Consistency in a Stream Warehouse

Lukasz Golab and Theodore Johnson
AT&T Labs — Research
180 Park Avenue, Florham Park, NJ, USA 07932

Ilgolab@research.att.com, johnsont@research.att.com

ABSTRACT [1], and Truviso [10], have been applied to monitoring
. applications such as data centers [2], RFID [23], web complexes
A stream warehousés a Data Stream Management System [1], highway traffic [22], and wide-scale networks [14].
(DSMS) that stores a very long history, e.g. years or decades; or))
equivalently a data warehouse that is continuously loaded. AA DSMS normally monitors a nearly-instantaneous and ordered
stream warehouse enables queries that seamlessly range from redlata feed of, e.g., network packets [8], financial tickers or sensor
time alerting and diagnostics to long-term data mining. However, éasurements. However, a stream warehouse operates on longer
continuously loading data from many different and uncontrolled fime scales, and, instead of processing data from a localized
sources into a real-time stream warehouse introduces a newsOUrce, it receives a wide range of data feeds from disparate, far-
consistency problem: users want results in as timely a fashion adlUng, and uncontrolled sources. = For example, the Darkstar
possible, but “stable” results often require lengthy synchronization "€fwork management system [14] (built using DataDepot)
delays. In this paper we develop a theory of temporal consistency €C€ives more than 100 distinct data feeds, each of which collects
for stream warehouses that allows for multiple consistency levels.dat@ from a worldwide communications network using many
We show how to restrict query answers to a given consistencyd'fferem dissemination mechanlsms_. Th(_ese distinct feeds need to
level and we show how warehouse maintenance can be optimized® cross-correlated and analyzed into higher level data products
using knowledge of the consistency levels required by for use by network_ analysts. In such a widely distributed and
materialized views. heterogeneous environment, one can no longer assume that data
within a stream arrive in time-order (or nearly so), or that streams
are synchronized with each other. This leads to temporal
1. INTRODUCTION consistencyproblems: we want to load new data (and propagate
changes to the materialized views maintained by the warehouse)
about their operations and require real-time response for theirdS qwckly as possible, but *stable” results may require S'gf."f'ca”t
synchronization delays. (Note that the temporal consistency

maintenance. Examples include financial markets, tudied in_ thi th | o t tonal
communications networks, data center management, and vehiculafSSUes Studied in this paper are orthogonal 10 transactiona
onsistency issues that arise from multiple data writers and/or

road networks. Data Stream Management Systems (DSMSs) havé

been developed to provide real-time analysis and alerting of theséeaders')

and other data streams, typically by processing events in-memoryConsider a network monitoring system that collects performance
and over a short time window. However, users often want to measurements, such as router CPU utilization or the number of
perform longer-term analyses over large time windows on the datapackets forwarded, and various system logs. Suppose that an
streams, e.g. to determine the conditions that should raise alerts. alerting application generates an alarm whenever the CPU usage
of a router exceeds a supplied threshold. If a high-CPU-usage
record arrives, the application should not have to wait until all
temporally preceding data have arrived before taking action.
Similarly, a view containing all the routers that have generated at
least ten critical system log messages in any one-minute window
can be updated whenever the message count for a particular
router, call itr, reaches ten; we do not need to see data from other
outers, nor do we need to wait and see if any more messages
romr arrive in this window. On the other hand, suppose that we
want to maintain aggregated statistics for each time window. It
may be better to wait until all the expected measurements have
arrived before updating the statistics over the latest window, both
in terms of interpretability (aggregates computed on incomplete
This article is published under a Creative Commons License Agreement data may not be accurate) and update efficiency (we want to avoid
(http://creativecommons.org/licenses/by/3.0/), which permits distribution ante-computing expensive aggregates while data are still trickling
reproduction in any medium as well allowing derivative works, provided thain).

you attribute the original work to the author(s) and CIDR 2011.

Many real-world enterprises generate streams of information

While it is possible to build separate systems for either real-time
or long-term data analysis, a system which provides both
capabilities is more useful. The window of data used for queries
can seamlessly range from short term to very long term, making it
difficult to decide where to divide the systems. Furthermore,
historical data can provide a context for interpreting new data [2].
A stream warehousbridges the short-term vs. long-term gap by

loading data continuously in a streaming fashion and warehousing
them over a long time period (e.g. years). Stream warehous

systems, such as Moirae [2], latte [22], DataDepot [11], Everest

These types of problems become even more challenging in
5" Biennial Conference on Innovative Data Systems Research (CIDR ‘11) production stream warehouses that correlate a wide variety of
January 9-12, 2011, Asilomar, California, USA. highly disordered and asynchronous feeds and maintain complex

114

materialized view hierarchies. Such warehouses often supportgeneration in [13] implicity assumes that streams are
critical applications; examples from the networking domain synchronized).

include real-time network troubleshooting and anomaly detection
[14]. However, without an understanding of temporal data
consistency, we may not know how to trust the answers.

