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ABSTRACT

Data management is becoming increasingly social. We ob-
serve a new form of information in such collaborative sce-
narios, where users contribute and reuse information, which
resides neither in the base data nor in the schema infor-
mation. This “superimposed structure” derives partly from
interaction within the community, and partly from the re-
combination of existing data. We argue that this triad of
data, schema, and higher-order structure requires new data
abstractions that — at the same time — must efficiently scale
to very large community databases. In addition, data gen-
erated by the community exposes four characteristics that
make scalability especially difficult: (z) inconsistency, as dif-
ferent users or applications have or require partially overlap-
ping and contradicting views; (i7) non-monotonicity, as new
information may be able to revoke previous information al-
ready built upon; (iii) uncertainty, as both user intent and
rankings are generally uncertain; and (iv) provenance, as
content contributors want to track their data, and “content
re-users” evaluate their trust. We show promising scalable
solutions to two of these problems, and illustrate the gen-
eral data management challenges with a seemingly simple
example from community e-learning (“ce-learning”).

1. A VISION: MASSIVE COMMUNITY
E-LEARNING WITH PAIRSPACE

We will argue that management of collections of com-
munity data requires a new abstraction that does not fit
well in the common dichotomy of data and schema informa-
tion. We illustrate this idea with the vision of a massive on-
line question-answer learning community of users, grouped
around a hypothetical tool we refer to as PAIRSPACE. We
prefer to keep the overall setup simple. This is a concrete
community data management scenario that illustrates the
main issues in this paper, while at the same time, seems to
have a simple relational implementation. Note that the un-
derlying challenges naturally extend to more complex and
general community content management scenarios.
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Figure 1: Spaced repetition with flashcard learning:
Repetition intervals increase for subsequent boxes.

incorrect

PAIRSPACE is a huge shared repository of learning nuggets
organized into question-answer (Q&A) pairs that combines
(a) flashcard learning with (b) spaced repetition and (c¢) a
community built around it. Flashcards are sets of cards
with a question on one side and an answer on the other.
These cards are used as a learning drill to aid memorization
of learning material through what is called “active recall’:”
given a question, one produces the answer. Furthermore,
those Q& A pairs are usually grouped into collections of a
similar nature, i.e. meaningful learning units. Examples are
the vocabularies of one lesson in a high-school book, or the
standardized questions to pass the US driving license in the
State of Washington. Almost any cognitive subject can be
translated into such a Q&A format?.

Spaced repetition is a learning technique with increasing
intervals of time between subsequent reviews of learned ma-
terial. Items to memorize are entered into PAIRSPACE as
Q&A pairs (virtual flashcards). When a pair is due to be
reviewed, the question is displayed, the user attempts to an-
swer the question, and — after seeing the answer — decides
whether he answered it correctly or not. If he succeeds, then
the pair gets sent to the next box, if he fails it gets sent back
to the first box. Each subsequent box has a longer period
of time before pairs are revisited 3. Imagine a daily

1 . . . . . .
In active recall, pieces of information are actively retrieved from
memory as opposed to passive review. See |10] for a recent discussion.

2 Further examples are: general cultural facts (such as world countries
and their capitals), competition results for sports fans (e.g., Who won
the 2010 World Cup?), film facts for movie buffs (e.g., Who played
William of Baskerville in “The name of the rose” of 19867), often asked
terms during GRE and their synonyms, important paragraphs or cases
in law, details on the periodic table in chemistry, multiplication tables
in mathematics, names of bones and their location in the human body
for medical students, basic formulae in any science, or lists of common
abbrevlatlon% in computer science (e.g., What does MVD stand for?).

Thc idea of spaced repetition traces back to the early 1930s, but
only became later widely know as Pimsleur’s graduated-interval recall
|15], or “Leitner system”, or “Ebbinghaus Forgetting Curve”. While
not widely popular in the USA, flashcard learning is hugely popu-
lar in Europe with several hundred, mostly offline flashcard programs
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morning routine in which a user repeats the learning nuggets
that are due that day as suggested by the system.

The third aspect is that those collections of pairs can be
shared, re-used, and even re-combined. We envision one
centralized and massive repository of Q&A pairs for all dis-
ciplines, languages and kinds of human knowledge. This is
the one central place (with obvious positive externalities)
where learners go for repetitive learning needs to find rele-
vant collections of information nuggets, to upload or com-
bine pairs into new collections, and to train regularly. Major
value of the stored information lies not just in the individual
Q&A pairs (e.g., the translation of English “go” into Spanish
“ir” can be easily found in any free online dictionary), but
in the collection of these information nuggets into mean-
ingful units of information whose mastery together allow
the learner to acquire a certain skill level (e.g., passing the
knowledge-based driving test). And this value is important
to leverage when helping users find the right pairs, collec-
tions, or even other users with similar interests.

