
DBease: Making Databases User­friendly and Easily
Accessible

Guoliang Li Ju Fan Hao Wu Jiannan Wang Jianhua Feng
Department of Computer Science, Tsinghua University, Beijing 100084, China

{liguoliang, fengjh}@tsinghua.edu.cn; {fan­j07, haowu06, wjn08}@mails.thu.edu.cn

ABSTRACT
Structured query language (SQL) is a classical way to access
relational databases. Although SQL is powerful to query re-
lational databases, it is rather hard for inexperienced users
to pose SQL queries, as they are required to be familiar with
SQL syntax and have a thorough understanding of the un-
derlying schema. To provide an alternative search paradigm,
keyword search and form-based search are proposed, which
only need users to type in keywords in single or multiple
input boxes and return answers after users submit a query
with complete keywords. However users often feel “left in
the dark” when they have limited knowledge about the un-
derlying data, and have to use a try-and-see approach for
finding information. A recent trend of supporting autocom-
plete in these systems is a first step towards solving this
problem. In this paper, we propose a new search method
DBease to make databases user-friendly and easily acces-
sible. DBease allows users to explore data “on the fly” as
they type in keywords, even in the presence of minor errors.
DBease has the following unique features. Firstly, DBease
can find answers as users type in keywords in single or mul-
tiple input boxes. Secondly, DBease can tolerate errors
and inconsistencies between query keywords and the data.
Thirdly, DBease can suggest SQL queries based on lim-
ited query keywords. We study research challenges in this
framework for large amounts of data. We have deployed
several real prototypes, which have been used regularly and
well accepted by users due to its friendly interface and high
efficiency.

1. INTRODUCTION
Structured query language (SQL) is a database language

for managing data in relational database management sys-
tems (RDBMS). SQL supports schema creation and modifi-
cation, data insertion, deletion and update, and data access
control. Although SQL is powerful, it has a limitation that
it requires users to be familiar with the SQL syntax and have
a thorough understanding of the underlying schema. Thus

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro­
vided that you attribute the original work to the author(s) and CIDR 2011.

5th Biennial Conference on Innovative Data Systems Research (CIDR ’11)
January 9­12, 2011, Asilomar, California, USA.

SQL is rather hard for inexperienced users to pose queries.
To provide an easy way to query databases, keyword search

and form-based search are proposed. Keyword search only
needs users to type in query keywords in a single input box
and the system returns answers that contain keywords in any
attributes. Although single-input-box interfaces for keyword
search are easy to use, users may need an interface that al-
lows them to specify keyword conditions more precisely. For
example, a keyword may appear in different attributes, and
multiple keywords may appear in the same attribute. If a
user has a clear idea about the underlying semantics, it is
more user-friendly to use a form-based interface with multi-
ple input boxes to formulate queries.

However existing keyword-search-based systems and form-
based systems require users to compose a complete query.
Users often feel “left in the dark” when they have limited
knowledge about the underlying data, and have to use a try-
and-see approach for finding information. Many systems are
introducing various features to solve this problem. One of
the commonly used methods is autocomplete, which predicts
a word or phrase that the user may type in based on the
partial string the user has typed. As an example, almost all
the major search engines nowadays automatically suggest
possible keyword queries as a user types in partial keywords.

One limitation of autocomplete is that the system treats
a query with multiple keywords as a single string, and it
does not allow these keywords to appear at different places.
For instance, consider the search box on Apple.com, which
allows autocomplete search on Apple products. Although a
keyword query “itunes” can find a record “itunes wi-fi

music store,” a query with keywords “itunes music” can-
not find this record (as of October 2010), simply because
these two keywords are not adjacent in the record.

To address this problem, recently search-as-you-type [22,
17, 16, 13, 6, 3, 1, 2, 8] is proposed in which a user types
in keywords letter by letter, and the system finds answers
that include these keywords (possibly at different places).
For instance, if a user types in a query “cidr database

sear” with a partial keyword “sear,” search-as-you-type
finds answers that contain complete keywords “cidr” and
“database,” and a keyword with the partial keyword “sear”
as a prefix, such as “search.” Note that the keywords may
appear at different places (possibly in different attributes).

In this paper, to improve user experience of querying
databases and make databases user-friendly and easily accessible,
we propose a new search method, called “DBease,”1 to im-
prove keyword-search, form-based search, and SQL-based

1
http://dbease.cs.tsinghua.edu.cn

1

45

(a) Keyword Search (PubMed) (b) Form-based Search (DBLP)

count database author

(c) SQL-based Search (DBLP)

Figure 1: Screenshots of prototypes implemented using our techniques (http://dbease.cs.tsinghua.edu.cn).

search by supporting search-as-you-type and tolerating mi-
nor errors between query keywords and the underlying data.
DBease has the following unique features. Firstly, DBease
searches the underlying data “on the fly” as users type in
keywords. Secondly, DBease can find relevant answers as
users type in keywords in a single input box or multiple
input boxes. Thirdly, DBease can tolerate inconsistencies
between queries and the underlying data. Fourthly, DBease
can suggest SQL queries from limited keywords.
We study research challenges in this framework for large

amounts of data. The first challenge is search efficiency to
meet the high interactive-speed requirement. Each keystroke
from the user can invoke a query on the backend server.
The total round-trip time between the client browser and
the backend server includes the network delay and data-
transfer time, query-execution time on the server, and the
javascript-execution time on the client browser. In order
to achieve an interactive speed, this total time should not
exceed milliseconds (typically within 100 ms). The query-
execution time on the server should be even shorter. The
second challenge is to provide “on-the-fly join” for form-
based search, as it is rather expensive to “join” keywords
in multiple attributes. The third challenge is to infer users’
query intent, including structures and aggregations, from
limited keywords. To achieve a high speed for search-as-
you-type, we develop novel index structures, caching tech-
niques, search algorithms, and ranking mancinism. For ef-
fective SQL suggestion, we propose queryable templates to
model the structures of promising SQL queries and a proba-
bilistic model to evaluate the relevance between a template
and a keyword query. We generate SQL queries from tem-
plates by matching keywords to attributes. We devise an
effective ranking model and top-k algorithms to efficiently
suggest the best SQL queries. We have deployed several
real prototypes using our techniques, which have been used
regularly and well accepted by users due to its friendly in-
terface and high efficiency. Figure 1 gives three prototypes
implemented using our techniques, which are available at
http://dbease.cs.tsinghua.edu.cn.

1.1 Related Work
There have been many studies on predicting queries and

user actions [19, 14, 9, 21, 20] in information search. With
these techniques, a system predicts a word or a phrase the
user may type in next based on the sequence of partial in-
put the user has already typed. Many prediction and au-
tocomplete systems2 treat a query with multiple keywords

2
The word “autocomplete” could have different meanings. Here we

use it to refer to the case where a query (possibly with multiple key-
words) is treated as a single prefix.

as a single string, thus they do not allow these keywords to
appear at different places in the answers. The techniques
presented in this paper focus on “search on the fly,” and
they allow query keywords to appear at different places in
the answers. As a consequence, we cannot answer a query
by simply traversing a trie index (Section 2.1). Instead, the
backend intersection (or “join”) operation of multiple lists
requires more efficient indexes and algorithms.

Bast et al. proposed techniques to support “Complete-
Search,” in which a user types in keywords letter by letter,
and the system finds records that include these keywords
(possibly at different places) [2, 3, 1, 5]. Different from Com-
pleteSearch[3], we propose trie-based index structures and
incremental search algorithms to achieve a high interactive
speed. Chaudhuri et al. [6] also studied how to extend auto-
completion to tolerate errors. Different from [6], we support
answering multi-keyword queries.

