioned into 5MB chunks.
For small k, indexing only half the chunks yields the same query
response times (and even a little faster) than indexing the complete
log. When k becomes large, some older unindexed chunks must
be processed, and the query response time for the extra tuples in-
creases. Our goal is similar, although our queries are significantly
more complex. With the hierarchical partitioning approach, Moirae
can efficiently retrieve a small set of recent historical data. Addi-
tional data can be retrieved if necessary, but at a greater cost. Fur-
thermore, because the cost of pre-processing and indexing only the
most recent chunks is small, it justifies changing views and indexes
as the workload changes over time.

4.2 Recent Event Materialization
In Moirae, as in other SPEs, users can submit queries at any time.

When a user submits a new query, the Stream Processor module
needs to materialize recent history for all newly defined streams
that feed Archive operators. To do so, the Stream Processor must
reprocess all Present and Recent chunks of raw stream data using
the appropriate query diagrams.

To let the Stream Processor reprocess the appropriate historical
data, the Deploy Manager replicates each fragment of the query di-
agram that feeds a new Archive operator along with the Archive
operator itself. Figure 8 illustrates the approach for the case of a
contextual hybrid query. The original query, CQ1 feeds a Similar-
ity Recall operator and its outputs are thus archived. The Deploy
Manager sets-up a replica of that query, CQ1-replica1. The
outputs of the replica are also archived. The inputs to the replica
are Recall operators that simply replay all historical data within a
given time interval. The Deploy Manager sets the initial time in-
terval to match the range covering all Recent and Present chunks at
the moment when the query was inserted into the system. As we
discuss below, the Recall Manager will nevertheless cause the ma-
terialization to occur one chunk at a time in reverse chronological
order. We discuss the remaining components of Figure 8 when we
discuss query execution.

The Stream Processor can schedule these query diagram replicas
with lower priority than other operators since their goal is only to
improve the performance of upcoming historical queries.

While materializing past events and contexts, Moirae can option-
ally index the resulting materialized views for an even faster access.
It can also create other materialized views in the RDBMS.

4.3 Partitioned Query Execution
At runtime, every time an event requires historical data, the cor-

responding Recall (or Similarity Recall) operator issues a Recall
task to retrieve that data. The Recall task will execute over the hi-
erarchically partitioned data store. As we described above, in this
hierarchy, present data is in memory. Recent data is stored on disk,
but it is accompanied by various indexes and materialized views
that are relevant to current queries. Older data is also on disk, but it
may or may not have any relevant materialized views and indexes.
Older data may even be missing necessary events and context, re-
quiring the Stream Processor to reprocess the raw data during his-
torical query execution. To benefit from this hierarchical partition-
ing, the system should thus use different query plans for chunks at
different levels in the hierarchy. Additionally, because we consider
recent data to be more important, historical data should be retrieved
in reverse chronological order.

To achieve these goals, Moirae proceeds as follows. First, the
Deploy Manager separates all historical query templates into two

Similarity
Recall

Stream
operators

equivalent to
Q

Stream
operators

equivalent to
Q

Union

CQ1-replica 2CQ1-replica 2

<e,ctx>

<eold,ctxold>RecallRecallRecallRecallRecall

Raw
Streams

Recall
task
<e,ctx>

Replay
raw streams

Detect current event e
Capture current context ctx Instantiate

Recall task for
SPJ query Q

Migration

Recall
Manager

CQ1:
Event detection

&
Context query

CQ1:
Event detection

&
Context query

CQ1-replica 1CQ1-replica 1RecallRecallRecallRecallRecall
RecallRecallArchive

Figure 8: Sample deployment of a query diagram with background
materialization of recent historical events and their contexts.

parts: an underlying Select-Project-Join (SPJ) query template and
additional operators that must be applied to the result of the SPJ
query. For a Similarity Recall, the extra operators correspond to
context similarity matching and ranking. For a standard Recall,
the extra operators are Group-By and Aggregate. This separation
enables Moirae to process different chunks of historical data using
different query plans because the results of independent SPJ queries
can be merged with a simple union. Recall operators compute their
outputs incrementally as the results of the underlying SPJ queries
become available. Because their processing is non-monotonic [40],
Recall operators output both new tuples and revisions to earlier pro-
duced results. We present the processing done by Recall operators
in Section 4.5. In this section, we focus on the SPJ queries.

