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ABSTRACT

Data privacy issues are increasingly becoming important for
many applications. Traditionally, research in the database
community in the area of data security can be broadly clas-
sified into access control research and data privacy research.
Surprisingly, there is little overlap between these two areas.
In this paper, we open up a discussion that asks if there is
a suitable middle-ground between these areas. Given that
the only infrastructure provided by database systems where
much sensitive data resides is access control, we ask the ques-
tion how the database systems infrastructure can step up to
assist with privacy needs.

1. INTRODUCTION

Data privacy issues are becoming increasingly important
for our society. This is evidenced by the fact that the re-
sponsible management of sensitive data is explicitly being
mandated through laws such as the Sarbanes-Oaxley Act
and the Health Insurance Portability and Accountability
Act (HIPAA). Accordingly, data privacy has received sub-
stantial attention in previous work [3]. The key technical
challenge is to balance utility with the need to preserve pri-
vacy of individual data. Initial work on data privacy fo-
cused on data publishing where an “anonymized” data set is
released to the public for analysis. However, the evidence
increasingly points out the privacy risks inherent in this ap-
proach [9]. It is now believed that a query-based approach
where the database system answers a query in a privacy-

sensitive manner is generally superior from the privacy per-
spective to the data publishing paradigm [9].

However, the only support provided by database systems
where much sensitive structured data reside is the mecha-
nism for access control. Briefly, the idea is to authorize a
user to access only a subset of the data. The authorization
is enforced by explicitly rewriting queries to limit access to
the authorized subset. Such a model of authorization is in-
tuitive to application developers and users of the database
system. The programming model remains the same as be-
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fore — (1) data is accessed using SQL queries, (2) the results
returned are deterministic, hence the utility of query results
is clear, (3) there is no restriction on the class of queries
that can be executed, and (4) there is no restriction on the
total number of query executions. In other words, an access
control mechanism is fully compatible with the functionality
of a general purpose database system. Not surprisingly, ac-
cess control is supported in all commercial database systems
and the SQL standard. (In fact, some commercial database
systems also support fine-grained access control [11].)

The main limitation of the traditional access control mech-
anism in supporting data privacy is that it is “black and
white”. Consider for example advanced data analysis tasks
such as location-aware services of operational Business In-
telligence that need to stitch together multiple sources of
data such as sales history, demographics and location sensors
many of which have sensitive data. For these examples, ef-
fective analytics needs to leverage many “signals” derived by
aggregating data from sources who have sensitive private in-
formation, at the same time without revealing any sensitive
individual information. But the access control mechanism
offers only two choices — (1) release no aggregate informa-
tion thereby preserving privacy at the expense of utility, or
(2) release accurate aggregates thus risking privacy breaches
for utility.

There is considerable previous work in privacy-preserving
query answering that goes beyond the “black and white”
world of access control [1, 8]. The class of queries is generally
restricted to aggregate queries and the approach adopted
broadly is to add noise to the aggregates. However, non-
aggregate queries are a large class of database queries and
the support for them is rather limited in the above bodies
of previous work.

In this paper, we ask if we can get the best of both
worlds — combine the advantages offered by access control
mechanisms while at the same time going beyond the “black
and white”world by leveraging previous work on privacy pre-
serving query answering. We can break down this question
as follows: (1) What is the database API that combines tra-
ditional access control mechanisms with privacy-preserving
query answering? (2) How do we implement the suggested
APIs in a principled manner? (3) How do we mix and match
both mechanisms to ensure privacy guarantees?

We explore a natural hybrid system that combines (a) a
set of authorization predicates restricting access per user to
only a subset of the data, and (b) a set of “noisy” views that
(as the term suggests) expose perturbed aggregate informa-
tion over data not accessible through the authorization pred-
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icates. For example in an employee-department database,
we could allow employees to see their own employee record
and also publish a “noisy” view exposing the average salary
of the organization. This hybrid potentially has significant
advantages. Accessing data through a set of views is natural
for users of database systems and thus provides a simple ex-
tension to today’s database API. It offers the functionality of
access control for queries that refer only to the database ta-
bles and views, and the privacy guarantees of previous work
for queries that only refer to the “noisy” views. In addition,
we obtain value beyond the sum of the individual parts by
allowing rich queries that refer to both database tables and
“noisy” views.