In addition, there have been some studies on keyword
search in relational databases [12, 11, 10, 18]. However they
cannot support search on-the-fly.

2. IMPROVING KEYWORD SEARCH
This section improves keyword search by supporting search-

as-you-type and tolerating errors between query keywords
and the underlying data. We first give an example to show
how search-as-you-type works for queries with multiple key-
words in a relational table. Our method can be extended to
support search-as-you-type on documents [13], XML data [15],
and multiple relational tables [16]. Assume a relational ta-
ble resides on a server. A user accesses and searches the
data through a Web browser. Each keystroke that the user
types invokes a query, which includes the current string the
user has typed in. The browser sends the query string to
the server, which computes and returns to the user the best
answers ranked by their relevancy to the query. We treat
every query keyword as a partial (prefix) keyword3.

Formally consider a set of records R. Each record is a
sequence of words (tokens). A query consists of a set of
keywords Q = {p1, p2, . . . , pℓ}. The query answer is a set of
records r in R such that for each query keyword pi, record
r contains a word with pi as a prefix. For example, consider
the data in Table 1, which has ten records. For a query
{“vldb”, “l”}, record 7 is an answer, since it contains word
“vldb” and a word “luis” with a prefix “l”.

Different from exact search-as-you-type, the query answer
of fuzzy search-as-you-type is a set of records r in R such

3
Clearly our techniques can be used to answer queries when only the

last keyword is treated as a partial keyword, and the other keywords
are treated as completed keywords.

2

46

Table 1: A set of records
ID Record

1 EASE: An Effective 3-in-1 Keyword Search Method for Unstructured, Semi-structured and Structured Data. Guo-
liang Li, Beng Chin Ooi, Jianhua Feng, Jianyong Wang, Lizhu Zhou. SIGMOD, 2008.

2 BLINKS: Ranked Keyword Searches on Graphs. Hao He, Haixun Wang, Jun Yang, Philip S. Yu. SIGMOD, 2007.
3 Spark: Top-k Keyword Query in Relational Databases. Yi Luo, Xuemin Lin, Wei Wang, Xiaofang Zhou. SIGMOD,

2007.
4 Finding Top-k Min-Cost Connected Trees in Databases. Bolin Ding, Jeffrey Xu Yu, Shan Wang, Lu Qin, Xiao

Zhang, Xuemin Lin. ICDE, 2007.
5 Effective Keyword Search in Relational Databases. Fang Liu, Clement T. Yu, Weiyi Meng, Abdur Chowdhury.

SIGMOD, 2006.
6 Bidirectional Expansion for Keyword Search on Graph Databases. Varun Kacholia, Shashank Pandit, Soumen

Chakrabarti, S. Sudarshan, Rushi Desai, Hrishikesh Karambelkar. VLDB, 2005.
7 Efficient IR-Style Keyword Search over Relational Databases. Vagelis Hristidis, Luis Gravano, Yannis Papakon-

stantinou. VLDB, 2003.
8 DISCOVER: Keyword Search in Relational Databases. Vagelis Hristidis, Yannis Papakonstantinou. VLDB, 2002.
9 DBXplorer: A System for Keyword-Based Search over Relational Databases. Sanjay Agrawal, Surajit Chaudhuri,

Gautam Das. ICDE, 2002.
10 Keyword Searching and Browsing in Databases using BANKS. Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe,

Soumen Chakrabarti, S. Sudarshan. ICDE, 2002.

that for each query keyword pi, record r contains a word
with a prefix similar to pi. In this work we use edit distance
to measure the similarity between two strings. The edit dis-
tance between two strings s1 and s2, denoted by ed(s1, s2),
is the minimum number of edit operations (i.e., insertion,
deletion, and substitution) of single characters needed to
transform the first one to the second. We say a word in a
record r has a prefix w similar to the query keyword pi if the
edit distance between w and pi is within a given threshold
τ .4 For example, suppose the edit-distance threshold τ = 1.
For a query {“vldb”, “lvi”}, record 7 is an answer, since it
contains a word “vldb” (matching the query keyword “vldb”
exactly) and a word “luis” with a prefix “lui” similar to query
keyword “lvi” (i.e., their edit distance is 1, which is within
the threshold τ = 1).
A search-as-you-type based system works as follows. The

client accepts a query through the user interface, and checks
whether the cached results are enough to answer the query.
If not, the client sends the query to the server. The sever
answers queries based on the following components. The
Indexer component indexes the data as a trie structure with
inverted lists on leaf nodes (Section 2.1). For each query,
Searcher checks whether the query can be answered using
the cached results (Section 2.2). If not, Searcher answers the
query using the cache and indexes, and caches the results
for answering future queries. Ranker ranks results to return
the best answers (Section 2.2).

2.1 Indexer
We use a trie to index the words in the data. Each word

w corresponds to a unique path from the root of the trie to a
leaf node. Each node on the path has a label of a character
in w. The nodes with the same parent are sorted by the
node label in their alphabetical order. Each leaf node has
a unique word ID for the corresponding word. The word
ID is assigned in the pre-order. Each node maintains the
range of word IDs in its subtree: [minKeyID,maxKeyID],

4
For simplicity, we assume a threshold τ on the edit distance between

similar strings is given. Our solution can be extended to the case
where we want to increase the threshold τ for longer prefixes.

and the word IDs of leaf nodes under this node must be
in [minKeyID,maxKeyID], and vice versa. For each leaf
node, we store an inverted list of record IDs that contain
the corresponding word5. In order to improve search perfor-
mance, optionally we can also maintain a forward index for
the records. For each record, the forward index keeps the
sorted word IDs in the record. For instance, Figure 2 shows
a partial index structure for publication records in Table 1.
The word “luis” has a node ID of 16. Its word ID is 7 and
its inverted list includes record 7. The word ID of node 11
is 3. The word range of node 11 is [3,5]. That is the IDs of
words starting with “li” must be in [3,5]. The forward list
of record 7 includes word IDs 2, 7, and 8.

1

3 4 5

4

7
1

ta

3 4 5 6 7 8 9 10

6 7 8

0

10

11

12 13

14

15

16

1
17

3

4

5

6

7

8

2 18

19

20

9
[2,2]

[1,2]

[2,2]

[2,2]

[2,2]

[2,2]

[1,2]

[1,2]

[1,2]

[4,4] [5,5]

[3,5]

[7,7]

[7,7]

[6,7]

[8,8]

[8,8]

[8,8]

[8,8]

Forward Index

records keywords

6 2 8

7 2 7 8

8 2 8

Figure 2: The trie structure and the forward index.

5
In the literature a common “trick” to make sure each leaf node on a

trie corresponds to a word and vice versa is to add a special mark to
the end of each word. For simplicity we do not use this trick in the
figure, and a leaf node refers to a word in the data.