When a new event occurs, the Recall operator constructs a Re-
call task that it hands over to the Recall Manager. The Recall task
contains the SPJ query template and the parameters to instantiate
the query i.e., the event and its context. Given a Recall task, the
Recall Manager issues independent SPJ queries over increasingly
older data chunks by adding to the SPJ queries a predicate on tuple
archival times. In our task migration example, assuming chunks
of size one week, the Recall Manager would first select the per-
process resource utilization information for this week, then for last
week, then for two weeks ago, and so on. The underlying RDBMS
optimizes and executes each such query independently, exploiting
the Archiver access method and all other available materialized
views and indexes for the given chunk. As queries complete, the
Recall Manager issues subsequent queries over older data chunks
forwarding the results to Recall operators, which combine and ag-
gregate them incrementally. With this approach, Moirae processes
recent data faster and earlier than older data.

One limitation of the approach, however, is that joins can only
match tuples within the same chunk (or they can join streams with
small static relations that do not have any time attributes). It is
often possible, however, to decompose queries that need to join data
across chunks into a sequence of Recall operators. For example, in
our automatic task migration scenario, the first Recall operator can
look up, for each available node, the set of experiments currently
running on that node (query over the present chunk only). The
following Recall operator can take the resulting set of experiments
as input and execute a query that looks up past resource utilization
for each experiment (queries over increasingly older chunks).

The Recall Manager uses the above strategy for all Recall oper-
ators: Similarity Recall operators, standard Recall operators, and

381

Amount of time to wait for user

feedback after the query completes

Timeout

Recall task

Description

Set of pointers to recall task

descriptions attached to replica queries

Replica

Recalls

Parameterized SQL statement templateSQL

Query processing or materializationPriority

Associated Recall operatorOwner

Amount of time to wait for user

feedback after the query completes

Timeout

Recall task

Description

Set of pointers to recall task

descriptions attached to replica queries

Replica

Recalls

Parameterized SQL statement templateSQL

Query processing or materializationPriority

Associated Recall operatorOwner

Description

Unique identifier

of the event that

triggered this task

Event ID

Recall task

Identifier of next

chunk to process

Next chunk

SQL parameters

derived from the

event & context

Parameters

Runtime statistics

about this task

Scheduler

Metrics

Description

Unique identifier

of the event that

triggered this task

Event ID

Recall task

Identifier of next

chunk to process

Next chunk

SQL parameters

derived from the

event & context

Parameters

Runtime statistics

about this task

Scheduler

Metrics

Figure 9: Recall task and Recall task Description structures.

Recall operators that serve to materialize data in Present and Re-
cent Chunks. Hence, all these operators process data one chunk
at a time in reverse chronological order. With this approach, the
returned results are not only approximate because the system ex-
amines only a subset of chunks, but also because events that fall on
chunk boundaries may go undetected. To address this problem, one
approach is to allow some overlap between consecutive chunks as
in LHAM [33]. The overlap must be sufficiently long to reconstruct
enough state in stream processing operators to avoid missing events
(e.g., using techniques from Hwang et al., [27]). The overlap how-
ever, should be small compared to the chunk size and would only
be used when re-processing a chunk with the stream processor, not
for arbitrary SQL queries.

Similarity Recall operators do not process raw streams. They
process intermediate streams of events and contexts output by
stream processing queries. Standard Recall operators may also
contain SQL queries over intermediate rather than raw streams. In
these cases, once all Present and Recent chunks have been pro-
cessed, if more results are necessary, the Stream Processor needs
to re-process older raw data to produce the necessary streams. To
achieve this goal, Moirae uses the same strategy as for the initial
materialization of data in Present and Recent Chunks: the Deploy
Manager sets up replicas of the appropriate query-diagrams. In Fig-
ure 8, this replica corresponds to CQ1-replica2. This additional
query diagram executes only when the Recall Manager notices that
the Recall operator needs the additional historical data. As shown
in the figure, the outputs of this additional query diagram need not
go to disk, they can be streamed directly to the historical query
feeding the Recall operator. We expect that few events will require
this third level of processing.

4.4 Historical Query Scheduling
During continuous monitoring, multiple events can occur at the

same time or quickly one after the other. These events can come
from the same query or from different queries executing in the sys-
tem. Additionally, each event can trigger one or more Recall tasks.
Since Moirae tries to behave like an SPE, while providing a better
quality of information than an SPE alone, Moirae tries to ensure
that each alert and each Recall task is quickly given at least some
historical information. To achieve this goal, Moirae must properly
allocate resources to the different operators executing concurrently
in the system, including the stream processing operators, the Re-
call operators, and the Archive operators. However, as an initial
approach, we delegate stream processing operator scheduling to the
Stream Processor and archiving to the RDBMS. We focus only on
scheduling Recall operators.