As mentioned, a stream warehouse faces more challenging
problems of disorder in its input streams. We have found the
following disorder problems within the Darkstar warehouse:
Motivated by our experiences with production stream warehouses,
we presentemporal consistencgnodels for a stream warehouse

that range from very weak to very strong, and we show how they|n the course of operating several DataDepot warehouses, we
can be tracked and used simultaneously. Given that warehousgoticed that any given package of data contains records with a
tables are typically partitioned by time, the key technical novelty range of timestamps. This behavior is not unexpected since data
is to reason about and to propagate consistency information at there gathered from world-wide network elements. We investigated
granularity of partitions. Since a significant part of the value of a this phenomenon by examining the data arrivals of several
stream warehouse is its ability to correlate disparate data sourceparkstar tables.

for the users, our models describe the state of the data in an
intuitive way that allows users to interpret real-time query results. We first examined arrivals for table C, which contains 5-minute
For instance, a partition that is guaranteed not to change is markegtatistics about router performance — a package normally arrives
“closed”, while one that may be updated with new data, but whoseOnce every 5 minutes. We found that 23 percent of the packages
existing data are guaranteed not to change, is marked “append(covering a 10-day period) contain some data for a previous 5-
only”. ~ Since warehouse maintenance involves propagatingMinute period, and sometimes for data up to an hour old (the
changes across view hierarchies, we also discuss disseminatingackages frequently arrive late also). In another table, T, loaded
consistency level information from base tables to materialized &t 1-minute intervals, every package except one contained records
views and vice versa. We show that stronger consistency levelgOr @ previous time period (observed over a 7-day interval). A
not only provide assurances for query results, but they can also bdhird table, S (loaded at 1-minute intervals), showed the greatest
used to avoid unnecessary computations. Finally, we discussdisorder: each package contained data for an average of 4.5

applications of our models to monitoridgta stream quality previous time periods. The degree of disorder changes over time,
as illustrated in Figure 1 which plots the number of time periods

with at least one record in any given package. We hypothesize

2. BACKGROUND AND MOTIVATION that the degree of disorder within a package is related to load on

A DSMS continuously ingests data from one or mbeéa feeds the data delivery system.

and processes a collection of long-running queries over these

feeds. Many sources can produce a data feed: a stream of Number of windows per package
measurements, log files delivered from an external source, a log
of updates to a transactional store, and so on. The feed regularly
presents gackageof records for ingest into the stream system.
The records in a package are stamped with the time of the
observation (or observation time interval), and also the package
itself is often timestamped. The set of timestamps in a package
are generally highly correlated with the package timestamp and
delivery time.

Data arrivein a smear over time

SRR U S —

Number of Windows
o

-+ - - =

Data feeds are usually append-only; i.e., records that have arrived & 2™ M
in the past are not deleted or modified in the future. For example,
a feed of network measurements may have a schema of the form o 100000 200000 300000 400000 500000 600000
(timestamp, router_id, avg_cpu_usageyith each record Time (seconds)

corresponding to the average CPU usage of the router with the
given router_id recorded at the given time(stamp). We may Figure1l. Number of timeperiodsin one packagefor S
receive a new package every five minutes, containing new CPU

usage measurements for each router. Here, data from oldbata sourcesare unsynchronized

packages (old measurements) are never deleted or modified.

However, in some applications, old packages may be revised andifferent data feeds use different collection and delivery
retransmitted. mechanisms, and therefore they tend to have different degrees of

currency. We considered three feeds, the previously mentioned C
When a package arrives in a DSMS, the conventional behavior isand T (containing router alerts), and a third feed WD (packet loss
to fully process the new records (modulo operator schedulingand delay measurements), and sampled the lateness of the most
policies [5]). Some exceptions occur:sart operator might recent data in each of these tables. On average, T was 6 minutes
reorder slightly disordered streams, and blocking operators suchpehind, C was 17 minutes behind, and WD was 47 minutes
as aggregation and outer join might delay some or all of their hehind. Again, we believe that the currency of these feeds changes

output until a punctuation [21] indicates end-of-window. according to the load on their data delivery system.
However, these mechanisms assume that streams are mostly-)
synchronized and mostly-ordered, so that buffering costs andlatearrivalsarecommon

processing delay times are small (the discussion of pU”CtuatiO”Significantly late arrivals are not common enough to readily
measure, but in our experience they occur often enough to be an

115

operational concern — corroborated by another recent study [15].non-overlapping range of the stored window of the data stream. A

Often the problem is a temporary failure of a component in the feed package may contain data for multiple partitions, as shown in

data delivery system. Occasionally, a portion of the source data isFigure 1. The storage of a high-volume stream may require

discovered to be corrupt and needs re-acquisition and reloading. additional partitioning dimensions, but we will not be concerned
with this complication in this paper.

Gi the | dat | d hiah disorder in th A data warehouse maintains a collectionnadterialized views
lven the large data volumes and hign disorder in the Sourcecomputed from the raw inputs to the warehouse. Materialized

streams of a stream \./vgr.ehouse, conyentlonal In-memory pUﬁer'ngviews are used to accelerate user queries by pre-computing their
techniques are prohibitively expensive [10]. Compounding the answers and to simplify data access by cleaning and de-

p;\oblem ?re comflefx wewl rtl.lerarchtles. kFor g;(ample, Flllgu:_e 2 normalizing tables. A stream warehouse typically has a large
Shows a fragment or a real-ime network monitoring application ., action of materialized views arranged as a Directed Acyclic

which searches for misbehaving routers, involving WD and other Graph (DAG). The DAG tracks data dependencies, e.g. that view

data (the full application has another 21 tables). The octagons arg; ig computed from streams A and B (Figure 2 shows a data flow
the base tables, while boxes identify tables that are often queriedDAG the reverse of a dependency DAG). A stream warehouse
These types of applications are too large to manage USING,150 tracks temporal dependencies, e.g. that data in V from 1:00 to
conventional means and too complex to be understood Wlthoutl_15 are computed from data in stream A from 1:00 to 1:15 and
consistency assurances. from data in B from 12:30 to 1:15 (as in Figure 3).