We implement the“noisy”views by using previous work on
implementing differential privacy [5, 8]. In order to answer
question (3) above, we introduce the notion of differential
privacy relative to an authorization policy and explain its
desirable theoretical properties. We show that the seemingly
ad hoc hybrid system described above satisfies differential
privacy relative to the authorization policy.

We note that it is possible to expose the APIs we propose
by extending libraries supporting differential privacy such as
PINQ with access control mechanisms. However, given that
the recent trend in the industry is to implement data secu-
rity primitives in the database server, our discussion in this
paper is presented as a modification to the database server.
We think of our paper more as a first step in initiating dis-
cussions on how database systems can provide meaningful
support to address privacy concerns. We comment on open
issues, including a critique of state of the art privacy models.

2. REVIEWING ACCESS CONTROL

There has been a lot of work in the area of access con-
trol in databases. The idea with access control is that each
database user gets access to a subset of the database that
the user can query. The current SQL standard allows coarse
grained access both to database tables as well as views.

Recent work [2, 6, 11, 13] has emphasized supporting
predicate based fine-grained access control policies in the
database server. For example, we wish to be able to grant
each employee in an organization access their own record in
the employee table.

In this paper, we consider fine-grained access control poli-
cies. We assume that access control policies expose per user
a subset of each database table (this is the approach adopted
by some commercial systems like Oracle VPD). The policy
is formally captured by specifying for each user and each
database table, an authorization predicate. Since the number
of users can be potentially large, the predicate is specified
succinctly as a parameterized predicate that references the
function userID() that provides the identity of the current
user. For example, we can grant each employee access to
their own record as follows. (We adopt the syntax proposed
in previous work [2].)

grant select on employee
where (empid = userID())

to public

Access can be granted not only to tables but also to views.
In this way, we can expose additional information such as
aggregate information. For example, we can create a view
that counts the total number of employees and grant access
to the view to every employee. For ease of exposition and
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Q              Result( )

Execution Engine

Figure 1: Leveraging Fine-Grained Access Control

without loss of generality, in the rest of this paper, we re-
strict authorization predicates to only be specified for tables.

We now formalize the notion of an access control policy.

Definition 1. A access control policy P specifies for each
user and for each database table, a corresponding authoriza-
tion predicate. We also refer to an access control policy as
an authorization policy.

We assume that the function auth(T, u) denotes the autho-
rization predicate on table T corresponding to user u. For
instance, in the above example auth(T, u) is the predicate
empid = u.

Let the tables in the database be T1, . . . , Tk. Fix
a database instance A. We refer to the vector
<σauth(T1,u)(T1), . . . , σauth(Tk,u)(Tk)> as evaluated on the
instance A as the authorized subset for user u, denoted
P(u, A). (In all our notation, if the user is clear from the
context, we drop the reference to the user.)

Queries are executed by rewriting them to add the autho-
rization predicates. For example, the query:

select salary from employee

gets rewritten to:

select salary from employee
where empid = userID()

In the same way, update statements are also rewritten to
go only against the authorized subset. For example, the
update:

update employee set nickname = ’Jeff’

is rewritten as follows:

update employee set nickname = ’Jeff’
where empid = userID()

We note that in general, the access control policy can allow a
different “pre-update” authorization predicate than the one
for queries. Further, previously proposed access control pol-
icy languages also support the notion of a “post-update” au-
thorization predicate which checks whether the new values
of the updated rows are authorized. For ease of exposition,
we assume that (1) there is only one authorization predicate
used for both queries and pre-update and that (2) there are
no post-update predicates, while noting that our techniques
and results extend if we relax this assumption.

Figure 1 illustrates the infrastructure supporting access
control mechanisms in a database system.
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2.1 Limitations

As we discussed in Section 1, granting access to accu-
rate aggregations over different subsets of the data can po-
tentially leak information. For instance, in an Employee-
Department database, suppose we grant a data analyst ac-
cess to the number of employees at various levels of the
organizational hierarchy grouped by the department, gen-
der and ethnicity. If the analyst knows an employee with
a rare ethnicity, the level of the employee could potentially
get breached. Basically, the choices offered by access control
mechanisms are “black-and-white”; we can grant access ei-
ther to accurate aggregate information thereby compromis-
ing privacy, or to no aggregate information compromising
utility.

Previous work in data privacy has studied techniques for
releasing information while preserving privacy allowing us a
middle ground in the above scenario. Briefly, the idea is to
add noise to the result of a computation. We next address
the question of how the database API can be extended to
exploit this previous work.