3

47

2.2 Searcher

2.2.1 Exact Search
Consider a single-keyword query c1c2 . . . cx, in which each

cj is a character. Let pi = c1c2 . . . ci be a prefix query
(1 ≤ i ≤ x). Suppose ni is the trie node corresponding to
pi. After the user types in a prefix query pi, we store node
ni for pi. For each keystroke the user types, for simplicity,
we assume that the user types in a new character cx+1 at the
end of the previous query string.6 To incrementally answer
the new query, we first check whether node nx that has
been kept for px has a child with a label of cx+1. If so,
we locate the leaf descendants of node nx+1, and retrieve
the corresponding complete words. Finally we compute the
union of inverted lists of complete words using a heap-based
merge algorithm. The union is called the union list of this
keyword. Obviously the union list is exactly the answer.
For instance, assuming a user has typed “l” and types in a
character “i,” we check whether node 10 (“l”) has a child
with label “i.” We find node 11, retrieve complete words
(“li, lin, liu”), and compute answers (records 1, 3, 4, 5).
It is possible that the user modifies the previous query ar-

bitrarily, or copies and pastes a completely different string.
In this case, for the new query, among all the keywords
typed by the user, we identify the cached keyword that
has the longest prefix with the new query. Formally, con-
sider a cached query with a single keyword c1c2 . . . cx. Sup-
pose the user submits a new query with a single keyword
p = c1c2 . . . cidi+1 . . . dy. We find pi = c1c2 . . . ci that has a
longest prefix with p. Then we use the node ni of pi to incre-
mentally answer the new query p, by inserting the characters
after the longest prefix of the new query (i.e., di+1 . . . dy)
one by one. In particular, if there exists a cached keyword
pi = p, we use the cached records of pi to directly answer
the query p. If there is no such a cached keyword, we answer
the query from scratch.
For a multi-keyword query, we first compute the union

list of each keyword, and then intersect these union lists to
compute the results. We can use two methods to compute
the results. The first one is to use a merge-join algorithm to
intersect the (pre-sorted) lists. Another method is to check
whether each record on the shortest lists appears on other
lists by doing a binary search. The latter method has been
shown to achieve a higher performance in our experiments.

2.2.2 Fuzzy Search
In the case of exact search, there exists only one trie node

corresponding to a partial keyword kj . However, to support
fuzzy search, there may be multiple prefixes similar to the
keyword. We call the nodes of these similar prefixes the ac-
tive nodes for keyword kj . Thus for a single-keyword query,
we first compute its active nodes, and then locate the leaf
descendants of the active nodes. Finally we compute the
union list of this keyword by computing union of inverted
lists of all such leaf descendants. Obviously the union list is
exactly the answer of this keyword. For example, consider
the trie in Figure 2. Suppose τ = 1 and a user types in a
keyword “li.” The words “li,” “lin,” “liu,” “lu,” and “lui” are
all similar to the keyword, since their edit distances to “li”

6
In the general case where the user can modify the current query

arbitrarily, we find the cached keyword that has the longest prefix
with the input keyword, and use the same method to incrementally
compute the answers.

are within a threshold τ = 1. Thus nodes 11, 12, 13, 14,
and 15 are active nodes. We find the leaf descendants of the
active nodes as the similar complete words (“li,” “lin,” “liu,”
“lu,” and “luis”). We compute the union of inverted lists of
these complete words as answers (records 1, 3, 4, 5, and 7).

Next we study how to incrementally compute active nodes
for a keyword as the user types in letters. Given a keyword
kj , different from exact search which keeps only one trie
node, we store a set of active nodes. We compute kj ’s active-
node set based on that of its prefix. The idea behind our
method is to use the prefix pruning. That is, when the user
types in one more letter after kj , only the descendants of the
active nodes of kj could be active nodes of the new query,
and we need not consider other trie nodes. We use this
property to incrementally compute the active-node set of a
new query, and refer to [13] for more details.

For a multi-keyword query, we first compute union list
of each keyword, and then intersect the union lists to com-
pute the answers. Note that as a keyword may have many
active nodes and large numbers of complete words, if the
sizes of these lists are large, it is computationally expensive
to compute these union lists. Various algorithms can be
adopted here. Specifically, we can use two methods. The
first one is to use a merge-join algorithm to intersect the
lists, assuming these lists are pre-sorted. Another method
is to check whether each record on the short lists appears
on other long lists by doing a binary search. The second
method has been shown to achieve a high performance [13].
Figure 3 (a) illustrates an example in which we want to an-
swer query “li database vld” using the first-union-then-
intersection method.

To improve the performance, we propose a forward-index
based method, which only computes the union list for a sin-
gle keyword. We choose the keyword with the shortest union
list, and only compute its union list. We use the forward in-
dex to check whether each candidate record on the shortest
union list contains similar prefixes of other keywords. If so,
this record is an answer. For each of other keywords, for the
word range of each of its active node, for example [l, u], we
check whether the candidate record contains words in [l, u].
We use a binary-search method to find the word ID in the
corresponding forward list, and get the smallest word ID on
the list that is larger than or equal to l. Then we check
whether the word ID is smaller than u. If so, this candidate
contains a word in [l, u], that is the record contains a prefix
similar to the keyword. Thus we can use this method to
compute the answer. Figure 3 (b) illustrates the forward-
list-based method to answer query “li database vld”.

2.3 Ranker
In order to compute high-quality results, we need to de-

vise a good ranking function to find the best answers. The
function should consider various factors such as the edit dis-
tance between an active node and its corresponding query
keyword, the length of the query keyword, the weight of
each attribute, and inverted document frequencies. If edit
distance dominates the other parameters, we want to com-
pute the answer with smaller edit distances. If there are no
enough top answers with edit distance τ , we then compute
answers with an edit distance τ +1, and so on. Thus, when
computing the union lists, we always first compute those
of the active nodes with smaller edit distances. If there are
enough top answers in the intersection list of such union lists,

4

48

vld

databases

li li

lin

liu

lui luis

lu lu

vldb

keywords active nodes similar words lists answers

lin

liu

vld

lin

lui

lu

keywords active nodes keyword range lists answers

[2, 2]

[4, 4]

[7, 7]

[6, 7]

2

8

2

7

8

2

8
li [3, 5]

liu [5, 5]

[8, 8]

Figure 3: Two methods for answering a keyword query “li database vld”

we can do an early termination. We can also develop Fagin
algorithms [7] to efficiently compute the top-k answers.

2.4 Additional Features
We have implemented two prototypes for keyword search

on PubMed and DBLP. Figure 1(a) shows a screenshot on
PubMed. In addition to the features of search-as-you-type
and tolerating errors, we demonstrate the following features.

Highlighting Similar Prefix: We show how to highlight
a prefix in the results that best matches a keyword. High-
lighting is straightforward for the case of exact matching,
since each keyword must be a prefix of the matching word.
For the case of fuzzy matching, a query keyword may not
be an exact prefix of a similar word. Instead, the query key-
word is just similar to some prefixes of the complete word.
Thus, there can be multiple similar words to highlight. For
example, suppose a user types in “lus,” and there is a sim-
ilar word “luis.” Both prefixes “lui” and “luis” are sim-
ilar to “lus.” There are several ways to highlight “luis,”
such as “luis” or “luis.” We highlight the longest matched
one (“luis”).

Using Synonyms: We can utilize a-priori knowledge about
synonyms to find relevant records. For example, in the
domain of person names, “William = Bill” is a synonym.
Suppose in the underlying data, there is a person called
“William Kropp.” If a user types in “Bill Cropp,” we can
also find this person. To this end, on the trie, the node cor-
responding to “Bill” has a link to the node corresponding
to “William,” and vise versa. When a user types in “Bill,”
in addition to retrieving the relevant records for “Bill,” we
also identify those of “William” following the link. In this
way, our method can be easily extended to utilize synonyms.