feld, V.ts which tends to increase over time. Further, we assume

(or apphcaﬂons) require access to router alerts (e.g., T) as S00N ag, o every table V is temporally partitioned, and that the partitions
possible, and need to correlate them with the most recent possmlgire identified by integer values so tht) is the {' partition of V.

router. performance r.eports (e.9., C). Other users (or OtherAssociated with V is a strictly increasirgartitioning function
materialized views) might need stable answers to queries ba‘sed‘o t,(t). Partitiont of V contains all and only those data in V such
these streams, even at the cost of a moderate synchronizatio at

delay.
pty(t) < V.ts < pt(t+1).

Base tables are loaded directly from a source stream (for example,
WU_RAW in Figure 2). Derived tables (materialized views) are
defined by a query over other base and derived tables (for
example, WU_R in Figure 2). We defigV) to be the set of
source tables of V, e.g. S(WU_R) = {WU, W_METADATA}.
We assume that all derived-table-defining queries exhibit
temporal locality (e.g., they may be defined over a sliding
window).

Let S be a table in S(V). Théwep(V(t),S) is the set of partitions

in S that supply data to V(t), andep(V(t)) is the set of all
partitions that supply data to V(t) regardless of the source table.
For example, suppose that in Figure 3, each partition represents 15
minutes of data, and that partition 20 corresponds to 1:00 through
1:15. Then Dep(V(20), B) = {B(20)} and Dep(V(20)) = {A(18),
A(19), A(20), B(20)}. When any of the partitions in Dep(V(20))
are updated, V(20) must also be updated (incrementally, if
possible, or by being re-computed from scratch).

Figure2. Dataflow in an application fragment

3. SYSTEM MODEL [17]18]19 [20]21]" [17]18]19 [20] 1] ®

This work was motivated by the practical problems encountered
by users of our DataDepot stream warehouse. We phrase the

system model in DataDepot terms, but the model applies to all of 1711819 |20 21| y
the stream warehouses we have seen (perhaps with a change of) o)
phrasing). Figure 3. Partition dependencies

A stream warehouse is characterized by streaming inputs, by

a
strong emphasis on the temporal nature of the data, and by4' CONSISTENCY MODELS

multiple levels of materialized views. To manage a long-term oy pasic notion of temporal consistency assigns one or more
store of a data stream, the stream is split into tempaditions markers to each temporal partition in a table. Consistency
(or panes [16], windows [4][10], etc.). Each temporal partition markers can be thought of as a generalization of punctuations,
stores data within a contiguous time range. The collection of gjce multiple consistency levels would be used in general.
temporal partitions of a stored stream comprises a complete ancge|ow, we propose two related but different notions of

116

consistency. The firsiquery consistencylefines properties of Let us consider an example set of inference rules using our set of
data in a partition that determine if those data can be used tahree consistency levels. Let V be a derived table and let V(t) be
answer a query with a desired consistency level. The secondpne of its partitions.

update consistencypropagates table consistency requirements

and is used to optimize the processing of updates to a streansguery Consistency Inference

warehouse. « Let RQD(V), a subset of S(V), be the non-empty set of tables
referenced by “required” range variables, i.e., those used for

4.1 Query Consistency inner-join or intersection.

Our definition of query consistency starts at the base tables. For * If RQD(V) is non-empty, the@pen(V(t)) if for each S in

the purposes of this discussion, we use a minimal set of three RQD(V), there is a S(d) in Dep(V(t),S) such that

levels of consistency, but many more are desirable in practice. Open(S(d)).

We choose this particular set of three levels because they are . ; : ; :
natural and they form a simple hierarchy, but they also illustrate g;)((?\?(%)sﬁcir?ﬁgt,(;giﬁg?g)(;/ (1)) if there is a S(d) in
some interesting aspects of query consistency. However, an '

actual implementation of a warehouse would likely use a more « Closed(V(t)) if Closed(S(d)) for each S(d) in Dep(V(t)).

refined set of consistency levels, as we will discuss in Section 5.))
» Complete(V(t)) if Complete(S(d)) for each S(d) in Dep(V(t)).
Let B be a base table and let B(d) be one of its partitions. Then: i)
The Closed and Complete consistency levels use the basic
» Open(B(d)) if data exist or might exist in B(d). inference rule, but by analyzing the query that defines
materialized view V we can avoid labeling a partition V(t) as

Open when no data can be in it. Section 5 contains additional
examples of query-dependent consistency inference rules.

 Closed(B(d)) if we do not expect any more updates to B(d)
according to a supplied definition of expectation; e.g., that
data can be at most 15 minutes late.

The inference that a partition of a derived table has a particular

consistency level is computed top-down (from source to

dependent tables). Normally, this inference would be performed

The notions of Open and Closed consistency are the naturaPt view maintenance time by comparing source with destination

minimal and maximal definiions. Complete consistency is Consistency metadata. This maintenance can be performed

stronger, and it is motivated by DataDepot user requirements:globally, as with, e.g., Oracle [9], or piecemeal, as with
only perform analysis on complete data partitions becauseDataDepot [11]. Note that the consistency of a partition can
otherwise one may get misleading results (however, Closedchange even though the partition does not need to be updated,
partitions are often acceptable to users). Of course, the vagarie§-9.. due to a base table partition becoming Closed as well as
of the raw data sources may make it difficult to precisely establish Open.

when a partition has achieved one of these levels of consistency

this is similar to the problem of generating punctuations.