3. NOISY VIEWS

In Section 1, we proposed the notion of noisy views as a
possible abstraction for integrating privacy mechanisms in
a traditional database. The core properties of noisy views
that we support may be summarized as follows:

• Noisy Views are a DDL construct: Noisy views may
be defined by a data provider in the same way a tra-
ditional view is declared, e.g., through a CREATE
VIEW statement.

• Noisy Views are Non-Deterministic: Although the
DDL expression for a noisy view is no different from
that of a traditional view, their semantics is non-
deterministic. Intuitively, they correspond to the re-
sult of executing the DDL associated with the noisy
views but enriched with a random“noise” to ensure no
privacy leaks happen.

• Noisy views and Access Control co-exist: A query can
reference both a noisy view and other authorized ob-
jects.

• Noisy Views are Access Control Aware: Noise is only
added to the part of the result derived from unautho-
rized data. The part derived from authorized data is
not perturbed.

• Noisy Views are Named: To reflect to the appli-
cation developer the fact that noisy views are non-
deterministic, the noisy views need to be explicitly
named, much like views in the SQL standard.

• Traditional DBMS Execution Engine: The DBMS
query execution engine is left unchanged. Only min-
imal changes to the database system are needed:
(1) a noise-injecting function and (2) a modified query
rewriter that rewrites a reference to a noisy view.

• No Change in Data: The privacy-sensitive database
content is left unchanged.

The above properties summarize the core facets of a noisy
view object. The advantages of this approach are that (1) it
builds on the familiar notion of views thereby inheriting the
benefits of access control mechanisms, and (2) by requir-
ing that queries access the noisy views by explicitly naming
them, it clearly separates the deterministic components from

the non-deterministic components of the system. Any query
that does not name the noisy views will have the same be-
havior as with just access control mechanisms.

However, the specific details of the privacy model being
supported determines several additional details: (1) What
subset of SQL can be supported as noisy views? (2) How
exactly is the noise added? (3) What is the additional in-
formation that needs to be specified: for users as well as
queries? (4) What are the privacy guarantees? The answers
to the above questions critically depend on the specific pri-
vacy model that is adopted.

The rest of the paper answers precisely these questions
for the well-known model of differential privacy [5]. We first
review state of the art differential privacy in Section 4 and
then describe our implementation in Section 5. Finally, we
note that the model of noisy views is more general and pro-
vides a template for capturing privacy models in database
systems like the approach adopted by Netz et al. [10] for
encapsulating data mining models in databases.

4. REVIEWING DIFFERENTIAL PRI-

VACY

We now briefly discuss differential privacy [5] which is con-
sidered to be the current state of the art in privacy models.

4.1 Definition

Intuitively, differential privacy requires that computations
be formally indistinguishable when run with and without
any single record. The following definition makes the intu-
ition precise. We denote the symmetric difference between
two data sets A and B as A⊕B (for a database with multi-
ple tables, we take the union of the symmetric difference of
the corresponding tables).

Definition 2. A randomized computation M provides �-
differential privacy if for any two database instances A and
B and any set of possible outputs S ⊆ Range(M):

Pr[M(A) ∈ S] ≤ Pr[M(B) ∈ S]× exp(�× |A⊕B|)

✷

The parameter � quantifies the degree of privacy. A smaller
value of � corresponds to a stronger guarantee — for example
if we set � to be 0, then M is constrained to produce the same
output independent of input. On the other hand, a larger
value of � indicates a weaker guarantee.

Intuitively, differential privacy ensures that adding an in-
dividual record to the database does not reveal much addi-
tional information. Thus, an adversary would not be able to
learn if any particular data item was used as a result of this
computation. Perhaps the biggest advantage of differential
privacy is that it makes no reference to (and hence no as-
sumptions about) background knowledge. It thus relieves us
from the burden of changing privacy models as assumptions
about background knowledge change.

4.2 Implementation Using PINQ

Most techniques implementing differential privacy such as
Privacy Integrated Queries (PINQ) [8] focus on aggregations
(our discussion below is also based on PINQ). Aggregates
are supported by output perturbation — the original aggre-
gate is first computed and then perturbed by adding random
noise (thus the noise corresponds to an absolute error in the
output).
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Figure 2: Leveraging Differential Privacy

Figure 2 illustrates how an application can leverage PINQ.
Each aggregate query AggQ is issued with a privacy param-
eter � (see Definition 2). The query execution algorithm
guarantees �-differential privacy by adding a carefully cho-
sen random noise to the output; the noise is chosen as a
function of � and the aggregation being performed. The
noise added is inversely related to � — a larger value of �
(weaker privacy guarantee) can be accommodated with a
smaller noise, whereas a smaller value of � (stronger privacy
guarantee) requires more noise.