When an alert triggers a Recall operator, the operator generates
a Recall task that it submits to the Recall Manager. Figure 9 shows

the main attributes of the structure that represents a Recall task and
its associated task description. The Recall Manager creates a Re-
call task Description for each new Recall operator that is deployed.
Recall operators create one Recall task for each new event. The
Recall Manager schedules all submitted Recall tasks. As shown in
Figure 9, each task includes the identifier of the chunk that must
be processed next. When the Recall Manager selects a task to run,
it issues the corresponding SQL query over the next chunk, and
updates the chunk identifier for the task. The SQL query that the
Recall Manager submits to the RDBMS includes a predicate on the
time interval that matches the timespan of the chunk. We call these
individual SQL queries history-queries of the Recall task.

To ensure all Recall tasks quickly produce some results, we pro-
pose to use the stride scheduling algorithm [49]. This technique
is a variant of lottery scheduling. Each Recall task receives tickets
which can be added or deducted dynamically. Recall tasks with
more tickets are scheduled more frequently. Every time a Recall
task is scheduled, it executes only one history-query, i.e., it pro-
cesses only one chunk. After the query completes, the scheduler re-
moves from the task a number of tickets proportional to the number
of results produced (thus increasing the stride of the task). Because
Recall tasks are scheduled based on the number of tickets they hold,
this approach ensures that Recall tasks with few results are sched-
uled more frequently. The Recall Manager also ensures that no
more than a fixed number of historical queries execute within the
RDBMS at any time. The threshold is set by the administrator, but
could be adjusted automatically based on load.

By processing one chunk at a time, Moirae manages multiple
concurrent queries in a manner that ensures all Recall tasks pro-
duce at least some historical data. However, it does not prune query
processing for non-interesting events and does not dynamically pri-
oritize interesting ones. As in other online query processing sys-
tems [24, 25], only the user can tell which events are interesting or
non-interesting. The system thus needs to support dynamic inputs
from users. Moirae allows users to cancel historical query execu-
tion at any time. When a user submits a “cancel request” for an
event id, the Deploy Manager forwards the request to the Recall
Manager. The Recall Manager in turn cancels all Recall tasks with
the given event id and reclaims all associated resources. The user
can also submit an “accelerate request” for an event id to indicate
that the given event is particularly interesting. To increase the prior-
ity of the identified event, the Recall Manager increases the number
of tickets associated with that event.

Some Recall tasks need to process only a bounded amount of his-
tory (e.g., select the average resource utilization this week) while
others do not have any explicit time bound (e.g., select the k most
similar past events). To avoid executing the latter queries over the
entire archive if possible, Moirae periodically suspends each Recall
task and waits for user feedback. Based on the intermediate results,
a user can decide to refine the result or cancel the event. The feed-
back frequency is set by the user when submitting the hybrid query.
If Moirae receives no feedback from the user within a given time
period, it discards all Recall tasks associated with the event.

When a Recall task runs out of materialized events to process,
the Recall Manager triggers the replica of the query diagram that
can produce these events. It does so by migrating the corresponding
Recall task (with its tickets) to the Recall operators in the query di-
agram replica. The new Recall tasks thus run with the same priority
as the original one.

In addition to ticket based scheduling, Moirae has at least two
different priority levels for Recall tasks: a higher priority level for
ordinary query processing and a lower priority level for material-
ization. Moirae enforces ticket-based scheduling among tasks with

382

the same priority. It schedules lower priority tasks only when the
system is lightly-loaded.

In addition to the cardinality of their result so far, the Recall
Manager keeps other runtime statistics about each task. These ad-
ditional statistics can also serve to adjust the number of tickets for
each task. In future work, we plan to investigate more sophisticated
scheduling algorithms taking into account the quality of results re-
turned so far, the total execution time of queries, or scheduling to-
gether queries that need to process the same historical chunks.

4.5 Recall Operators
As historical data streams into Recall operators, the latter must

perform additional processing before outputting results. However,
to ensure timely processing, they cannot wait to receive all histori-
cal data; they must produce results incrementally. The user speci-
fies the desired trade-off between result frequency and latency, by
specifying the period between result updates by Recall operators.
In this section, we present the additional processing performed by
Recall operators.

4.5.1 Recall
As it processes incoming historical data, a standard Recall op-

erator may have to perform additional grouping and aggregation.
To avoid delaying historical data, aggregation should be performed
online [25]. The challenge, however, is that incoming data is not
a uniform sample of the historical period of interest. Instead, the
operator receives the most recent history first and older data incre-
mentally, one chunk at a time.