However, several types of inference are possible:

» Complete(B(d)) if Closed(B(d)) and all expected data have
arrived (i.e., no data are permanently lost).

For example, consider table V computed by an inner join of A and
B as shown in Figure 4. In this figure, we represent Open,
Closed, and Complete consistency markers by O, CIl, and CM,
« If there is at least one record in a partition, we mark it as respectively, and we omit an O marker if a Cl marker exists.
Open. However, a partition might have Open consistency Partition 1 of V can be inferred to have Closed consistency, since
even though it is empty: no data might ever be generated forPoth sources are Closed, but not Complete consistency; however

it. We might mark an empty base table partition as Open if Partition 2 can be inferred to be Complete. Partition 3 is Open
we can infer that some data could have arrived, e.g. if aPecause both A and B can contribute an Open (or Closed)

temporally later partition is non-empty. partition. Partition 4 cannot even be inferred to be Open.

We might know that exactly five packages provide data for a Y Y
partition and that packages rarely arrive more than one hour a ila o M al cl B
late. If so, we can mark a partition as both Closed and 2 3 4 a1 2 310 4

Complete if all five packages have arrived. If only four have \M/
arrived, but an hour has passed since the expected arrival time

of the fifth one, we would only mark the partition as Closed. c™m \Yj
If the fifth package never arrives, this partition never becomes a qlc 5|0 3 4
Complete.

The consistency of a partition of a derived table is determined by Figure4. Query consistency inference

the consistency of its source partitions. Each level of consistency

has its own inference rules, and inference is performed for eachQuery consistency markers ensure the consistency of query
consistency level separately. The most basic inference rule is agesults. In Darkstar applications, ensuring temporal consistency is
follows: for consistency level C, infer C(V(t)) if C(S(d)) for each critical, but very difficult without warehouse support.
S(d) in Dep(V(t)) However, by analyzing the query that defines a Applications such as RouterMiner and G-RCA [14] enable real-
materialized view we can sometimes create a more accuratdime network troubleshooting by correlating data from feeds
inference rule. including C, S, T, WD and many others; however, each of these

117

feeds produces base tables with widely varying timeliness (recallmeasurements arrive, we will incorrectly assume that all of these

Section 2). measurements are missing and we may generate false alarms.
. . . Instead, it is more appropriate to use Closed consistency for WLR,

An outline of the procedure for ensuring the con5|stency_of a with partitions closing at each 5-minute boundary. Note that

ition d denci A b d with) SComplete consistency may not be appropriate for this application
partition dependencies. query can be answered with a giVeNginea \we do not want to delay the generation of network alarms
level of consistency if that consistency level can be inferred from£

the set of all source partitions accessed by the query. A query tha] c:)rrg;?e?: a that have already arrived, even if a partition is not yet
cannot be answered with the desired consistency can have its '

temporal range trimmed (or its consistency relaxed). For .

example, if we are performing a selection on table V in Figure 4 4.2 Update Consistency

and we require Complete consistency, then the inference rule

state that the query can only be run on the data in partition 2. Sn addition to understanding data semantics and query results,

another use for consistency is to minimize the number of base
While the proposed mechanism for ensuring query consistency istable and view updates in a warehouse. For an example drawn
general, it can be confusing to users. A convenient way tofrom experience, consider a derived table V defined by an
summarize the state of a (base or derived) tablec@naistency aggregation query which summarizes a real-time table S with
line. The C-consistency line of table V is the maximum value of once-per-5-minutes updates (with 5-minute partitions) into a daily
pt such that all partitions V(tf<pt, have C(V(t)). A query that grand-total summary (with per-day partitions). If V is updated
references tables ;Sthrough § can be answered with C- every time S is updated, V would be updated about 288 times
consistency if it is restricted to accessing partitions ;0&tSor (1440 minutes in a day / 5) before the day is closed out. If we are
below the C-consistency line of #r each i=1,..,n. In previous interested in the grand total rather than the running sum, this
literature, we have referred to the Open-consistency line as theprocedure for updating V is wasteful. Here, a partition of V is
leading edgeof a table, and the Closed-consistency line as the only useful if it has Closed consistency, so we should only
trailing edge[11]. A Complete-consistency line is likely of littte ~ compute it when it can be safely Closed.

value since some partitions might permanently fail to become

The update consistencgf a table is the minimal consistency
Complete.

required by queries on it or its dependent tables, and determines
For example, the Open-line (leading edge) of table V in Figure 4 when to refresh its partition(s). A partition of a table is computed
is partition 3, while the Closed-line (trailing edge) of V is partition only when it can be inferred to have a query consistency matching
2. We cannot define a Complete line since partition 1 is not the desired update consistency.

Complete. Naively, we might require the warehouse administrator to mark

each table with its desired update consistency. However, any
4.1.1 Case Study given table may supply data to many derived tables, each with
differing types of update consistency. We need an algorithm for
determining what kind of update consistency table S should
enforce.