As more queries are run, the overall privacy guarantee
gets weaker. Formally, we have the following previously pub-
lished result [8].

Theorem 1. Let Mi each provide �i-differential privacy.

Then the sequence of Mi provides Σi�i-differential privacy.

Thus, overall the system satisfies Σi�i-differential privacy

where the ith query is run with parameter �i.
There is previous work [4] that formally shows that if an

unbounded number of queries are allowed, then eventually
privacy is breached. Therefore, the notion of a privacy bud-

get B is introduced that bounds the number of queries a user
can run. As each query is run with its privacy parameter �,
the budget is decremented by �. Queries can only be run so
long as permitted by the remaining budget. A larger privacy
budget allows a larger number of queries to be run but with
a greater risk of privacy breach. Thus, both the budget and
the query-specific privacy parameters can be used to trade
off privacy with utility.

PINQ supports differentially private variants for all the
standard SQL aggregations such as sum, count and average.
We refer to the differentially private variants respectively as
noisySum, noisyCount and noisyAvg. The aggregations can
be computed over a restricted class of SQL operations such
as filters and key-key joins. By using a partitioning opera-
tion, it also supports a limited form of grouping. Since the
implementation only adds noise to the output of queries, all
of the query processing can be done using the DBMS exe-
cution engine without modifying the underlying data (this
is in contrast with input perturbation techniques [3]).

4.2.1 Limitations

As noted above, using differential privacy requires the
programmer to set various parameters and also understand
that an unbounded number of queries cannot be run by the
same user. While the meaning of the parameters is intu-
itive, choosing appropriate values for them is non-trivial.
The random noise added is a function not only of the pri-
vacy parameter � but also the sensitivity of the aggregation,
which is the maximum influence any single record can have
on the output of the aggregation. Differential privacy imple-
mentations work best for low-sensitivity computations. For
example, the sensitivity of aggregates such as count is low.
On the other hand, for aggregates such as sum the sensitivity
can be arbitrarily large (that said, when a large number of
records are being summed, a large absolute error can be tol-
erated since it might not correspond to large relative error).
For a given privacy guarantee �, we need to add significantly
more noise as the sensitivity increases. On the other hand,
answering higher sensitivity queries without increasing the
noise reduces the total number of queries that can be exe-
cuted within the privacy budget. Such interactions between
the parameters makes them difficult to set. We note that
the above limitations hold not only for PINQ but for all
previously proposed differential privacy algorithms.

Although differential privacy comes with the above “bag-
gage”, it offers a principled mechanism to navigate the pri-
vacy/utility trade off. This is in stark contrast to the“black-
and-white”world of access control. Further, recent empirical
work has begun to apply differential privacy to several real-
world data analysis tasks successfully [8, 14]. Given this fact,
it is natural to ask if we can implement our noisy view ab-
straction through differential privacy primitives. We study
this question next.

5. DIFFERENTIALLY PRIVATE NOISY

VIEWS

In this section, we discuss how we implement noisy views
based on differential privacy and discuss how it can be in-
tegrated in a database system. We term noisy views im-
plemented using differential privacy as differentially private

views or DPViews in short. We present our system as an en-
hancement of the database server while noting that much of
the functionality can also be supported through middleware
requiring no changes to the server, say by enhancing PINQ
with access control primitives.

Since the class of DPViews we consider is influenced by
our privacy guarantees, we begin this section by discussing
the privacy guarantee we seek to provide.

5.1 Differential Privacy Relative To Views

The main challenge in formalizing the privacy guarantee
is that we do not want to charge the system with protect-
ing the privacy of information that is revealed through the
authorization policy. We illustrate with an example. We
assume that the authorization predicates are known to all
users.

Example 1. Suppose that in an organization, a user is au-
thorized to see the records of all employees whose salary is
greater than $100000. Even though the user is not autho-
rized to see the records of other employees, he/she knows
that their salary is less than or equal to $100000. ✷

A user knows that the underlying database has to be con-
sistent with the authorized subset. This is how information
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is revealed about the overall data. Accordingly, we introduce
the notion of differential privacy relative to an authorization
policy as follows.