3. IMPROVING FORM­BASED SEARCH
Note that keyword search cannot support aggregation queries,

and form-based search can address this problem. This sec-
tion improves form-based search by supporting search-as-
you-type and faceted search. To allow users to search on
different attributes, we partition the original table into sev-
eral local tables. A local table stores the distinct values of
an attribute. Each record in a local table is called a local
record, and is assigned with a local id. Accordingly, the orig-
inal table is called the global table, in which each record is

called a global record and is assigned with a global id. We
associate each local table with one or more input boxes in
the form. For each query triggered by a keystroke in an in-
put box, the system returns to the user not only the global
ids (called the global results), but also the matched local ids
in the corresponding local table (called the local results).
For example, in Figure 11(b), if we type in keywords “wei
wang” in the Author input box, the system returns the names
of matched authors below the form (local results), such as
Wei Wang and Weixing Wang, and their publications on the
right side (global results). Next we extend the architecture
for search-as-you-type to support form-based search.

3.1 Indexer
We first read the global table stored in the disk and split

it into local tables. For each local table, we tokenize each
record into words, and build the following index structures.

1. A trie structure with inverted lists on the leaf nodes. In
the trie structure, a path from the root to a leaf corre-
sponds to a word. The local ids for the word are added
to the inverted list of the corresponding leaf node. These
structures are used to efficiently retrieve the local-id lists
according to query keywords.

2. A local-global mapping table. This table is used to map
a local id to its corresponding global ids, so that we can
retrieve the global results based on the local results. The
ℓ-th row of the mapping table stores the ids of all the
global records containing the ℓ-th local record. Given a
set of local ids, we can obtain the corresponding global ids
using this table. Take Figure 11(b) as an example. The
local result “Wei Wang” has a local id. Its corresponding
global records are the first and third publications. These
two global results can be retrieved using the local-global
mapping table.

3. A global-local mapping table. This table is used to map
a global id to its local ids, so that we can get the local
results based on the global results. The g-th row of the
table stores the ids of all local records contained in the
g-th global record. This table is used for the synchroniza-
tion operations which are necessary as the local results
are also affected by other attributes. For example, when
the focus of input boxes is changed, we need to retrieve
the correct local results of the focus based on the current

5

49

global results. For instance, in Figure 11(b), when the
focus is changed to Title from Author, we need to update
the local results of Title based on the global results using
this mapping table.

3.2 Searcher
A query of a form-based interface can be segmented into

a set of fields, each of which contains the query string of
the corresponding input box. When a query is submitted,
the system first checks whether the query can be answered
from the cached results. If the query can be obtained by
extending a field of a cached query with one or more letters,
then we have a cache hit. We call this cached query the
base query and cached results the base results. The Searcher
performs an incremental search based on base results if there
is a cache hit. Otherwise, we do a basic search as follows.

Basic search. When we cannot find cached results to an-
swer the query, we split the query into a sequence of sub-
queries, in which each query appends a word to the previous
query. Thus the sequence starts from an empty query and
ends with the issued query. The final results can be cor-
rectly calculated if we use each of these queries one by one
as the input of the incremental search algorithm (described
below). For example, if a user inputs “jiawei han” in the
Author input box and none prefix of the query is cached, we
split it into three sub-queries, ϕ, jiawei, jiawei han. We
send them one by one to the incremental-search algorithm.

Incremental search. This type of search uses previously
cached results to answer a query.

Step 1. Identify the difference between the base query and
the new query. We use fi to denote the currently
edited field (the i-th field), and use w to denote the
newly appended keyword.

Step 2. Calculate the local ids of fi based on the query
string in fi, by first merging the id lists of all leaf
descendants of the trie node corresponding to keyword
w and then intersecting the merged list with the local
base results of fi.

Step 3. Compute the global results, by first calculating the
set of global ids corresponding to the local results of
fi (Step 2) using the local-global mappings and then
intersecting the set with the global base results.

Step 4. Calculate the local results of fi, called “synchro-
nization,” by first calculating the set of local ids cor-
responding to the global results using the global-local
mapping table and then intersecting it with the local
base results of fi.

Note that we need to calculate the aggregations of each
local result. Using the local-global mapping table, we can
easily calculate the number of occurrences of a local result in
the global result. For example, in Figure 11(b), the number
“13” on the right of the entry “Wei Wang” means that “Wei
Wang” appears 13 times in the global results. Next we discuss
how to rank the local results and global results so as to
return top-k answers. The design of the ranking function
depends on the application. For example, we can rank the
results according to the values of an attribute, e.g., Year or
Rating. Ranking functions will be added in the final paper.

3.3 Improvements
In step 3, to obtain the global results, we map the local

ids calculated in step 2 to lists of global ids, merge these
lists, and then intersect the merged list with the global base
results. The number of lists to be merged is equal to the
number of local ids. If there are many local ids, the merge
operation could be very time consuming. To address this
problem, we propose another index dual-list tries by attach-
ing an inverted list of global ids to each of the corresponding
trie leaf nodes. In this way, given a keyword prefix, we can
identify the global record that contain the keyword without
any mapping operation. In addition, the number of lists to
be merged is the number of complete words, which is often
much smaller than the number of local ids. A smaller num-
ber of lists leads to faster merge operations. Using dual-list
tries, the overall search time can be reduced compared with
using original tries (called single-list tries).

Since we can identify the global ids using dual-list tries,
those local-global mapping tables are no longer needed. In
addition, we propose an alternative method to calculate the
aggregations without using those local-global mapping ta-
bles. Given both local results and global results, we assign
each local result a counter, initialized as 0. We first map
each global id back to a list of local ids using the global-
local mapping table. Then, if a local result appears in the
mapped list, its corresponding counter, i.e., its occurrence
number, is increased by 1. Using this method to compute
the aggregations, the local-global mapping tables are not
needed and we can remove them to reduce the index size.

3.4 Additional Features
We have implemented two prototypes for form-based search

on DBLP and IMDB datasets. Figure 1(b) shows a screen-
shot of a system on the DBLP dataset. We describe the
following main features of our form-based search systems.

Precise search paradigm: Suppose a user wants to find
papers written by Wei Wang whose titles contain the word
pattern. If she types in “wei wang pattern” in keyword-
search system, many returned results are not very relevant.
In contrast, if she types in wei wang and pattern in different
input boxes in our system, she can find high-quality results.

Search-as-you-type: Suppose the user wants to find the
movie titled The Godfather made in 1972 using the IMDB
Power Search interface. She is not sure if there is a space
between the word god and the word father, so she fills in
the Title input box with god father. Unfortunately, she
can not get relevant result. So she has to try several new
queries. In contrast, in our system, she can modify the query
and easily find the results.

Faceted search and aggregation:. Suppose a user has
limited prior knowledge about the KDD conference and wants
to know more about it. At first, she wants to know how
many papers were published in this conference each year.
She types in kdd in the Venue input box and then changes the
editing focus to the Year input box. The listed local results
show the years sorted by the number of published papers.
Next, she wants to know the number of published papers
of each author in KDD 2009. She chooses the year 2009
by clicking on the list, and changes the focus to the Author
input box. The list below the form shows the authors, and
she can see the most active authors. After several rounds
of typing and clicking, she can get a deeper understanding
about the KDD conference.