To produce approximate results over the entire time-period, we
propose that the operator extrapolates the values received so far.
For example, for a sum or a count operation, if a user requested
the aggregate value for this week, but the operator only received
the values for today, Recall multiplies the current sum or count by
seven, approximating the values for earlier days with the value for
today. Average, min, max, and count distinct operations require
no adjustment. The approximate value for the recent data is used
as the approximate value for the entire interval. The semantics of
approximate results are thus different than with traditional online
aggregation because of the emphasis that we put on recent history.
A better technique would be to keep summary structures, such as
histograms, to approximate historical data and use them in addition
to the recent data to produce more accurate estimates.

To indicate the inaccuracy of output results, the Recall operator
annotates the results with the time interval used to compute them.

4.5.2 Similarity Recall
A Similarity Recall operator takes as input a newly detected

event with its context and a stream of past events of the same type
and their contexts. Similarity Recall compares the contexts of past
events with that of the newly detected event.

The query plan for producing the approximate set of k most sim-
ilar events is relatively straightforward. The streams holding event
contexts are already sorted by increasing event identifiers, as this
order follows from the sequential processing of the streams. These
streams can thus easily be joined together as they are replayed. For
each resulting group of tuples, the Similarity Recall operator com-
putes the similarity score between each old event and the new event,
using the technique from Section 3.5. For each chunk of historical
data, the Similarity Recall sorts the resulting events on their scores
and outputs the top-k events. As it processes increasingly older
chunks, the Similarity Recall operator filters out events less rele-
vant than the ones already produced, by keeping track of the top k
events produced for each alert.

…

Join

Overload

events

…

…

Lightly

Loaded nodes

Join

Processes

Recall

Aggregate

& filter

Extract history for

each process running

on a lightly loaded node

Join

Archive

Per node ping times

to user’s machine
…

Overload event with

lightly loaded nodes

running light processes

Overload event with

candidate

replacement nodes

Figure 10: Example of standard hybrid query where the output of a
Recall operator is processed further.

4.6 Incremental Stream-History Processing
Because a Recall operator produces historical data incremen-

tally, operators downstream from Recall must be able to handle
out-of-order and incrementally improving input streams.

As an example, consider our sample task migration scenario. In
this example, tasks should migrate to lightly loaded nodes running
only processes that do not use significant amounts of resources on
average. Let’s extend this scenario by also requiring that the can-
didate nodes have good network connectivity (i.e., low ping time)
to the user’s desktop machine. We can express this extended query
with a standard hybrid query as illustrated in Figure 10. First, an
event-query detects when overload occurs on a node running the
user’s experiment. Upon detecting such event, the query also pro-
duces the currently lightly loaded nodes along with their processes.
Second, a Recall operator retrieves the historical resource utiliza-
tion of each process running on one of the lightly loaded nodes.
Third, aggregate and filter operators process the output of Recall to
produce the set of candidate nodes that are both lightly loaded and
run historically light processes. Finally, a join operator correlates
the stream of candidate nodes with the stream of current ping-time
values to produce the final set of candidate nodes.

In this example, the output of the Recall operator may change
as it processes more history. Indeed, a process that was recently
consuming a lot of resources, could have only been experiencing
a short spike. It may not use much resources on average. The
recall operator will thus need to produce revision tuples [1]: i.e.,
insertions of previously missing tuples and deletions or updates of
previously produced tuples. The downstream aggregate, filter, and
join operators must process these updates. The challenge is that
most stream processing operators (e.g., aggregate and join) perform
their computation over windows of data that slide with time. By the
time an update arrives, the window of computation has moved.

The Borealis SPE [1] already supports revision tuples. Borealis
operators process revision tuples in one of two ways. They either
restart from a checkpoint [8] or they update only the affected win-
dows of computation by retrieving historical state from connection
points [37]. Because Recall operators always produce a certain
amount of revisions following an initial result set, it is more ef-
fective for Moirae’s operators to keep more state in memory and
process both new tuples and revisions simultaneously.

To truncate old state, Moirae’s operators use punctuation [46, 47]
or boundary [8] tuples. Boundary tuples are produced periodically
by data sources. As they propagate through the system, they en-

383

1011121314151613 12

Oldest

tuple

Most recent

tuple

Current

window

Update to

tuple 12

New

boundary Last boundary: 10

Operator’s state

Figure 11: Example of dropping window state using boundary tuples
to facilitate revision processing.