EXAMPLE 1  (PAIRSPACE SCENARIO). Alice is learning
Spanish. She uplods QEA pairs of her first lesson. Bob is
learning Spanish too and discovers Alice’s Spanish 1 lesson
in PAIRSPACE. His girlfriend is Mexican and has taught
him to use andar instead of ir for go. He changes his
Q&A pair (go,ir) to (go,andar). Next assume Charlie is
searching for basic Spanish lessons. What should the system
return to Charlie, and how should it present this result?

2. CHALLENGES FOR MANAGING COL-
LECTIONS OF COMMUNITY DATA
The simple scenario of already poses several

challenges of how to search, return and present the results.

e What to return? Should the system return the collection
Spanish 1 of either Alice or Bob? Should it present them
as a derivation of each other with Bob’s collection as the
most recent, or Alice’s as the original? Should it return
just the intersection of Alice’s and Bob’s collections as new
derived collection? Should it present and mark the tuples
(go, ir) and (go, andar) as possibly conflicting pairs? Stated
more abstractly, given two or more collections as input, how
to inform and return to the user the structural variation
in collections? How can the system learn to suggest new
derived collections that fit the purpose of the user?

e How to bundle and present the results to the user? Can
we take advantage of new “return structures” imposed by
collections instead of returning individual pairs in an all-
too-familiar list-based fashion (cf. discussion in [3])? If we
have several partially overlapping and often complementary
or contradicting collections, should we return collections or
tuples by majority or by diversity (cf. [20])? Should we
cluster these collection into meta-collections in the search
results, i.e. go one level further in the abstraction?

e How to search? How does the user specify the informa-
tion she is looking for, i.e. what is the appropriate search
paradigm for query formulation? What is the appropriate

found on the Web. For example, Phase-6 is a German company en-
tirely built around an offline flashcard learning software that is used
at 3.000 German schools and has supposedly been sold more than
500.000 times (source: fattp://www.phase-6.comf). The fact that there
are hundreds of software tools available supports the thesis that one
unique, and online PAIRSPACE would a valuable tool to users, but no-
body has yet figured out the perfect solution to bring this to massive
dimensions (cp. Friendster and LinkedIn before Facebook).

USER @ COLLECTION @ PAIR

(a)

USER COLLECTION PAIR
uname cname Q A
Alice Spanish 1 go ir
Bob Spanish 1

Charlie[—*7 go |andar

(b)

Figure 2: An attempt at a relational encoding of
PAIRSPACE: (a) an ER model, and (b) an instance.

query language that — though possibly hidden from the user
— allows to express the user’s search needs?

o What to include in ranking? What are those explicit
or implicit features or associations that can be leveraged to
learn and return relevant information to the user? Obvious
candidates are the following: (a) Semantic or syntactic sim-
ilarity: How can one address synonymy and polysemy? For
example, the expression bank can represent “river bank” in
English, “bench” in German, and a “financial institution” in
both languages. (b) Structure: What is the generally appro-
priate way to think about the relative importance between
pairs or items and collection of items? (c¢) Trust or reputa-
tion: What is the appropriate abstraction of trust between
users in this scenario? How can different levels of trust be
combined, i.e. should they be defined either in a vote-based
(democratic, weight-based) manner, or rather a rule-based
(strict, preference based) manner. For example, Charlie may
specify to trust his school teacher strictly more than any
other people. In such preference or rule-based scenarios, the
actual value of the weights does not matter, but rather the
partial order between preference relations [18|. (d) Prove-
nance: What kinds of provenance are suggested by this sce-
nario, such as “social provenance” |3], or derivative prove-
nance? Should identical pairs specified by different users be
linked to each other? How can one define provenance on
collections of items? How to incorporate all those forms of
provenance into an appropriate ranking function? How to
support querying those combined forms of provenance, e.g.
to support ezplanatory queries over this repository?