6

50

4. IMPROVING SQL­BASED SEARCH
SQL-based method is more powerful than keyword search

and form-based search, and in this section we improve SQL-
based search to combine the user-friendly interface of key-
word search and the power of SQL. As users type in key-
words, we on-the-fly suggest the top-k relevant SQL queries
based on the keywords, and users can select SQL queries to
retrieve the corresponding answers. For example, consider
a database with tables “paper, author, write” in Table 2,
where “paper” contains paper information (e.g., title), “au-
thor” contains author information (e.g., author name), and
“write” contains paper-author information (e.g., which au-
thors write which papers). Suppose an SQL programmer
types in a query “count database author.” We can sug-
gest the following SQL queries.

1) SELECT COUNT(P.title), A.name
FROM Paper as P, Write as W, Author as A
WHERE P.title CONTAIN “database” AND

P.id = W.pid AND A.id = W.aid
GROUP BY A.name

2) SELECT P.title, A.name
FROM Paper as P, Write as W, Author as A
WHERE P.title CONTAIN “database” AND

P.title CONTAIN “count”
P.id = W.pid AND A.id = W.aid

where CONTAIN is a user-defined function (UDF) which
can be implemented using an inverted index. The first SQL
is to group the number of papers by authors, and the second
one is to find a paper as well as its author such that the
title contains the keywords “database” and “count” . We
can provide graphical representation and example results to
each suggested SQL as shown in Figure 1(c). The user can
refine keywords as well as the suggested queries to obtain
the desired results interactively.
Compared with Candidate Networks (CNs) [18, 4, 12, 10]

which only generate SPJ (Selection-Projection-Join) queries,
our method has the following advantages. (1) We can not
only suggest SPJ queries, but also support aggregate func-
tions. (2) We can group the results by their underlying
query structures, rather than mixing all results together.
Our SQL-suggestion method has the following unique fea-
tures. Firstly, it helps various users (e.g., administrators,
SQL programmers) formulate (even complicated) structured
queries based on limited keywords. It can not only reduce
the burden of posing queries, but also boost SQL coding
productivity significantly. Secondly, it helps users express
their query intent more precisely than keyword search and
form-based search, especially for complex queries. Thirdly,
compared with keyword search, our method has performance
superiority as we only need to first generate SQL queries and
then return answers after users select an SQL query.

4.1 Overview
Our work focuses on suggesting SQL queries for a rela-

tional databaseD with a set of relation tables, R1, R2, . . . , Rn,
and each table Ri has a set of attributes, Ai

1, A
i
2, . . . , A

i
m.

To represent the schema and underlying data of D, we define
the schema graph and the data graph respectively.
To capture the foreign key to primary key relationships

in the database schema, we define the schema graph as an

undirected graph GS = (VS , ES) with node set VS and edge
set ES : 1) each node is either a relation node correspond-
ing to a relation table, or an attribute node corresponding
to an attribute; 2) an edge between a relation node and an
attribute node represents the membership of the attribute
to the relation; 3) an edge between two relation nodes rep-
resents the foreign key to primary key relationship between
the two relation tables.

Similarly, we define the data graph to represent the data
instances in the database. The data graph is a directed
graph, GD = (VD, ED) with node set VD and edge set ED,
where nodes in VD are data instances (i.e., tuples). There
exists an edge from node v1 to node v2 if their corresponding
relation tables have a foreign key (v1) to primary key (v2),
and the foreign key of v1 equals to the primary key of v2.

Paper Write Author

title

booktitle

year

name

id=pid aid=id

id

idaidpid

(a) Schema graph.

P5 A10W20W13A7

W19

(b) Data graph.

Figure 4: Schema graph and data graph [8].

Table 2 provides an example database containing a set
of publication records. The database has three relation ta-
bles, Paper, Author, and Write, which are respectively
abbreviated to P, A and W in the rest of the paper for
simplicity. Figure 4(a) shows the schema graph of the ex-
ample database. In the graph, the relation Paper has four
attributes (i.e., id, title, booktitle, and year), and has an
edge to another relation Write. Figure 4(b) shows the data
graph. In this graph, an instance of Paper (i.e., P5) is re-
ferred by three instances of Write (i.e., W13, W19, and
W20).

We focus on suggesting a ranked list of SQL queries from
limited keyword queries. Note that the query keywords can
be very flexible that they may refer to either data instances,
the meta-data (e.g., names of relation tables or attributes),
or aggregate functions (e.g., the function COUNT). For-
mally, Given a keyword query Q = {k1, k2, . . . , k|Q|}, the
answer of Q is a list of SQL queries, each of which con-
tains all keywords in its clauses, e.g., the WHERE clause,
the FROM clause, the SELECT clause, or the Group-By
clause, etc. Since there may be many SQL queries cor-
responding to a keyword query, we propose to rank SQL
queries by their relevance to the keyword query. For exam-
ple, consider the example database in Table 2 and a keyword
query “count database author” . We can suggest two SQL
queries as follows.

7

51

Table 2: An example database (Join Conditions: Paper.id = Write.pid and Author.id = Write.aid).
(a) Paper (b) Author (c) Write

id title booktitle year
P1 database ir tois 2009
P2 xml name count tois 2009
P3 evaluation database theory 2008
P4 database ir database theory 2008
P5 database ir xml ir research 2008

id name
A6 lucy
A7 john ir
A8 tom
A9 jim
A10 gracy

id pid aid id pid aid
W11 P2 A6 W16 P3 A6

W12 P1 A7 W17 P4 A7

W13 P5 A7 W18 P4 A8

W14 P2 A9 W19 P5 A9

W15 P3 A10 W20 P5 A10

1) SELECT COUNT(P.id), A.name
FROM P, W, A
WHERE P.title CONTAIN “database” AND

P.id = W.pid AND A.id = W.aid
GROUP BY A.id

2) SELECT P.title, P.booktitle, A.name
FROM P, W, A
WHERE P.title CONTAIN “database” AND

P.title CONTAIN “count” AND
P.id = W.pid AND A.id = W.aid

Observed from the above SQL queries, the first one is to
group the number of papers with titles containing “database”
by authors, and the second one is to find a paper as well as its
author such that the title contains the keywords, “database”
and “count” .
As query keywords may refer to either data instances of

different relation tables, relation or attribute names, or ag-
gregate functions, there could be large numbers of possibly-
relevant SQL queries. Thus it is a challenge to suggest SQLs
based on keywords. To suggest the best SQL queries, we
propose a two-step method: (1) Suggest query structures,
called queryable templates (“template” for short), ranked
by their relevance to the keyword query; (2) Suggest SQL
queries from each suggested template, ranked by the degree
of matchings between keywords and attributes in templates.

Template

Matcher

Data Source
Template

Repository

SQL

Generator

Translator
&

Visualizer

Template

Generater

Template Index

Template

Indexer

Keywords Templates matchings

SQL queries with graphic representation Online

Offline

Templates Raw data

Templates

User

KeywordToAttribute Mapping

Data

Indexer

Raw data

Schema

Figure 5: Architecture of SQL Suggestion [8].

Figure 5 shows the architecture of an SQL-suggestion-
based system. Template Generator generates templates from
Data Source and stores them in Template Repository. As
there may be many templates, especially for complex schema,
Template Indexer constructs Template Index for efficient on-
line template suggestion. Since keywords may refer to data

instances, meta-data, functions, etc., Data Indexer builds
KeywordToAttribute Mapping for mapping keywords to at-
tributes. Given a keyword query, Template Matcher sug-
gests relevant templates based on the index structures. Then
SQL Generator generates SQL queries from suggested tem-
plates by matching keywords to attributes. Translator & Visualizer
shows SQL statements with graphical representation.