Definition 3. We say a randomized computation M pro-
vides �-differential privacy relative to an authorization pol-

icy P for user u if for any two database instances A and B
such that P(u, A) = P(u, B) and any set of possible outputs
S ⊆ Range(M):

Pr[M(A) ∈ S] ≤ Pr[M(B) ∈ S]× exp(�× |A⊕B|)

✷

We note that the main difference from the usual notion of
differential privacy is that we only consider instance pairs
that agree on the authorized subsets. Definition 3 offers
us a principled way to reason about privacy in the context
of a given access control policy. At one end, if the user is
not granted access to any data, then Definition 3 reduces
to standard differential privacy. By granting access to more
data, the system is only charged with providing a weaker
privacy guarantee.

Finally, we carry out the discussion in this section for a
single user noting that all results generalize to multiple users.
So the references to the user are dropped in the notation.

5.2 Overall Architecture

The overall policy specified to the system initially consists
of an authorization policy and a set of DPViews. We use the
access control infrastructure to grant and/or deny access to
the DPViews in the same way as with traditional views.

In general, a query can reference database tables and
DPViews. An update can only reference database tables.
Queries and updates are executed by rewriting them in a
way that guarantees differential privacy relative to the au-
thorization policy P.

References to database tables are rewritten as described
in Section 2 to reflect the authorization policy. For queries
and updates that do not reference DPViews, the behavior is
identical to only having an authorization policy. The differ-
ential privacy guarantee is obtained via the following result.

Theorem 2. Fix an authorization policy P and a query

that does not refer to DPViews. The rewritten query is

0-differentially private relative to P. Similarly, an update

(that is not allowed to refer to DPViews) when rewritten is

0-differentially private relative to P.

Proof. We can think of the authorization semantics for
queries and updates as follows. The database instance A
is replaced with the authorized subset P(A) and the origi-
nal unrewritten statement (query or update) is run on this
smaller instance. The result follows.

Any reference to a DPView in a query is made with a
privacy parameter � (the � here refers to Definition 3) and
rewritten in a way that guarantees �-differential privacy rel-
ative to the authorization policy. The way in which DPView
references are rewritten is described in Section 5.3.

In general, a query can reference both the database tables
and the DPViews. Such queries are also issued with the
privacy parameter �. We prove below in Theorem 4 that
their rewriting guarantees �-differential privacy relative to
the authorization policy.

DBMS

Q (AggQ, )(Q, )

 Privacy
  Budget (B)

Query Rewriter

Auth
Views

DP
Views            Policy

Figure 3: Leveraging Access Control and Differential
Privacy

As multiple queries and updates are run, we prove that
the system satisfies Σi�i-differential privacy relative to the

authorization policy where the ith query is run with param-
eter �i.

Theorem 3. Fix an authorization policy P. Let Mi each

provide �i-differential privacy relative to P. Then the se-

quence of Mi provides Σi�i-differential privacy relative to

P.

Proof. The proof is almost identical to the analogous
previously known result [8] (stated in Theorem 1) — we
only have the additional restriction of focusing on instances
A and B with P(A) = P(B).

Together with the following straightforward result, The-
orem 3 can be used to infer that queries that reference
database tables and a DPView with parameter � satisfy �-
differential privacy relative to the authorization policy.

Theorem 4. Fix authorization policy P. Any determin-

istic computation that operates on the output of a compu-

tation that is �-differentially private relative to P is also �-
differentially private relative to P.

We also inherit the notion of a per-user privacy budget
which is maintained in the same way as in PINQ. The overall
architecture is shown in Figure 3.

5.3 Differentially Private Views

We now discuss the class of DPViews we support coupled
with how we rewrite them to yield privacy guarantees. The
class of queries we encapsulate as DPViews is based on the
class of queries for which differentially private algorithms
are known [8]. If differentially private algorithms are de-
veloped for larger classes of queries in the future, we could
correspondingly accommodate a larger class of DPViews.

We note that when the user budget is exhausted, the
DPView expression is always rewritten in accordance with
the authorization policy while signaling to the application
that the privacy budget is exhausted. Thus, the discussion
below focuses on the rewriting method for the case when the
user budget is not exhausted.

5.3.1 Single Table DPViews
We start our discussion with single-table DPViews. Sup-

pose that a user is only authorized to see a subset of table
T . In order to expose privacy-preserving computations on
the unauthorized subset of T we can declare a DPView as
follows.
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create noisy view NoisySelect(agg1,...,aggn) as
(select scalarAgg(A1),...,scalarAgg(An)
from T)

We consider standard SQL aggregations namely sum, count
and average.