We now give an example of how applications can choose and
exploit query consistency guarantees. A fragment of one of the
Darkstar applications was shown in Figure 2. This application
processes packet delay and packet loss measurements to come Warthermore, not every view is primarily intended for output. A
with network alarm events. These measurements are takertable might be materialized to simplify or accelerate the
roughly every five minutes, one measurement for each link in the materialization of another table, or it might be a partial result
network. A loss or delay alarm record is produced for a given link shared by several tables (see, e.g., the application fragment in
if there are four or more consecutive loss or delay measurementskigure 2). We assume that output tables are marked as such (all
respectively, that exceed a specified threshold. If a measuremenieaf-level materialized views are output tables). A table can be
for a given link is missing in a 5-minute window, it is considered marked with one of the following labels:

to have exceeded the threshold for the purposes of alarm
generation. In Figure 2, WLR is the materialized view that * Prefer_Open: a table that does not have to reflect the most

contains loss alarm records, each record containing a link id, the ~ fecent data, but one whose partitions can be easily updated (in
start and end times of the alarm, and the average packet loss and @n incremental manner) if necessary; engonotonicviews
delay during the alarm interval. The size of each WLR partition s~ Such as selections and transformations of one other table.

five minutes, which corresponds to the frequency of the
underlying data feeds. The ovals in Figure 2 correspond to
intermediate views that implement the application logic (e.g.,
selecting measurements that exceed the threshold, computing the « Prefer_Closed: Tables whose partitions are expensive to re-
starting point of each alarm event, computing alarm statistics, compute, such as joins and complex aggregation (depending
etc.). To complete the application, a Web-based front end on the incremental maintenance strategy).

displays the current and historical alarms by periodically querying]) .)
the WLR table. » Prefer_Complete: a table whose output is only meaningful if

the input is complete.

* Require_Open: a real-time table in which any possible data
must be provided as soon as possible.

Since this is a real-time alerting application, one may argue that) _
WLR should have Open consistency; i.e., it should be loaded WithAII.output tables need to be marked with these _|r]|t|al labels,
all the available data at all times. However, the problem is thatWhich may be more effort than the warehouse administrator cares

missing measurements are assumed to have exceeded th@ €xPend. By default, selection and union views may be marked
threshold. Thus, if we attempt to update WLR before the latest Prefer_Open because they can be very easily updated. Join and

118

aggregation views may be marked Prefer_Closed since it is more4 2.1 Experimental Evaluation
efficient to perform batch updates to them rather than
continuously updating them whenever new data are available (orT0 see the potential performance benefit of using update
because users may not be interested in partial aggregates). Weonsistency, we collected the number of updates performed on
note that Prefer_Open is a “don’t care” type of condition. tables WU_RAW, WD_RAW, and WLR in Figure 1, over a 10

] o)] day, 18+ hour period. WU_RAW and WD_RAW (are supposed
The algorithm for determining update consistency works in a to) receive updates every 15 minutes; therefore we expect 1033
reverse breadth-first search (BFS) of the data flow DAG, starting ypdates to these tables during the observation period.
from the leaf-level views and working to the roots (base tables).\yv METADATA is another input, but it receives updates only
When a table T is selected for processing, all of its dependentonce per day, so we will ignore it in our analysis.
tables have received their final marking. To mark table T, we
follow a resolution procedure. Let M be the set of dependent The implementation of DataDepot that we measured did not
table markings, along with the marking of table T, if any (internal- incorporate update consistency. The only update scheduling
use tables might not be marked). options available werenmediate(update a table whenever one of

))) its sources has been updated) agmefiodic (e.g. every 15

The three consistency levels we are using form a hierarchy:minutes). Since the W application is real-time critical, we used
Complete implies Closed, and Closed implies Open. The generaimmediate scheduling to minimize data latency. The extensive
resolution procedure is to choose the lowest level of consistencyyse of joins in this application suggests that inmediate updates are
in M, with the “don’t care” consistency level as a fallback. |ikely to be inefficient, since one will often perform an (inner) join
Therefore our update consistency resolution procedure is simpleypdate when data from only one range variable is available.
and produces a single result. There is one complication: it is\yithout an update consistency analysis, however, the warehouse
||ke|y that not all base table partitions will ever be labeled has no basis fonot performing an update when data from on|y
Complete, and therefore we should use Complete updatepne range variable is available, since the join might be an outer
consistency only if all dependent tables use Complete updatejoin, and which source table supplies the outer join range variable

consistency. is not clear.
Update Consistency Resolution: During the observation period, there were 1364 updates to
1. If Require_Open is in M, mark T as Require_Open WU _RAW and 1359 to WD _RAW. The excess over the

expected 1033 updates are due to late arrivals of some of the
packages that comprise the data in a partition (recall the
discussion in Section 2). Under Open update consistency, the
3. Else, if all labels in M are Prefer_Complete, mark T as number of updates to WLR should be 1033 plus one for each
Prefer_Complete excess update to one of the RAW tables, for a total of 1690
updates. We observed 4702 updates to WLR: 3012 unnecessary
updates. The use of update consistency clearly has the potential to

Tables marked Require_Open or Prefer_Open use Open updat@e a significant optimization since we could reduce the number of
consistency, while tables marked Prefer Closed (resp. updates to WLR by 64 percent. If we used Closed consistency,
Prefer Complete) use Closed (resp. Complete) updateWe could reduce the number of updates by 78 percent.

consistency.
Consider the example illustrated in Figure 5. The leaf tables (V, 5. EXTENSIONS

W, X, Y) are all output tables, indicated by a rectangle, with pre- Our framework for Computing and using query and update
assigned update consistency levels of (Require_Open,consistency is general and can be extended to additional
Prefer_Complete, Prefer_Closed, Prefer_Open) respectively.consistency levels, as long as one can produce safe inference
These tables are considered first in the reverse BFS search of thgjes.