891011121314

12

Update to

tuple 12

Stream s1

891011121314

Stream s2

1516

1516

Window size: 3

Event analysis: do not join with 16

Present analysis: join with 16

Figure 12: Example of joining a tuple after an update. With event
analysis, an updated tuple can only join with tuples within the original
window. With present analysis, an updated tuple can also join with
more recent tuples.

sures, at each step, that all following tuples will have a timestamp
higher than the boundary timestamp (i.e., no more revisions will
arrive for tuples with a lower timestamp). Figure 11 illustrates the
approach. In the figure, the current window of computation spans
tuples with timestamps in the range [14,16]. However, the operator
keeps all tuples since timestamp 10, the value of the most recent
boundary tuple it received. When an update arrives for tuple with
timestamp 12, the operator can readily process the update. When a
new boundary tuple arrives with timestamp 13, the operator drops
from its state all tuples with timestamps below that value.

Recall operators propagate boundary tuples only after they pro-
cess an event and all preceding events completely. The timestamp
value of the boundary tuple carries the timestamp of that event.4
All tuples output by a Recall operator that are related to the same
event carry the same timestamp value, the timestamp of the event.
All these tuples can be pruned once historical queries for the event
stop. Since the Recall Manager makes the decision to terminate the
historical queries for an event, the Recall Manager produces the
boundary tuples and transmits them to Recall operators.

The above approach also enables a new model for processing re-
vision tuples. Revision tuples carry old timestamps equal to the
timestamps of the tuples they correct. With existing stream oper-
ator semantics, these tuples should join with equally old tuples on
other streams. In Figure 12, the updated tuple 12 only joins with
tuples in range [9,15]. In our task migration example, as the Re-
call operator updates its output, a previously unacceptable node can
suddenly become a good candidate. When the correction appears
on the stream, the join operator will match the updated tuple with
the ping-time value at the moment of the original event because it
joins tuples within the same window. We call this type of process-
ing event analysis, because it appears as if time had stopped for

4For simplicity, we assume tuples are sorted on their timestamp
values on all streams, but this assumption is not necessary [2, 8].

the event and all revisions are processed using the valid data at the
moment of the event. In some scenarios, this is in fact the desired
behavior. For example, this approach is correct if the user wants to
study the overlay network and wants to know about nodes that had
both light processes and low ping times when an overload event
occurred

In our scenario, however, the user does not want to perform event
analysis. He wants to take an action (migrate tasks) based on the
best data available. In that case, it would make more sense for the
join to correlate the newly discovered candidate node with the most
recent ping-time values. We call this type of processing present
analysis as the user wants to know about the current state of the
system in order to take some action. In the Figure 12, this would
mean that the update tuple with timestamp 12 should also join with
the most recent tuples with timestamps > 15 on the other stream.

Moirae supports both types of processing by enabling the user to
set the desired type of analysis as a parameter to each join operator.

4.7 Additional Techniques
There are several additional issues with integrating historical

data into a continuous monitoring system that we did not discuss
in the paper. One issue lies in indexing event contexts, where tu-
ples are spread across multiple relations, to speed-up the similarity
matching process. As another example, each Recall operator may
execute similar historical queries for multiple events that occur in
sequence. Caching the results of these different executions could
reduce system load. Finally, there exists various sampling and sum-
marization techniques [5, 12] for streams that we could leverage to
reduce the size of the log and produce approximate results.

5. RELATED WORK
SPEs [1, 2, 11, 16, 17, 32] focus on efficient, continuous process-

ing of live data. In most systems, queries over historical data are
processed independently from queries over live data [4, 28]. Some
systems do not focus on stream archives explicitly, but allow joins
between streams and stored relations [32] or SQL operations on
stored relations as part of the continuous processing flow [7]. They
assume, however, that these relations are sufficiently small for the
system to keep-up with input data rates. In Aurora [2] and Bore-
alis [1], connection points can store limited stream history, but that
history can only be replayed to satisfy ad-hoc queries [2], process
tuple revisions [1, 37], or perform time-travel operations [1].

The work most similar to ours is Chandrasekaran’s work [10] on
supporting hybrid queries over live and archived streams. Chan-
drasekaran supports three specific types of queries: queries that
start in the past and continue in the present, queries that access an
offset part of the historical log (e.g., compare today’s average with
yesterday’s average), and arbitrary queries over the entire log. For
the first two types of queries, Chandrasekaran proposes algorithms
for sampling stream data while archiving and retrieving it. For the
latter type of queries, his schemes assume the entire log is properly
indexed and the query over the log will execute quickly and return
a small set of results. With Moirae, we focus on the latter types of
queries, but we assume not all queries have a matching index, the
log is too large to be queried in its entirety, and most queries will
return a large result set.