A reference to NoisySelect is rewritten as follows if the
user privacy budget is not exhausted. We decompose the
table T into two parts — the authorized subset and the
unauthorized subset. An accurate aggregate is computed
over the authorized subset and a differentially private ag-
gregate over the unauthorized subset. The two aggregates
are combined. The rewriting for the case where there is only
one aggregation and the scalarAgg is count is shown below
in relational algebra-like notation.

count(σauth(T)(T )) + noisyCount�(σ¬auth(T)(T ))

By Theorems 2 and 4, we can see that the above rewriting
guarantees �-differential privacy relative to the authorization
policy.

5.3.2 Incorporating Joins
The main challenge in combining joins with differentially

private aggregations is that joins have a large sensitivity (re-
call from Section 4.2.1 that the sensitivity is the maximum
influence any single record can have on the output of the ag-
gregation.) Even for the special case of key-foreign key joins
the sensitivity can be large since deleting a record from the
“key side” can have an unbounded effect on the output join
cardinality. Therefore, PINQ essentially only supports key-
key joins [8].

In our system, since our goal is to guarantee differential
privacy relative to the authorization policy, we can support
foreign key joins as follows. We introduce the notion of a
stable transformation relative to an authorization policy.

Definition 4. A transformation T is c-stable relative to
authorization policy P if for any two data sets A and B
such that P(A) = P(B),

|T (A)⊕ T (B)| ≤ c× |A⊕B|

Example 2. If we have two tables R and S with R having
a foreign key referencing S, then the join R ✶ σauth(S)S
is 1-stable.

If we perform stable transformations relative to an autho-
rization policy before a differentially private aggregation,
then the overall computation is differentially private rela-
tive to the policy.

Theorem 5. Fix an authorization policy P. Let M pro-

vide �-differential privacy and let T be an arbitrary c-stable
transformation relative to P. The composite computation

M ◦ T provides �× c-differential privacy relative to P.

Proof. Fix data instances A and B with P(A) = P(B).
We have:

Pr[M(T (A)) ∈ S]

≤ Pr[M(T (B)) ∈ S]× exp(�× |T (A)⊕ T (B)|)
≤ Pr[M(T (B)) ∈ S]× exp(�× c× |A⊕B|)

We use Theorem 5 to extend the class of DPViews to
support foreign key joins as follows.

create noisy view NoisyJoin(agg1,...,aggn) as
(select scalarAgg(A1), ..., scalarAgg(An)
from R, S1, ..., Sk
where pJoin and pSelect)

In the above expression, the predicate pJoin captures the
join predicate and pSelect, additional selection predicates.
We require that each Si is joined via a foreign key lookup
from one of R, S1, . . . , Si−1 (the intuition behind the require-
ment is illustrated in Example 2).

We illustrate how the reference to NoisyJoin is rewrit-
ten when the user budget is not exhausted. We always en-
force the authorization on each of the Si. We decompose
the result of σpSelect(R ✶ σauth(S1)(S1) . . . ✶ σauth(Sk)(Sk))
into two parts. The authorized join result is the sub-
set σpSelect(σauth(R)(R) ✶ σauth(S1)(S1) . . . ✶ σauth(Sk)(Sk))
and the rest, i.e. σpSelect(σ¬auth(R)(R) ✶ σauth(S1)(S1) . . . ✶

σauth(Sk)(Sk)) is the unauthorized join result. We decom-
pose the join into the authorized subset and the unautho-
rized subset. An accurate aggregate is computed over the
authorized subset and a differentially private aggregate over
the unauthorized subset. The two aggregates are combined.
The rewriting for the case where there is only scalar ag-
gregate namely count and no predicates pSelect is shown
below.

count(σauth(R)(R) ✶ σauth(S1)(S1) . . . ✶ σauth(Sk)(Sk))+

noisyCount�(σ¬auth(R)(R) ✶ σauth(S1)(S1) . . . ✶ σauth(Sk)(Sk))

Again, it is not hard to see that the above rewriting guaran-
tees �-differential privacy relative to the authorization policy.