One fundamental problem is already the question of how
to best store, manipulate, and update all involved informa-
tion over time. shows a simple ER model of the
relation between users, collections and pairs in our scenario.
Figure 2D|is a simplified depiction of the scenario of

ple 1] If the collection of Alice contains 100 tuples, then stor-
ing Bob’s incremental variation would take <1%Oth of the
space of Alice’s original lesson. For the sake of discussion,
let’s call replicating all pairs as the explicit representation
(alternatively eager or materialized), and some other repre-
sentation that stores only the difference as implicit (alterna-
tively lazy or virtual). But space is not the major issue here:
even if the explicit representation is stored in a compressed
form, valuable information about the relative derivation or
evolution of content is lost. Note, that during querying,
value lies not so much in the individual pairs or collections,
but rather in the knowledge of how close two or more collec-
tions relate to each other. In turn, storing only the implicit
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information may decrease the access to the actual data con-
siderably. Hence, there is this inherent trade-off between
having the data explicit, or the relative derivations explicit.
How to update those derivations if content evolves and users
add, update, delete or transfer pairs between collections?
Summing up the three main challenges that this seemingly
simple scenario of managing three kinds of entities (items,
collections, users) in a community scenario raises are: (1)
What is the right abstraction for the logical and physical
representations of this partly redundant, partly overlapping
information, grouped into vastly overlapping bundles? (2)
What is the right abstraction of a data manipulation and
query language that allows one to reason in terms of col-
lections rather than items? (3) How to evaluate relative
importance over the triple concepts of (items, collections,
users) in a sound and principled way? In addition, how to
reason about (i) inconsistency, (#4) non-monotonicity, (i)
uncertainty, and (iv) provenance at the level of collections?

3. WHY EXISTING MODELS AND
APPROACHES DON’T SUFFICE

Here we briefly summarize related work that focuses on
these challenges but fails short in solving them entirely.

The overall area falls into what is classified as sharing
systems in [b| where users together build shared structured
knowledge bases or a consistent data synthesis. In our sce-
nario, the users do not share the goal of structured knowl-
edge creation, but rather want to find individually fitting
collections of Q&A pairs that fit their respective learning
needs. Our scenario is clearly different from data integration
or data fusion where the goal is to create one unified view on
the data |12|. Instead, we want to efficiently manage, find,
and compose meaningful collections/bundles/structures of
base data that evolve over time. Our challenges are also
reminiscent to those of dataspaces |11, where the focus is
on incremental (“pay-as-you go”) integration. The value of
the system increases over time with the number of matches
between the data. In our scenario, collections of items have
different meanings to different users at different times and
need to be managed from day one.

The scenario is also related to the problem of conflict res-
olution in community databases with the goal of automat-
ically assigning each user in the system a unique value to
each key |18 |9]. However, in our scenario, content import
is “pull” instead of “push,” i.e. users actively search for con-
tent. In the scenario of searching over Yahoo! answers [1]
2], the goal is to order the set of question-answer pairs ac-
cording to their relevance to the query. In our scenario, the
goal not just to rank just pairs, i.e. user generated content,
but rather (or alternatively) collections of pairs (which may
exist or may be re-combined), or to suggest relevant users.

Our notion of collections is also very reminiscent of super-
imposed information [14], i.e. data that is placed over ex-
isting information to help organize and reuse items in these
sources. One main difference to superimposed information
management is the community aspect: we have different al-
ternative and overlapping collections of base information,
and value lies not just in the groupings, but also the differ-
ence between alternative groupings. The concept of finding
and managing associations on top of base data is also re-
lated to inductive databases |16| and pattern-base manage-
ment systems [4]. Both try to manage rules built upon base

data as separate information inside an enhanced DBMS. The
difference is that the collections that we are interested in do
not have in general an intensional semantics. That means
they cannot by themselves be expressed in a short implicit
form, e.g., by a query (cf. |[17]). Rather, we are interested
in the incremental and evolving differences between collec-
tions of base data. And we want to leverage this informa-
tion about “data interference” during the ranking process.
Our scenario is also reminiscent of revision control systems
(RCS), such as SVN, which manage incremental changes to
documents, programs, and other information, and option-
ally include compression. But while RCSs can store differ-
ences efficiently, they do not expose general query facilities
to search for meaningful differences, which is an essential
ingredient in search in community databases.

4. A NEW HOPE

We propose two complementary approaches to deal with
a subset of these challenges.

(1) Rule-based, non-monotone preference relations.
An important feature of a community database is providing
ways to establish, measure, and show fame/trust/reputation
of content and users. This is especially important for a sys-
tem that needs to provide the users functionality of revoking
previously stated information (“non-monotone reasoning”).
If the user contributions seep deep into the system and other
users build upon it, then undoing can be very difficult [5).
Take as an example the spread of wrong information in a
social network, where people trust people by a transitive
closure of trust (people trust people who trust people etc.).