We reuse several existing database techniques in our work. None
of these techniques in isolation suffices to solve our problem. In-
stead, we must combine these techniques into a novel framework.
The techniques include view materialization, which is commonly
used to improve query execution performance [22], and partial in-
dexes [38, 39, 42], which enable a database to index only tuples
matching a predicate. Materializing and indexing only some pre-

384

processed parts of history can improve performance in a continuous
monitoring system. Indeed, the most suitable views and indexes
change with time, yet it would be expensive and often useless to
re-process or re-index the entire history every time. To ensure that
at least some results are quickly returned, unlike previous work,
Moirae exploits partial indexes and materialized views even if they
do not match a historical query entirely.

As another technique, the multi-level storage manager [43] in-
tegrates a main memory, a disk, and an archive database into a
single framework. Moirae’s partitioned history is similar in spirit,
but it only has two levels and data migrates automatically be-
tween levels as it ages. As such, Moirae’s storage manager (the
Archiver module) is more similar to the LHAM log-structured ac-
cess method [33], which keeps the most recent data in memory
and, as the data ages, moves it in chunks to disk then to tape. The
Archiver uses the same strategy. In contrast to both proposals, how-
ever, Moirae focuses not only on storing different data on different
devices, but also on pre-processing and materializing events differ-
ently for present, recent, and old data. The Archiver also serves
a role analogous to the OSCAR [12] access method for archiv-
ing and retrieving streams. OSCAR, however, focuses on reducing
streams through sampling during storage or retrieval. In contrast,
the Archiver focuses on keeping and serving recent data from mem-
ory. Moirae’s Archiver could leverage OSCAR’s sampling tech-
niques to handle overload.

Work on online query processing [23, 24, 25, 36, 40, 44] pro-
poses the idea of continuous and incremental query evaluation:
early approximate results are produced quickly followed by incre-
mentally more accurate results. Online query processing also in-
troduces the idea of reordering data dynamically while it is being
processed based on explicit user feedback [24, 36]. Moirae com-
bines these ideas with the materialization and indexing of subsets of
historical events. Furthermore, unlike previous online processing
schemes, Moirae emphasizes fairness between historical queries,
scheduling them in a manner that ensures all events receive some
historical data in a timely fashion. In Moirae, user interaction is
based on the notion of events that occur on the live streams rather
than on specific values within the historical data.

For contextual hybrid queries, Moirae’s goal is to return an ap-
proximate set of k most similar past events. There has recently
been a significant amount of work on adding support for top-k
queries to databases [9, 13, 14, 18, 29]. In particular, the RanqSQL
project [29] supports ranking at the database core, enabling rank-
aware iterator-fashion query plans that do not necessitate material-
izing nor sorting entire relations. Chang and Hwang [13] propose
an approach for retrieving top-k results with minimal probing. Al-
though both techniques could be useful in our setting, we are funda-
mentally interested in ranking sets of tuples from multiple relations,
or contexts as we name them, instead of individual tuples. Com-
paring event contexts is also related to the similarity search prob-
lem [19, 48]. However, existing techniques focus on comparing
individual, multidimensional objects [48] or sequences [19] rather
than sets of tuples. Techniques enabling keyword searches over re-
lational databases [21, 30] or combining information retrieval and
databases in general [3, 15] are more closely related to our prob-
lem, but our goal is not to retrieve a ranked set of tuples matching
a set of keywords or a query, it is to compare two groups of tuples.

There exists extensive work in data mining. For example,
Horvitz et al. built a model of car traffic, JamBayes, over data col-
lected by sensors deployed on highways in Washington state [26].
The work is similar to ours in the sense of considering other con-
textual information such as weather, events, time, and holidays to
predict traffic conditions. Data-mining-based solutions, however,

build domain specific models of an environment that they use to
answer queries. In contrast, we propose to enable users to see spe-
cific past events and ask arbitrary queries over the historical data.

Finally, temporal databases [31, 34, 41] support sophisticated
queries over persistently stored temporal data. An important dif-
ference in our setting is that, for most queries, the raw stream data
must initially be processed in the same manner as the live data by
the SPE, to ensure the same events are detected in the same cir-
cumstances. We could, however, leverage temporal databases for
storing the materialized events and contexts.

6. CONCLUSION
In this paper, we investigated some of the benefits and challenges

of integrating history into a continuous monitoring system and we
proposed the design of a new engine, called Moirae, that supports
such integration. Moirae supports two types of queries that com-
bine live and historical data: standard hybrid queries and contextual
hybrid queries. A standard hybrid query lets a user issue an arbi-
trary query against the data archive given a newly detected event.
A contextual hybrid query looks for the same type of events in the
past. It compares the context of each past event with the context of
the current event and returns an approximate set of k most similar
past events.