5.3.3 Incorporating Group By
Suppose that we wish to also incorporate grouping into the

class of queries that can define a DPView. Specifically we
consider the following expression that extends the DPView
NoisyJoin above with grouping columns g:

create noisy view NoisyGb(g,agg1,...,aggn) as
(select g, scalarAgg(A1), ..., scalarAgg(An)
from R, S1, ..., Sk
where pJoin and pSelect
group by g)

Intuitively, we can think of supporting group by by tak-
ing each distinct value (group) in the grouping columns and
running NoisyJoin with additional predicates to select the
given group. The first thing to note about this strategy is
that a user may not be authorized to see all the groups. So
we modify the strategy to only consider authorized groups
which are the distinct values in the grouping columns in the
authorized join result. Second, since the strategy invokes
NoisyJoin in succession, the privacy guarantee we get is
based on Theorem 3. However, since the groups are disjoint
we can do better as we show below.

Theorem 6. Fix an authorization policy P. Let Mi each

provide �-differential privacy relative to P. Let pi be ar-

bitrary disjoint predicates over the input domain. The se-

quence of Mi(σpi(D)) provides �-differential privacy relative

to P.

Proof. The proof is almost identical to the analogous
previously known result [8] — we only have the additional
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restriction of focusing on instances A and B with P(A) =
P(B).

We now describe how a reference to NoisyGb is rewritten
(when the budget is not exhausted.) The rewriting logically
invokes NoisyJoin for each authorized group with additional
predicates to select the group. However, Theorems 5 and 6
are used to decrement the user’s budget only once.

Note that our system is designed such that an unbounded
number of queries can be run. So long as the budget per-
mits, the rewriting invokes the unauthorized subset. But
after the budget is exhausted, we fall back to basic access
control mechanisms. Further, we also note that our seman-
tics can be achieved without any changes to the query execu-
tion engine merely by rewriting the reference to the DPView
suitably.

5.4 Integrating Parameters

We now sketch one possible manner in which the privacy
budget and noise parameters can be integrated into our sys-
tem. The privacy budget for DBMS users is set as part of
the policy specification and managed as a part of the user’s
metadata. The noise parameter is passed with each query
as a connection property. For application users, both the
privacy budget and the noise parameter reside in the user
application context [11].

5.5 Illustrative Example

We consider a simplified sales database extending the
Employee-Department database we have used earlier in
the paper. The sales database has the following ta-
bles — Sales(ProductID, EmployeeID, CustomerID,
SalesAmount), Employee(EmployeeID, ManagerID),
Product(ProductID, Category), Customer(CustomerID,
RegionID) and Region(RegionID, NationID).

The authorization policy lets managers access all records
in the Customer, Product and Region tables (note that the
Customer table in our example does not store sensitive cus-
tomer information) and the records of employees that are
direct reports and their corresponding sales records. Under
the above authorization policy, a manager can find the total
sales undertaken by each direct report per product through
the following query:

select E.EmployeeID, S.ProductID, sum(SalesAmount)
from Employee E, Sales S
where E.EmployeeID = S.EmployeeID
group by E.EmployeeID, S.ProductID

We note that the above query is rewritten first before exe-
cution to only reference the rows the manager is authorized
to see. Using the same query above, depending on which
manager logs in, we get different rewritten queries (which is
the point of supporting authorizations within the database
server). In this sub-section, we describe queries as issued by
the application noting that they would be rewritten by the
system before execution.

Suppose that in order to give a better sense of an em-
ployee’s sales we wish to compare them with the total per-
product sales. The above authorization policy does not
grant access to the total per-product sales. We can expose
the total per-product sales using the following noisy view.

create noisy view NoisyPerProductSales as
select S.ProductID, sum(SalesAmount) as TotalSales

from Sales S
group by S.ProductID

Each employee’s per-product sales can be compared with
the total per-product sales by issuing the following query:

select E.EmployeeID, S.ProductID, sum(SalesAmount),
min(NV.TotalSales)

from Employee E, Sales S, NoisyPerProductSales NV
where E.EmployeeID = S.EmployeeID and

S.ProductID = NV.ProductID
group by E.EmployeeID, S.ProductID

Again, just as with the authorization predicates,
NoisyPerProductSales is rewritten differently depend-
ing on which manager logs in. Thus the output of the query
also changes depending on the current user.