Paper Write Author

title

booktitle

year id

id=pid aid=id

name

id

(a) A suggested template.

Paper Write Author

id

booktitle

year id

id=pid aid=id

paper

σ

ircount

Φ π

name

title

(b) A matching between keywords and attributes.

Figure 6: An example for query “count paper ir”.

4.2 Template Suggestion
Template. The template is used to capture the struc-
tures of SQL queries, e.g., which entities are involved in
SQL queries and how the entities are joined together. A
template is an undirected graph, where nodes represent en-
tities (e.g., Paper) or attributes (e.g., year). An edge be-
tween entities represents a foreign-primary relationship (e.g.,
Paper.id=Write.pid), and an edge between an entity and an
attribute represents that the entity has the attribute. For-
mally, a template is defined as follows.

Definition 1 (Queryable Template). A template is
an undirected graph, GT (VT , ET) with the node set VT and
the edge set ET , where nodes in VT are:

• entity nodes: relation tables, or

• attribute nodes: attributes of entities,

and edges in ET are:

• membership edges: edges between an entity node and
its attribute nodes, or

• foreign-key edges: edges between entity nodes with
foreign keys and the entity nodes referred by them.

In particular, templates with only one entity node are called
atomic-templates.

8

52

For example, Figure 6(a) shows a template which involves
three entities (Paper, Author and Write) and their attributes.
Compared with CNs (trees of joined entities) [12, 11], the
templates can be generated and indexed offline for fast tem-
plate suggestion, and can effectively capture the relevance
between keyword queries and structures.

Template Generation. Given a database, there could
be a huge amount of templates that capture various query
structures. We design a method to generate them using the
schema graph. The basic idea of the method is to expand
templates to generate new templates. To this end, the al-
gorithm firstly generates atomic-templates, and takes them
as bases of template generation. Then, we use an expan-
sion rule to generate new templates: A template can be
expanded to a new template if it has an entity node that
can be connected to a new entity node via a foreign-key
edge. For example, consider an atomic template, P. It can
be expanded to P−W according to the expansion rule. Since
a template may be expanded from more than one template,
we eliminate duplicated templates. Furthermore, we exam-
ine the relationship between relation tables. For example,
since the two relation tables, P and W, have a 1-to-n rela-
tionship, i.e., an instance of W has at most one instance of
P. Hence, the template, P−W−P is invalid.

Table 3: Templates for our example database (γ=5).
Size ID Template

1
T1 P
T2 A
T3 W

2
T4 P − W
T5 A − W

3
T6 P−W−A
T7 W−P−W
T8 W−A−W

4

T9 P−(W,W,W)
T10 A−(W,W,W)
T11 W−P−W−A
T12 W−A−W−P

5
T13 P−W−A−W−P
T14 A−W−P−W−A
.

Apparently, the above-mentioned expansion rule may lead
to a combinatorial explosion of templates. To address this
problem, we employ a parameter γ to restrict the maxi-
mal size of templates (i.e., the number of entities in a tem-
plate), which is also used in CN-based keyword-search ap-
proaches [12, 11]. The motivation here is that templates
with too many entities are meaningless, since the corre-
sponding query structures are not of interests to users. Ta-
ble 3 provides the templates generated for our example database
under γ = 5, where P−(W,W,W) represents that P is con-
nected with three W entities. Even if we restrict the maxi-
mal size of templates, there still are many templates due to
complex relationships between tables. We can devise an ef-
ficient top-k template ranking algorithm to avoid exploring
the entire space of searching templates.

Template Suggestion Model. We propose a scoring func-
tion to measure the relevance between keywords and tem-
plates, which considers two factors: 1) the relevance between
a keyword q and the entity R in a template T , denoted by

Pr(q,R), and 2) the importance of the entity R, denoted by
I(R). Pr(q,R) can be taken as the probability that the en-
tity R contains the keyword q. We use the relative frequency
that R contains q to estimate this probability. We treat the
entity R as a virtual document and estimate the likelihood
of sampling keyword q from the “document” using term fre-
quency and inverse document frequency. In particular, the
virtual document R does not only have words in tuples, but
also contains words in meta-data (e.g., attribute names, en-
tity names, etc.). We use the number of tuples to estimate
Pr(q,R), if q refers to the meta-data of R. The importance
of an entity R in a template T , I(R), is computed using a
graph model. We compute the PageRank of tuples on the
data graph [18], and take the average value as template im-
portance. Given a query Q and a template T , we combine
the two factors to evaluate its score S1(Q,T):

S1(Q,T) =
∑
q∈Q

∑
R∈T

I(R) · Pr(q,R). (1)

Top-k Ranking Algorithm. As the number of templates
could be very large for complex schemas, it is expensive
to enumerate the templates. A straightforward way to ad-
dress this problem is to calculate the ranking score for every
template according to our template ranking model. Un-
fortunately, since the number of templates is exponential,
this approach becomes impractical for real-world databases.
Therefore, an efficient top-k ranking algorithm is rather nec-
essary to avoid exploring all possible templates. To address
this problem, we devise a threshold algorithm (TA) [7] to
compute top-k templates efficiently.

Our basic idea is to scan multiple lists that present dif-
ferent rankings of templates for an entity, and aggregate
scores of multiple lists to obtain scores for each template
(Pr(q,R)). For early termination, the algorithm maintains
an upper bound for the scores of all unscanned templates. If
there are k scanned templates whose scores are larger than
the upper bound, the top-k templates have been found. In-
terested readers are referred to [8] for more details.

4.3 SQL Generation from Templates
Given a query and a template, to generate SQLs, we need

to map each keyword to an attribute in the template. This
section proposes an SQL-suggestion model to suggest SQLs.

SQL Generation Model. To map keywords to a tem-
plate, we construct a set of keyword-to-attribute mappings
between keywords and attributes. A matching is a set of
mappings which covers all keywords. Then we evaluate the
score of each matching, find the best matching with the high-
est score, and generate SQL queries based on the matching.

SQL Ranking. We measure the score of each matching by
considering two factors: 1) the degree of each keyword-to-
attribute mapping in the matching; and 2) the importance
of the mapped attributes. The degree of a mapping from
a keyword q to an attribute A with a type t, denoted as
ρt(q,A), is used to determine whether q is relevant to A.
We consider three types of keyword-to-attribute mappings,
i.e., 1) the selection type (denoted as σ): q refers to data
instances of A; 2) the projection type (denoted as π): q
refers to the name of A; 3) the aggregation type (denoted
as ϕ): q refers to an aggregate function of A. We use the
relative frequency that A contains q to estimate ρσ(q,A)
and ρπ(q,A). ρϕ(q,A) = 1 if q is a function name (e.g.,

9

53

COUNT, MAX).
We employ the entropy to compute the importance of an

attribute A, I(A). Let V = {v1, v2, . . . , vx} denote distinct
values of A and let fi denote the relative frequency that A
has value vi, and I(A) = −

∑x
i=1 fi · log fi.