The approach that we promote here is exchanging vote-
based trust systems (or at least enhancing them) with a rule-
based reputation system built on conditional trust. Condi-
tional trust relations are basically trust mappings at a data-
instance level. Trust mapping is a preference-based inference
rule or a default statement that a user is willing to accept
another user’s data value in the absence of their own val-
ues. Priorities are further used to specify how to resolve
conflicts between data values coming from different trusted
users [18]. Conditional trust now allows users to specify se-
lected attributes and thus takes this trust mappings from a
schema to a data focus, quite similar to conditional func-
tional dependencies (CFDs) [6] further specifying standard
FDs. It is not trivial to reason efficiently in such a rule-based
system with the transitive closure of trust, and in the pres-
ence of cycles. However, we have shown in very recent work
[9] that a unique semantics can be defined that allows to
calculate revokes, that means changes in the data instances,
efficiently (linear in size of the data and quadratic in the size
of the network even in the presence of cycles).

We see two interesting questions with this approach: (7)
When porting such a rule-based semantics into a richer social
context and from the schema-level to data-level, can one
still guarantee efficient scalability in both the size of the
shared data and the size of the trust relations? (i) Can we
raise the level of abstraction for rules further: When treating
preference rules as data, can preference-rules on preference-
rules still allow an efficient semantics? In recent work [7], we
have shown that reasoning in modal logics (arbitrary nesting
of annotations on annotations) can be encoded efficiently
on top of the relational model. Can we still find efficient
encodings of such higher-order rules that can be managed
on top of the relational model?



(2) Ranking collections of data in an efficient prob-
abilistic framework. We mentioned before the problem of
ranking results relevant to the user, which is also studied in
work on incorporating social media into learning-based rank-
ing methods (e.g. [2,[3]). Such ranking methods need to take
into account uncertainty at several levels: uncertainty about
the semantic relevance of the results to the user’s query,
uncertainty about the user’s search context, uncertainty of
mapping of keywords to various schema or data informa-
tion. Furthermore, the ranking method needs to allow for
structured queries (e.g. “Find collections on Spanish with
the word go in one pair and used by trusted users”).

A natural way to deal with structured queries over uncer-
tain data is to interpret all uncertainties or weights in the
system as probabilistic values in the interval [0,1], and then
apply a structured query paradigm that ranks results by

their relevance as common in probabilistic databases (PDBs).

Recent work on PDBs has shown that the parameters of the
ranking functions can be learned from user preferences [13].
Thus, treating the problem of query answering as those of
query answering over PDBs allows one to learn the values,
then to support complex querying and decision-making over
data. The main problem with this approach is its computa-
tional complexity: evaluating conjunctive queries over tuple-
independent PDBs is well known to be already #P hard,
in general. For example, complexity-wise, the above query
over the schema from [Fig. 2] would correspond to evaluating
a Boolean conjunctive chain query q:— R(z),S(z,v),T(y)
which is #P hard in our case (many-to-many relations be-
tween all entities in .

The solution that we advocate is our recently introduced
technique of query dissociation [8]. The basic idea is to
slightly change the semantics of probabilistic query evalua-
tion, and to then calculate the ranking score of result tuples
with a few materialized views and a single query plan that
guarantees efficient evaluation for every conjunctive query.
In theory, this approach replaces a #P hard problem with
a PTIME algorithm. In practice, it allows ezisting DBMSs
to evaluate probabilistic conjunctive queries over data in-
stances that have been infeasible for previous approaches.

5. FINAL THOUGHTS

We have pointed to the challenge of organizing and man-
aging collections of community data with the example of
PAIRSPACE, a fictitious centralized and massive repository
for Q& A learning. We envision this shared space as a nucleus
that can grow as the single repository for general e-learning
or even knowledge repositories with more complicated struc-
tural knowledge than Q&A pairs (cf. Wikipedia info boxes as
nucleus for structured knowledge extraction from the Web).
At the same time, solving this structurally simple data man-
agement problem will help shape our thoughts of how to
approach more complicated structural collections of human
knowledge, such as general community content management
systems, or even those that do not have a naive implementa-
tion in the relational model. The most timely such challenge
is managing the variance of the human genetic population.

The 1000 Genomes Project (see fattp://1000genomes .org))
creates a collection of 1000 human genomes and aims at
achieving a complete representation of the structural vari-
ation (inserts, deletions, inversions, translocations [[19]) in
the human genome. Now imagine a massive database that
allows to query the human genetic variation of 1 billion

genomes, and to correlate these variations with variations in
clinical data. This massive data management system clearly
derives value from efficient handling of higher-order struc-
ture that is imposed on top of the base genetic information
(variations between structured collections of base pairs), but
also variations in the variations themselves (higher-order
structural variations). Effective solutions to biologists for
this kind of problem have not yet been found by the data
management community.

We strongly believe that investigating the right data model
for a massive PAIRSPACE will at the same time help the
global learning community, and will lead to better under-
standing of appropriate abstractions for managing more gen-
eral massive collections of community data.
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