Now we consider a different analysis task where a manager
wishes to analyze the sales in her department grouped by
product category and by nation. Issuing the following query
accomplishes this task.

select R.NationID, P.Category, sum(SalesAmount)
from Product P, Sales S, Customer C, Region R
where P.ProductID = S.ProductID
and S.CustomerID = C.CustomerID
and C.RegionID = R.RegionID

group by R.NationID, P.Category

As in the previous case above, in order to compare the sales
from a given department with the overall sales while at the
same time preserving privacy, we can define the following
noisy view.

create noisy view NoisyPerProductPerRegionSales as
select P.Category, R.NationID,

sum(SalesAmount) as TotalSales
from Sales S, Product P, Customer C, Region R
where S.CustomerID = C.CustomerID
and C.RegionID = R.RegionID
and S.ProductID = P.ProductID

group by P.Category, R.NationID

The sales within the department and across all departments
can be compared by issuing the following query.

with DeptSales(NationID,Category,TotalSales) as
(

select R.NationID, P.Category, sum(SalesAmount)
from Product P, Sales S, Customer C, Region R
where P.ProductID = S.ProductID
and S.CustomerID = C.CustomerID
and C.RegionID = R.RegionID

group by R.NationID, P.Category
)
select N.Category, N.NationID,

N.TotalSales, D.TotalSales
from DeptSales D,

NoisyPerProductPerRegionSales N
where D.Category = N.Category
and D.NationID = N.NationID

5.6 Summary

The hybrid architecture we sketched above satisfies the
noisy view properties outlined in Section 3. We can reduce
to the functionality of PINQ using DPViews. On the other
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hand, if have only authorization predicates, we reduce to
standard access control mechanisms. Further, the examples
in Section 5.5 illustrate that we can combine access to au-
thorized and unauthorized portions of data in sophisticated
ways, joining them and aggregating them. This is only made
possible by integrating the mechanisms of access control and
differential privacy (specifically PINQ). In this way, we ob-
tain value beyond the sum of the individual parts. We have
also shown that our architecture, while seemingly ad-hoc is
in fact a principled approach to integrate differential privacy
primitives while preserving its privacy guarantees.

However, we also inherit the baggage associated with
existing differential privacy implementations. Therefore,
the utility of our framework for complex queries over real
datasets remains to be studied. We view our implementation
only as a first step in opening up a debate in our community
on how database systems can provide meaningful support to
address privacy concerns.

6. RELATED WORK

There has been considerable amount of previous work in
data privacy [3] and access control [2, 6, 11, 13]. However,
to the best of our knowledge, ours is the first paper that
studies how access control primitives and privacy preserving
mechanisms can be integrated within a database system in
a principled manner. The previous work that is most closely
related is the Airavat system [14] that combines access con-
trol primitives with differential privacy. However, Airavat
focuses on the cloud setting where the execution engine is
MapReduce. Further, the model of access control considered
is mandatory access control rather than discretionary access
control supported by the SQL standard and addressed in
this paper. Finally, in contrast with Airavat, we formally
analyze the privacy implications of combining access control
with differential privacy.

Other related work includes techniques for access control
over probabilistic data [12] where since the data is proba-
bilistic, the system may not be able to decide whether or
not a user has access to a tuple. This is addressed by re-
turning a perturbed tuple — the noise added is such that
when it is certain that the user has access, the noise added
is 0 and when it is certain that the user does not have access,
the value returned is random.

Recent work [7] has addressed setting privacy policies for
releasing information about search logs. The privacy policy
is implemented using PINQ for differential privacy by setting
different privacy budgets for different users. This work is
complementary to what we study in this paper.

7. CONCLUSIONS

Data privacy issues are increasingly becoming impor-
tant for database applications. However the current “black
and white” world of access control primitives supported by
database systems is clearly inadequate for supporting data
privacy. In this paper, we sketch an architecture for a hy-
brid system that enhances an authorization policy with the
abstraction of noisy views that encapsulate previously pro-
posed privacy mechanisms. Accessing data through a set of
views is natural for users of database systems and thus the
noisy views abstraction represents a natural progression of
the concept of authorization views.

We also discuss how we can implement noisy views based

on differentially private algorithms. A key advantage of the
proposed hybrid system is its flexibility. It can support
queries that refer to both the base tables and the differen-
tially private views thus resulting in a system that is more
powerful than using access control techniques or differential
privacy techniques in isolation. While combining authoriza-
tions and differentially private views in this manner seems
ad-hoc, we show that it is a principled way to integrate dif-
ferential privacy primitives with privacy guarantees.

However, our system also inherits some of the limitations
of state of the art differential privacy. Therefore, the util-
ity of our framework for complex queries over real datasets
remains to be studied. On the whole, we think of our pa-
per as a first step in initiating discussions on how database
systems can provide meaningful support to address privacy
concerns.
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