DAG. When one of these tables is processed, its own label is the

only entry in M, so each table in (V, W, X, Y) is assigned its As we discussed in Section 4, determining the consistency level of
preferred update consistency. Non-output tables (A, B, C) are@ base table partition is a matter of guesswork. Closed partitions
processed next. When one of these tables is processed, thare generally not really closed since very late data might arrive,
markings of its successor tables are the entries in M. ForSources might provide revisions to previously loaded data (*Sorry,
example, when B is processed the entries in M are We sent you garbage”), and so on. Thus, it may be useful to

(Prefer_Complete, Prefer_Closed) so the resolution procedureProvide different levels of closed-ness according to different
marks B as Prefer_Closed. definitions. For example, WeakClosed(V(t)) might mean that the

data are probably loaded and stable enough for queries, while
StrongClosed(V(t)) might mean that we are certain enough that no
more data will arrive and that we will refuse to process revisions.
The definition of Closed in Section 4.1 corresponds to
WeakClosed here.

2. Else, if some label in M is Prefer_Closed, mark T as
Prefer_Closed

4. Else, mark T as Prefer_Open.

Prefer_Closed

.>
Ih

Prefer_Closed

Require_Open

v

Require_Open |W| Prefer_CompIete| X| Prefer_Closed |Y

Prefer_Open | If we have reasonably accurate and stable statistics about late
arrivals, we can associate specific time-out values with various
levels of closed-ness. For instance, we may know that revisions
Figure5. Update consistency inference and updates mostly occur within five minutes of the expected
partition closing time, and very few occur an hour later. A similar

119

example is X-Percent-Closed(V(t)), which indicates that X e.g., Complete(V(t)) => Closed(V(t)) => Open(V(t)). However, a
percent of the data will not change in the future. This consistencycomplex collection of consistency levels is likely to have many
marker is motivated by nearly-append-only data feeds that weincomparable definitions. For example, from WeakClosed(V(t))
have observed in the Darkstar warehouse, which are mostly stableve cannot infer 100-Percent-Full(V(t)), nor vice versa. In this
except for occasional revisions. Finally, different levels of section we show how to resolve the update consistency of a table
completeness, such as X-Percent-Full(V(t)) may also be useful ---in a general setting.

the warehouse may maintain summary views whose results arq_

acceptable as long as they summarize a sufficient fraction of the et Cn be the set_ of consi_stency classes available to the
inputp 9 ysu 'z umet I warehouse. We define a predic&eonger(C1,C2), C1 and C2

in Cn, if C1(V(t)) => C2(V(t)). We assume that the pair (Cn,
The above types of consistency levels may be used to quantifyStronger) forms a directed acyclic graph, Gc, that includes all
and monitor data quality in a stream warehouse. For example, iftransitive edges.

the number of packages per partition is a fixed constant, we can
b ges per p Consistency classes such as Closed, in which some partitions

track multiple X-Percent Closed and Full consistency lines for ~: i)
various values of X in order to understand the extent of missing might never reach t_h(_e_spemfled level .Of consstency,_lead us to
make additional definitions. For consistency level C in Cn, we

and delayed data. Such consistency lines may also be useful for, . : .
- ; . _defineLinear(C) if C(V(t)) => C(V(t-k)) for 0 < k < t. We also
monitoring and debugging the warehouse update propagatlonchoose a default consistency leveleault in Cn, to be the

algorithm. For example, if all the base tables are full, but recent dat st level o b dif th dat ist
derived table partitions are only 25 percent full, or just open, then update consistency level 1o be used It the update consistency
esolution procedure returns an empty result.

perhaps the warehouse is spending too much time trying to keeﬂ
up with the raw inputs rather than propagating updates throughas in Section 4.2, let M be the set of dependent table markings,

materialized views. We hope to report on a visual data quality along with the marking of table V. LBtep the set of children of
tool based on consistency lines in future work. T in the data flow DAG. Then:

Conventionally defined punctuations allow for group-wise Update Consistency Resolution with hierarchies
processing, i.e., an assurance that all data within a group have
arrived. Analogously, in some cases we might be able to provide 1. Mark a node C in Cn if

group-wise consistency guarantees if we know that, e.g., all data a. Linear(C), and Cin M.
from routers in the European region has arrived while we are still b. Not Linear(C), C in M, and for each D in Dep, the
waiting for data from Southeast Asia routers. Propagating group- update consistency of D is C.

wise punctuation would require a more sophisticated analysis of))
the queries that define materialized views, e.g. that an aggregation 2- Let U be the marked nodes {C1} in Cn such that there is

query groups on the region column. no C2in Cn such that Stronger(C1,C2).