Combining the two factors, we present the scoring func-
tion as follows. Consider a keyword queryQ = {q1, q2, . . . , q|Q|}
and a set of attributes A = {A1, A2, . . . , An} in a suggested
template T . Let M = {M1,M2, . . . ,M|M|} be a matching
between Q and T , where M ∈ M is a keyword-to-attribute
mapping of keyword qM and attribute AM . The score is

S2(M) =
∑

M∈M

I(AM) · ρt(qM , AM). (2)

Thus we first find the best matching (i.e., an SQL query)
from a template, which can be formulated as a weighted set-
covering problem and can be solved using a polynomial-time
greedy approximation algorithm. Then, we extend the al-
gorithm to generate top-k SQL queries by finding k best
matchings with highest scores in a greedy manner. Inter-
ested readers are referred to [8] for more details.
In summary, given a keyword query, we first find relevant

templates for the keywords using the threshold-based algo-
rithms. Then for each template, we generate corresponding
SQL queries using the keyword-to-attribute mappings.

4.4 Additional Features
We have implemented two prototypes for SQL-based search

on DBLP and DBLife datasets. For example, Figure 1(c)
shows a screenshot of a system on the DBLP dataset. We
describe the main features as follows.

Predicting the query intent from limited keywords:
Unlike existing SQL assistant tools and keyword-search meth-
ods, DBease focuses on predicting the query intent from
keywords and translating them into structured queries. Sup-
pose a user wants to find a paper with title containing “data”
and booktitle containing “icde” which is written by an au-
thor “wang.” After she issues a keyword query “wang data icde”
to the system, the system returns SQL queries, user-friendly
representation, and sample answers instantly. This search
paradigm is more expressive and powerful than the conven-
tional keyword search.

Assisting users to formulate SQL queries efficiently:
To reduce the burden of writing SQL queries without the loss
of expressiveness, we propose an effective ranking mecha-
nism to suggest the most relevant SQL queries to users. Sup-
pose that a user issues a query “count person stanford,”
she would be presented with the following SQL queries: (i)
Find the number of people whose organization is Stanford;
(ii) Find the number of people who give talks to Stanford;
(iii) Find the number of people who are related to Stanford.
The above SQL queries are useful for users to navigate the
underlying data, and can reduce the burden of posing queries
from several complex SQL statements to 3 keywords.

Improving the effectiveness of data browsing: Users
can browse the data by typing keywords and selecting sug-
gested SQL queries. In our systems, the answers are natu-
rally organized based on their corresponding SQL queries.
Each SQL query represents a group of records with the same
structure, which could help users find similar and relevant
records in one group and browse other potentially relevant
records in other groups.

5. EXPERIMENTAL RESULTS
We have implemented our techniques on several real datasets,

PubMed7, DBLP8, IMDB9, and DBLife10.
All the codes were implemented in C++. We conducted

the experiment on a Ubuntu machine with an Intel Core 2
Quad X5450 3.00GHz CPU and 4 GB RAM.

5.1 Improving Keyword Search
We evaluated the performance of search-as-you-type by

varying the edit-distance threshold τ . We used two datasets:
DBLP and PubMed. We selected 1000 queries from query
logs from our deployed systems. We implemented our best
algorithms and computed the answers in two steps: (1) com-
puting similar prefixes, and (2) computing answers based on
similar prefixes. Figure 7 shows the results. Our methods
could answer a query within 50 ms. The variant of our
method was about 8 ms.

 0

 10

 20

 30

 0 1 2 3
A

vg
 S

ea
rc

h
T

im
e

(m
s)

Edit-Distance Threshold (τ)

Compute Answers
Find Similar Words

(a) DBLP

 0

 10

 20

 30

 40

 50

 60

 0 1 2 3

A
vg

 S
ea

rc
h

T
im

e
(m

s)

Edit-Distance Threshold (τ)

Compute Answers
Find Similar Words

(b) MEDLINE

Figure 7: Efficiency of search-as-you-type.

5.2 Improving Form­based Search
We evaluated the performance of form-based search. We

used two datasets: DBLP and IMDB. We used a workload
of 40 thousand queries collected from our deployed system.
Figure 8 shows the comparison of average search time per
query of four algorithms: (1) SL-BF, which uses Single-
List tries and Brute-Force synchronization (do synchroniza-
tion for each keystroke), (2) SL-OD, which uses Single-List
tries and On-Demand synchronization (do synchronization
when search focus is changed), (3) DL-BF, which uses Dual-
List tries and Brute-Force synchronization, and (4) DL-OD,
which uses Dual-List tries and On-Demand synchronization.

 0

 20

 40

 60

 80

 100

 120

 140

A
vg

. q
ue

ry
 ti

m
e

(m
s.

) SL-BF
SL-OD
DL-BF
DL-OD

Figure 8: Efficiency of form-based search (IMDB).

We can see that both the dual-list tries and on-demand
synchronization can improve the search speed. If we use
these two together, the DL-OD algorithm can answer a query
within 50 milliseconds. Moreover, compared with search-as-
you-type, this method supports on-the-fly faceted search.

7
http://www.ncbi.nlm.nih.gov/pubmed

8
http://dblp.uni-trier.de/xml/

9
http://www.imdb.com/interfaces

10
http://dblife.cs.wisc.edu/

10

54

5.3 Improving SQL­based Search
We evaluated effectiveness and efficiency of our method

(SQLSugg) and compared with Discover-II [11]. We used
two datasets: DBLP and DBLife. We selected ten queries
for each dataset [8]. We evaluated the precision of template
suggestion (Figure 9(a)) and that of returned answers (Fig-
ure 9(b)) on the DBLife dataset. We see that our method
outperforms Discover-II significantly. For example, the
precision of our method is much better than that of Discover-
II. The improvement of our method is due to the following
reasons. Firstly, compared with Discover-II, our method
allows users to search the meta-data (i.e., names of rela-
tion tables, or attributes), while Discover-II only supports
full-text search. Secondly, we group the answers based on
structures and employ a more effective ranking function.
We examined the efficiency of our SQL suggestion meth-

ods, and compared the query time with Discover-II. Fig-
ure 9(c) shows the experiment results on the DBLife dataset.
The results show that our methods outperform Discover-
II significantly. For example, consider the query time for a
keyword query with length 6 in Figure 9(c). Our method
outperforms Discover-II by an order of magnitude. More-
over, the query time of our method is very stable, and is
always smaller than 100 milliseconds. It indicates that our
method can suggest SQL queries in real time.
The improvement of our methods is mainly attributed to

the top-k template ranking algorithm. Discover-II exploits
a keyword-to-attribute index to find tuple sets that may
contain query keywords, and on-the-fly generates candidate
networks. Since the amount of candidate networks could be
large, especially for complex schemas, Discover-II is inef-
ficient to generate all candidate networks. For example, the
query time of Discover-II is hundreds of milliseconds on
the DBLife dataset with 14 tables. In contrast, our method
focuses on suggesting top-k templates according to our rank-
ing model. The result shows that the algorithm is very effi-
cient and can suggest template in real time.

5.4 Scalability
We tested the scalability of our methods for different search

paradigm. Figure 10 shows the scalability of efficiency of our
methods. We see the search time increased linearly as the
dataset increased. All average search time is less than 60
milliseconds and the variant is about 10 milliseconds. The
index size also increased linearly as the dataset increased,
as shown in Figure 11.

6. CONCLUSION
In this paper, we have studied a new search methodDBease

to make databases user-friendly and easily accessible. We
developed various techniques to improve keyword search,
form-based search, and SQL-based search for enhancing user
experiences. Search-as-you-type can help users on-the-fly
explore the underlying data. Form-based search can provide
on-the-fly faceted search. SQL suggestion can help various
users to formulate SQLs based on limited keywords.
We believe this study on making databases user-friendly

and easily accessible opens many new interesting and chal-
lenging problems that need further research investigation.
Here we give some new open research problems.