The key insight behind Moirae’s design is that most queries will
request recent historical information and users will be more inter-
ested in receiving a few relevant results soon after each new event,
rather than a complete result set (or the best results) with higher la-
tency. Thus the three major properties that Moirae strives to achieve
are Responsiveness, Relevance and Similarity: i.e., to produce the
most relevant, recent results with low-latency (and additional re-
sults incrementally when necessary) and use context-similarity to
identify relevant past data. To achieve these properties, Moirae,
uses a combination of techniques including partitioning the archive
and prioritizing recent partitions, partitioned and incremental query
execution, materialization of recent past events, careful scheduling
of historical queries, correlations of incremental historical results
with live data streams, and user feedback. To compute event simi-
larity and extract an approximate set of k most similar past events,
Moirae uses techniques from information retrieval.

We are currently building a prototype of Moirae, and plan to
evaluate it on computer-system monitoring data collected in our
department and CoMon/CoTop logs from PlanetLab. We also plan
to experiment with network monitoring traces.

Exploiting historical data in continuous monitoring systems is
an important problem in many domains. Different types of integra-
tions between live and historical data are possible. We investigated
some of them in this paper. As such, we view this work as an im-
portant step toward providing fully integrated support for history in
a near real-time stream processing engine.

7. ACKNOWLEDGMENTS
We thank the CoMon team for their help with using the Planet-

Lab monitoring data and Jon Sanislo for helping us get access to the
departmental computer-system monitoring data. We thank Samuel
Madden and Surajit Chaudhuri for helpful discussions. This mate-
rial is based upon work supported by Cisco Systems Inc. through
the Cisco University Research Program.

8. REFERENCES
[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,

J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The design of the Borealis stream
processing engine. In Proc. of the CIDR Conf., Jan. 2005.

385

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new
model and architecture for data stream management. VLDB Journal,
12(2), Sept. 2003.

[3] S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking
of database query results. In Proc. of the CIDR Conf., Jan. 2003.

[4] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts. Linear road: A stream
data management benchmark. In Proc. of the 30th VLDB Conf., 2004.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proc. of the 21st ACM
Symposium on Principles of Database Systems (PODS), 2002.

[6] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[7] H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel,
M. Cherniack, C. Convey, E. Galvez, J. Salz, M. Stonebraker,
N. Tatbul, R. Tibbets, and S. Zdonik. Retrospective on Aurora. VLDB
Journal, 13(4), Dec. 2004.

[8] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker.
Fault-tolerance in the Borealis distributed stream processing system.
In Proc. of the 2005 SIGMOD Conf., June 2005.

[9] M. J. Carey and D. Kossmann. On saying "enough already!" in SQL.
In Proc. of the 1997 SIGMOD Conf., May 1997.

[10] S. Chandrasekaran. Query Processing over Live and Archived Data
Streams. PhD thesis, University of California, Berkeley, 2005.

[11] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,
F. Reiss, and M. Shah. TelegraphCQ: Continuous dataflow processing
for an uncertain world. In Proc. of the CIDR Conf., Jan. 2003.

[12] S. Chandrasekaran and M. J. Franklin. Remembrance of streams
past: Overload-sensitive management of archived streams. In Proc.
of the 30th VLDB Conf., 2004.

[13] K. Chang and S. Hwang. Minimal probing: supporting expensive
predicates for top-k queries. In Proc. of the 2002 SIGMOD Conf.,
June 2002.

[14] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In
Proc. of the 25th VLDB Conf., Sept. 1999.

[15] S. Chaudhuri, R. Ramakrishnan, and G. Weikum. Integrating DB and
IR technologies: What is the sound of one hand clapping? In Proc. of
the CIDR Conf., Jan. 2005.

[16] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik. Scalable distributed stream
processing. In Proc. of the CIDR Conf., Jan. 2003.

[17] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk.
Gigascope: A stream database for network applications. In Proc. of
the 2003 SIGMOD Conf., June 2003.

[18] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66(4), 2003.

[19] C. Faloustos, M. Ranganathan, and Y. Manolopoulos. Fast
subsequence matching in time-series databases. In Proc. of the 1994
SIGMOD Conf., May 1994.

[20] M. J. Franklin, S. R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi,
E. Wu, O. Cooper, A. Edakkunni, and W. Hong. Design
considerations for high fan-in systems: The HiFi approach. In Proc.
of the CIDR Conf., Jan. 2005.

[21] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molina. Proximity search in databases. In Proc. of the 24th
VLDB Conf., Aug. 1998.