If we are willing to make increasingly detailed analyses of the 3. IfUis non-empty

queries that define tables, we can obtain a more refined and less a. ReturnU

restrictive set of consistency levels. Three additional types of b. Else return {Cefaul}

consistency are: Let U(V) be the set of update consistency levels returned by the

« NoNewRecords: no records will be added to the partition in update cpnsistenc_y resolutio_n procedure. Then a partition V(t)_ is
the future, but some existing records may be removed (thisupdated if we can infer consistency level Cu(V(T)) for some Cu in

may happen in views with negation). U(v).
« NoFiddChange(K,F): If a record with key K exists in the We now present examples to illustrate update consistency

artition, the value of fields K union F will not change in the inference —with multiple ~hierarchies. ~ Suppose that
?utulr;. val ! un w ge! Cn={C1,...,C7}, and neither C5 nor C7 are linear (which we note

with the double lined circle). Edges imply the Stronger relation
* NoDeletedRecords: no records will be deleted from this (e.g. Stronger(C5,C3)), and we have removed transitive edges for
partition in the future, but new records may be added (this clarity. In Figure 6, M = {C2, C3, C6}, so the result is that U =
occurs in monotonic views). {C3, C3}. In Figure 7, M = {C5, C4}. However, not every S in

e . Dep has update consistency C5 (as witnessed by the C4 marking},
A full description of how to analyze queries to apply these ,,q yherefore we do not use C5 in the resolution procedure.
consistency levels is lengthy and detailed. However, we outIine-l-herefore U = {C4}.

one type of query as an example. Suppose that table V is

computed by outer-joining B to A, and the join predicate is from a

foreign key on A to a primary key on B. Then NoNewRecords(V) 6. RELATED WORK

depends on NoNewRecords(A) and NoFieldChange(A} only, not The type of consistency we discuss in this paper relates to

on table B. temporal consistencyather than transactional consistency. Data
. . warehouses often use locking [9] or multi-version concurrency

5.1 Update Consistency in the Presence of control [11][19] for the latter. However the method for

Multiple Hierarchies implementing transactional consistency is orthogonal to the

concerns of this paper.
The discussion of update consistency resolution in Section 4.2
assumes that the collection of consistency levels form a hierarchy,

120

@

Figure 6. Update consistency resolution (a)

Figure 7. Update consistency resolution (b)

Materialized view maintenancén a data warehouse has
extensive literature; we summarigeme key points belc. The
notion of temporal consistendg a data warehou is generally
taken to mean some type stfong consistenc [25], e.g., that all
materialized views are sourced from the same data, gen
meaning that all views are uated in a single global pass. Wt
some work has been done to allow for multiple consistency
[6][24] using different consistency policiee.g., immediate vs.
deferred updatgsany table belongs to a single zone and all te
in a zone are updated togethéEven modern data warehous
systems are oriented towards batch updfgE The Real-Time
community often defines a database as being cont if it
contains data representing a recent timierival, and mutuall
consistent if tables represehe same time interva[12].

Temporal databases often use Hiemporal mod¢ [20]. Each
record in a bitemporal database hasahd time, which refers to
the time interval during whichan event occurred, and

transaction time which refers to the system clock time w a
record is the most recent description of an event. Howeve
bitemporal model is not useful for much of the data in a st
warehouse (temporal metadathlés are a notable exceptiorhe
analyst is not concerned about transaction time, recn event
feeds generally have many often conflicting timestamps

sequence numbers, abilemporal databases do not enable up
consistency.

Conventional DSMSausually assume that data in-order or
nearly so, and they manage disorgrsortin¢ or by punctuations

121

and a limited degree of “owdf-order” processing [17]. Query
operators can be assumed to have the most recent dat
consistency becomes a nmsu¢ (but see [3], which manages
stream consistency using revisic. We refer the interested
reader to the more detailed discussion in Sectior [15].

Concepts similar to Closed msistency were discussed[3], but
that work assumed specific tr-temporal data model and focused
on handling revisions. Ouwponsistency models only assume 1
each record has a timestamp whose value tends to increas
time, and they are oriented towards userust in query answers
and eficient warehouse maintenan

Another interesting comparison between the two stream
warehouse systems whose consistency management ha
most fully described: DataDepot (in this paper ar [11]), and
Truviso [10][15] These two systems have approached st
warehousing from different angles: DataDepadds stream
processing to a conventional data warehouse, while Truvisao
warehousing capabilities to a stream sys

Truviso allows stream queries to reference conventional dat
tables, which can be updated during stream processiruviso
uses window consistency7] for these types of queries: the
processing of stream S on window w has -consistency on
table T during the procsmg of w. To hndle late-arriving data,
Truviso computes window resibns [15], which can be thought of
as the increments for setfaintaining view [18].

The consistency mechanisms described in this paper and
described for Truviso are orthogonal. DataDepot could be
from window consistency (currently it uses temporal mete
tables such as W_METADATA inFigure 2). The window
revisions are an optimized method for performing v
maintenance, as compared to DataDepot's default of recomj
partitions affected by new data (Truviso falls back to recomp!
affected windows for views that are non -maintaining [15]).
Thus, the consistency mechanidescribed in this paper applies
to both systems.

7. CONCLUSIONSAND FUTURE WORK

We proposedmechanisms for managinand exploiting the
consistency of materialized views in a stream warehouse.
first, query consistengypropagees consistency properties from
base tables tamaterialized view, and provides consistency
guarantees of query resultsThe secondupdate consistency
propagates table cesistency requirements fronmaterialized
views to base tables, andused to optimize the managent of a
stream warehouse. We focusec a most basic three types of
consistencyOpen, Closed, anComplete; however, as discussed
in Section 5, many more usé consistency definitionccan fit
within our framework.

There are several issues not fully ressed in this paper. One
issue is the handling of verate data, e.g. data that arrive long
after the base table partitions have been marked Closed.
partitions, and all dependent partitions in dependent tables,

to be recomputed, but whatttee best way to handle the revisic

to the consistency markings? We have proposed the “ti-
edge line” as a convenieway to summarize stable d: but late
arrivals poke holes in this line.