Supporting Ranking Queries Efficiently: Our proposed
techniques need to first compute all candidates and then
rank them to return the top-k answers. If there are larger

numbers of answers, these methods are expensive. To ad-
dress this problem, it calls for new techniques to support
ranking queries efficiently. Different from traditional search
paradigm, in search-as-you-type, there are multiple corre-
sponding complete keywords and inverted lists for each pre-
fix keyword. Existing threshold-based methods [7] need to
scan the elements in each inverted list to compute the top-k
answers and they are expensive if there are large numbers
of inverted lists. We have an observation that some inverted
lists can be pruned if the corresponding complete keywords
are not very relevant. Especially, we can prune the inverted
lists of complete keywords with larger edit distances. Thus
we have an opportunity to prune some inverted lists and
thus improve the search performance for ranking queries.

Supporting Non-string Data Types: Our proposed tech-
niques only support string data types and do not support
other data types, such as Integer and Time. Consider the
case where we have a publication database, and a user types
in a keyword “2001”. Based on edit distance, we may find
a record with a keyword “2011”. On the other hand, if we
knew this keyword is about the year of a publication, then
we may relax the condition in a different way with edit dis-
tance, e.g., by finding publications in a year between 1999
and 2002. This kind of relaxation and matching depends on
the data type and semantics of the corresponding attribute,
and requires new techniques to do indexing and searching.
Similarly, to support approximate search, we also want to
support other similarity functions, such as Jaccard.

Supporting Personalized Search: Different users may
have different search intentions, and it is challenging to sup-
port personalized search for various users. We can utilize
user query logs and mine search interests for different users
so as to support personalized search.

Client Caching: We can not only support server caching,
but also use client caching to improve search performance.
We can cache results of users’ previous queries and use the
cached results to answer subsequent queries. However it is
very challenging to support client cache, since it is hard to
predicate subsequent queries of users. We need to study how
to cache previous queries and corresponding results.

7. ACKNOWLEDGEMENT
This work is partly supported by the National Natural

Science Foundation of China under Grant No. 61003004 and
No. 60873065, the National High Technology Development
863 Program of China under Grant No. 2009AA011906, the
National Grand Fundamental Research 973 Program of China
under Grant No. 2011CB302206, and National S&T Major
Project of China.

8. REFERENCES
[1] H. Bast, A. Chitea, F. M. Suchanek, and I. Weber.

Ester: efficient search on text, entities, and relations.
In SIGIR, pages 671–678, 2007.

[2] H. Bast and I. Weber. Type less, find more: fast
autocompletion search with a succinct index. In
SIGIR, pages 364–371, 2006.

[3] H. Bast and I. Weber. The completesearch engine:
Interactive, efficient, and towards ir& db integration.
In CIDR, 2007.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using banks. In ICDE, pages 431–440, 2002.

11

55

 20

 30

 40

 50

 60

 70

 80

 90

 100

0 10 20 30 40 50 60 70 80 90 100

In
te

po
la

te
d

Pr
ec

is
io

n
(%

)

Recall (%)

SQLSUGG
DISCOVER-II

(a) Effectiveness of template suggestion.

 0

 20

 40

 60

 80

 100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

A
ve

ra
ge

 P
re

ci
si

on
(%

)

Keyword Query

SQLSUGG
DISCOVER-II

(b) Effectiveness of record retrieval.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

2 3 4 5 6

Q
ue

ry
 T

im
e

(m
s)

of query keywords

SQLSUGG
DISCOVER-II

(c) Efficiency comparison.

Figure 9: Evaluation of SQL-based Search on the DBLife data set.

 0

 10

 20

 30

 40

 50

 60

43.532.521.510.50

A
vg

 S
ea

rc
h

T
im

e(
m

s)

of records (* million)

Edit-Distance Threshold=2
Edit-Distance Threshold=1
Edit-Distance Threshold=0

(a) Keyword Search (PubMed)

 0
 5

 10
 15
 20
 25
 30
 35
 40

0.2 0.4 0.6 0.8 1.0 1.2

A
vg

 S
ea

rc
h

T
im

e
(m

s)

of records (* million)

Form-based Search

(b) Form-based Search (DBLP)

 0

 5

 10

 15

 20

 25

 30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
vg

 S
ea

rc
h

T
im

e
(m

s)

of records (* million)

keywords = 3
keywords = 4
keywords = 5

(c) SQL-based Search (DBLP)

Figure 10: Scalability of search performance.

 0

 200

 400

 600

 800

 1000

 1200

 0.5 1 1.5 2 2.5 3 3.5 4

In
de

x
S

iz
e

(M
B

)

of records (*million)

Forward Lists
Inverted Lists

Trie

(a) Keyword Search (PubMed)

 0

 100

 200

 300

 400

 500

1.21.00.80.60.40.2

In
de

x
S

iz
e

(M
B

)

of records (*million)

Form-based Search

(b) Form-based Search (DBLP)

 0

 20

 40

 60

 80

 100

1.00.90.80.70.60.50.40.30.20.1

In
de

x
S

iz
e

(M
B

)

of records (*million)

SQL

(c) SQL-based Search (DBLP)

Figure 11: Scalability of index size.

[5] M. Celikik and H. Bast. Fast error-tolerant search on
very large texts. In SAC, pages 1724–1731, 2009.

[6] S. Chaudhuri and R. Kaushik. Extending
autocompletion to tolerate errors. In SIGMOD
Conference, pages 707–718, 2009.

[7] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
2001.

[8] J. Fan, G. Li, and L. Zhou. Interactive sql query
suggestion: Making databases user-friendly. In ICDE,
2011.

[9] K. Grabski and T. Scheffer. Sentence completion. In
SIGIR, pages 433–439, 2004.

[10] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks:
ranked keyword searches on graphs. In SIGMOD
Conference, 2007.

[11] V. Hristidis, L. Gravano, and Y. Papakonstantinou.
Efficient ir-style keyword search over relational
databases. In VLDB, pages 850–861, 2003.

[12] V. Hristidis and Y. Papakonstantinou. Discover:
Keyword search in relational databases. In VLDB,
pages 670–681, 2002.

[13] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive
fuzzy keyword search. In WWW, pages 371–380, 2009.

[14] K. Kukich. Techniques for automatically correcting

words in text. ACM Comput. Surv., 24(4):377–439,
1992.

[15] G. Li, J. Feng, and L. Zhou. Interactive search in xml
data. In WWW, pages 1063–1064, 2009.

[16] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead
search on relational data: a tastier approach. In
SIGMOD Conference, pages 695–706, 2009.

[17] G. Li, S. Ji, C. Li, J. Wang, and J. Feng. Efficient
fuzzy type-ahead search in tastier. In ICDE, pages
1105–1108, 2010.

[18] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease:
an effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data. In
SIGMOD Conference, pages 903–914, 2008.

[19] H. Motoda and K. Yoshida. Machine learning
techniques to make computers easier to use. Artif.
Intell., 103(1-2):295–321, 1998.

[20] A. Nandi and H. V. Jagadish. Effective phrase
prediction. In VLDB, pages 219–230, 2007.

[21] H. E. Williams, J. Zobel, and D. Bahle. Fast phrase
querying with combined indexes. ACM Trans. Inf.
Syst., 22(4):573–594, 2004.

[22] H. Wu, G. Li, C. Li, and L. Zhou. Seaform:
Search-as-you-type in forms. PVLDB, 3(2):1565–1568,
2010.

12

56