[22] J. Goldstein and P.-Å. Larson. Optimizing queries using materialized
views: a practical, scalable solution. In Proc. of the 2001 SIGMOD
Conf., 2001.

[23] P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation.
In Proc. of the 1999 SIGMOD Conf., 1999.

[24] J. M. Hellerstein, R. Avnur, and V. Raman. Informix under
CONTROL: Online query processing. Data Mining and Knowledge
Discovery, 4(4), 2000.

[25] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In
Proc. of the 1997 SIGMOD Conf., 1997.

[26] E. Horvitz, J. Apacible, R. Sarin, and L. Liao. Prediction,
expectation, and surprise: Methods, designs, and study of a deployed
traffic forecasting service. In Proc. of the 21st UAI Conf, July 2005.

[27] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel,
M. Stonebraker, and S. Zdonik. High-availability algorithms for
distributed stream processing. In Proc. of the 21st ICDE Conf., Apr.
2005.

[28] N. Jain, L. Amini, H. Andrade, R. King, Y. nho Park, P. Selo, and
C. Venkatramani. Design, implementation, and evaluation of the
linear road benchmark on the stream processing core. In Proc. of the
2006 SIGMOD Conf., June 2006.

[29] C. Li, K. C.-C. Chang, I. F. Ilyas, and S. Song. RankSQL: query
algebra and optimization for relational top-k queries. In Proc. of the
2005 SIGMOD Conf., June 2005.

[30] F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword
search in relational databases. In Proc. of the 2006 SIGMOD Conf.,
June 2006.

[31] D. B. Lomet, R. S. Barga, M. F. Mokbel, and G. Shegalov.
Transaction time support inside a database engine. In Proc. of the
22nd ICDE Conf., 2006.

[32] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query
processing, approximation, and resource management in a data
stream management system. In Proc. of the CIDR Conf., Jan. 2003.

[33] P. Muth, P. O’Neil, A. Pick, and G. Weikum. The LHAM
log-structured history data access method. VLDB Journal, 8(3-4),
2000.

[34] G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time
databases: A survey. IEEE Trans. Knowl. Data Eng., 7(4), 1995.

[35] PlanetLab: An open platform for developing, deploying, and accessin
g planetary-scale services. http://www.planet-lab.org/.

[36] V. Raman and J. M. Hellerstein. Partial results for online query
processing. In Proc. of the 2002 SIGMOD Conf., June 2002.

[37] E. Ryvkina, A. Maskey, M. Cherniack, and S. Zdonik. Revision
processing in a stream processing engine: A high-level design. In
Proc. of the 22nd ICDE Conf., Apr. 2006.

[38] C. Sartori and M. R. Scalas. Partial indexing for nonuniform data
distributions in relational DBMS’s. IEEE Transactions on
Knowledge and Data Engineering, 6(3), 1994.

[39] P. Seshadri and A. N. Swami. Generalized partial indexes. 1995.
[40] J. Shanmugasundaram, K. Tufte, D. DeWitt, D. Maier, and J. F.

Naughton. Architecting a network query engine for producing partial
results. Lecture Notes in Computer Science, Vol. 1997, 2001.

[41] R. Snodgrass and I. Ahn. A taxonomy of time in databases. In Proc.
of the 1985 SIGMOD Conf., May 1985.

[42] M. Stonebraker. The case for partial indexes. SIGMOD Record,
18(4), 1989.

[43] M. Stonebraker. Managing persistent objects in a multi-level store. In
Proc. of the 1991 ACM SIGMOD International Conference on
Management of Data, 1991.

[44] K.-L. Tan, C. H. Goh, and B. C. Ooi. Online feedback for nested
aggregate queries with multi-threading. In Proc. of the 25th VLDB
Conf., Sept. 1999.

[45] The PostgreSQL Global Development Group. Postgresql database
management system. http://www.postgresql.org, 2006.

[46] P. A. Tucker and D. Maier. Dealing with disorder. In Proc of the
Workshop on Management and Processing of Data Streams (MPDS),
June 2003.

[47] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting
punctuation semantics in continuous data streams. IEEE
Transactions on Knowledge and Data Engineering, 15(3), May 2003.

[48] K. Vu, K. A. Hua, H. Cheng, and S.-D. Lang. A non-linear
dimensionality-reduction technique for fast similarity search in large
databases. In Proc. of the 2006 SIGMOD Conf., June 2006.

[49] C. A. Waldspurger and W. E. Weihl. Stride scheduling: Deterministic
proportional- share resource management. Technical report,
Cambridge, MA, USA, 1995.

386