Another issue which is not fully addressed is the prang of
query-specific consistency ggerties. Our bas models make

some use of query-specific handling, e.g. inner-join vs. outer-join [14] C. Kalmanek, Z. Ge, S. Lee, C. Lund, D. Pei, J. S. Seidel, K.
range variables. However, query-specific consistency inference Van der Merwe, and J. Yates, Darkstar: Using Exploratory
can become arbitrarily complex; experience will determine Data Mining to Raise the Bar on Network Reliability and
whether the complexity produces a tangible benefit. PerformanceProc. of DRCN 2009

All the examples in this paper assumed that recent data may bél5] S. Krishnamurthy, M. Franklin, J. Davis, D. Farina, P.
suspect, but they eventually stabilize over time. We are also ~ Golovko, A. Li, and N. Thombre, Continuous analytics over
interested in applying our consistency framework to data that discontinuous streamByoc. of SIGMOD 201,01081-1092.

begin as “exact” when loaded into the warehouse and then[16] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. Tucker, No

“decay” or lose accuracy over time. Examples include location pane, no gain: efficient evaluation of sliding-window
data periodically collected from moving objects, and sensor aggregates over data strea®&GMOD Record4(1): 39-44
measurements. (2005).

[17] J. Li, K. Tufte, V. Shkapenyuk, V. Papadimos, T. Johnson,
8. REFERENCES and D. Maier, Out-of-order processing: a new architecture

[1] M. Ahuja, C. C. Chen, R.Gottapu, J. Hallmann, W. Hasan, R. for high-performance stream systey.DB1(1): 274-288

Johnson, M. Kozyrczak, R. Pabbati, N. Pandit, S. Pokuri, (2008)‘_ _ _
and K. Uppala, Peta-scale data warehousing at YaRomd, [18] I. Mumick, D. Quass, and B. Mumick, Maintenance of Data
of SIGMOD 2009855-862. Cubes and Summary Tables in a Wareholssg. of
[2] M. Balazinska, Y. Kwon, N. Kuchta, and D. Lee, Moirae: SIGMOD 1997100'_111' _ _
History-Enhanced Monitoring?roc. of CIDR 2007275- [19] D. Quass and J. Widom. On-line warehouse view
286. maintenanceProc. of SIGMOD 1997393-404.
[3] R.Barga, J. Goldstein, M. Ali, and M. Hong, Consistent [20] R.T. Snodgrass. The TSQL2 Temporal Query Language,
Streaming Through Time: A Vision for Event Stream Kluwer 1995.
ProcessingProc. of CIDR 2007363-374. [21] P. Tucker, D. Maier, T. Sheard, and L. Fegaras, Exploiting
[4] I. Botan, R. Derekhshan, N. Dindar, L. Haas, R. Miller, and Punctuation Semantics in Continuous Data Stre@itBE
N. Tatbul. SECRET: A Model for Analysis of the Execution 15(3): 555-568 (2003).
Semantics of Stream Processing SysteféLDB3(1):232- [22] K. Tufte, J. Li, D. Maier, V. Papadimos, R. Bertini, and J.
243 (2010) Rucker, Travel time estimation using NiagaraST and latte,
[5] R. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Proc. of SIGMOD 200,71091-1093.
Cherniack, and M. Stonebraker, Operator Scheduling in a [23] E. Welbourne, N. Khoussainova, J. Letchner, Y. Li, M.
Data Stream Manage®roc. of VLDB 2003838-849. Balazinska, G. Borriello, and D. Suciu, Cascadia: a system
[6] L. Colby, A. Kawaguchi, D. Lieuwen, I. S. Mumick, and K. for specifying, detecting, and managing RFID eveRtec.
Ross, Supporting Multiple View Maintenance Policies)c. of MobiSys 2008281-294.
of SIGMOD 1997405-416. [24] Y. Zhuge, H. Garcia-Molina, and J. Wiener, Multiple View
[7] N. Conway, Transactions and Data Stream Processing, Consistency for Data Warehousifyoc. of ICDE 1997
http://neilconway.org/docs/thesis/pdf, April 2008. 289-300.
[8] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk, [25] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom,
Gigascope: A Stream Database for Network Applications, View Maintenance in a Warehousing Environmérgc. of
Proc. of SIGMOD 2003%47-651. SIGMOD 1995316-327.

[9] N. Folkert, A. Gupta, A. Witkowski, S. Subramanian, S.
Bellamkonda, S. Shankar, T. Bozkaya, and L. Sheng,
Optimizing Refresh of a Set of Materialized Viewsoc. of
VLDB 2005 1043-1054.

[10] M. Franklin, S. Krishnamurthy, N. Conway, A. Li, A.
Russakovsky, and N. Thombre, Continuous Analytics:
Rethinking Query Processing in a Network-Effect World,
Proc. of CIDR 2009

[11] L. Golab, T. Johnson, J. Seidel, and V. Shkapenyuk, Stream
warehousing with DataDepd®roc. of SIGMOD 2009847-
854.

[12] A.K. Jha, M. Xiong, and K. Ramamritham. Mutual
Consistency in Real-Time Databas&soc. of the 2% IEEE
Real Time Systems Symposium (RTSS) 2386343

[13] T. Johnson, S. Muthukrishnan, V. Shkapenyuk, and O.
Spatscheck, A Heartbeat Mechanism and Its Application in
GigascopeProc. of VLDB 20051079-1088.

122

