Microsoft

Hyder — A Transactional Record
Manager for Shared Flash

Philip A. Bernstein, Microsoft Corporation
Colin Reid, Microsoft Corporation
Sudipto Das, UC Santa Barbara

CIDR 2011
January 10, 2011

© 2011 Microsoft Corporation

Hyder: The Big Picture

* Goal: Enable scale-out without partitioning DB or app

TN

e Store the whole DB in flash

— which is accessible to all servers
— via a fast data center network

 Main architectural features
— Uses a log-structured DB in flash
— Broadcast log to all servers
Hyder Log \ — Roll forward log on all servers
— Optimistic concurrency control

Network)

e There’s no cross-talk between servers
— Hence, Hyder scales-out without partitioning

What is Hyder?

An incubation, i.e. research project.

A software stack for transactional record management

e Stores [key, value] pairs, which are accessed within transactions

Functionality
* Record operations:
— Insert, Delete, Update, Get where field = X; Get next

 Transactions: Start, Commit, Abort

Why build another one?
* Exploit flash memory and high-speed networks
to simplify scaling out large-scale web services

Scaling Out with Partitioning

Web Server

Web Server § Web Server

Database
Partition

Database
Partition

Database is partitioned across
multiple servers

Each query is sent to the
appropriate partition(s)

For scalability, avoid distributed
transactions

Cross partition consistency is
enforced in the application

Hard to provision servers and
distribute load evenly

Hyder Scales Out Without Partitioning

7N

Web
Server Server

e

Network

Server

[

Hyder Log

In Hyder, the log is the database
All servers can access the log
No partitioning is required

Database is multi-versioned, so
server caches are trivially coherent

Hence, can parallelize a query with
consistency across servers

And servers can fetch pages from
the log or from neighboring
servers’ caches

Hyder Runs in the Application Process

Network

Hyder Log

No distributed programming

No distributed caches for the
app to keep consistent

Avoids the expense of RPC’s to a
database server

Simple high performance
programming model

Enabling Hardware Assumptions

Flash offers cheap and abundant I/O operations

—> Can spread the DB across a log, with less physical
contiguity

Cheap high-performance data center networks

= Many servers can share storage, with high performance

Large, cheap, 64-bit addressable memories

— Reduces the rate that Hyder needs to access the log

Many-core web servers

—> Hyder can afford to roll forward the log on all servers

=l

AY4 AY4 h

Transaction
Layer

VAS J _)
4 \(\(3
Indexed Record

Layer

T N

4 N/ N\ 7 N\
Scalable Reliable

Storage Layer

_ 7\ J _ J

The Hyder Stack

ISAM, SQL, LINQ, etc.

Optimistic transaction protocol

Multi-versioned search tree

Segments, stripes and streams

Append-only custom controller interface

Database is a Search Tree

In this paper, it’s a binary search tree.

Binary
G m <:| Search

@ G 0 Tree

Tree is marshaled into the log

QO-OR 000 |

Binary Tree is Multi-versioned

* Copy on write
* To update a node, replace nodes up to the root

. /_\
(G ©
(B (H) (B
OBRG \ @
(D) >(0)
Update

D’s value

Transaction Execution

e Each server has a cache of the last committed database state

e Atransaction reads a snapshot and writes an intention log record

DB cache

Transaction execution

--lt-|-1. Get pointer to snapshot 7
2. Generate updates locally -’
3. Append intention log record -

= -
=
—__~~
=
—
—
-~

(B OO DL 2o+ |@DC-EC
K """" - Snapshot

11

Log Updates are Broadcast

Read
. snapshot

Transaction
Intention

7

Broadcast
intention

w

Broadcast

— ack

Scalable Rellabl D strlbuted Log <

ash FI h
Fias

i
- =
il
-
s
I
. e

Fsh
Flash Flash

ol =
i
ol =
i

o
g
o
2

=
L
g

%@ al:i*:

il
o

g

i) 2
BeE

sl

i

il
Q\H Ellir
il

12

Transaction Commit

e Each server rolls forward transactions in log sequence

* When it processes an intention log record,

— it checks whether the transaction experienced a conflict

— if not, the transaction committed and the server merges the
intention into its last committed state

e All servers make the same commit/abort decisions

Did a committed transaction write
into T’s readset or writeset here?

T’s conflict

% zone

transaction T

D Ox6;01050;:0)

-~y
--~
--
h-

Snapshot

13

Performance
Bottleneck Analysis

 There are 4 bottlenecks in the update pipeline

1
2.
3.
4

100K log-appends/second, assuming 20-way parallel flash storage
Broadcast 67K update transactions/second over 10 Gb Ethernet
Meld can do up to 400K update transactions/second

Opt CC: Abort rate depends on conflict probability and txn latency

— Suppose transaction latency is 200 ps
— If all txns conflict, best case SR execution is serial ==> 5000 TPS

— With random arrivals ==> ~ 1600 update TPS

14

Throughput with High Data Contention

 8reads, 2 writes per transaxn ¢ Assume the network, log,

* 99% of ops access 1% of data
* Serializable isolation

N iay o2 N
& o (@) N

Throughput (K tps)

(00

and meld can perform
100K intentions/sec

DB-Size-100K
DB-Size-50K
............. A R:W=1:1, DB-100K

'\

Offered Load (K tps)

_ — a = — —ATxnSize-20, DB-100K
DB-Size-10K
I 1
70 80

15

Thrashing due to Resource Contention

* Thrashing occurs when exceeding the maximum resource
throughput of 100K/second

100 - 500
=)
_g- 80 - 400 é
@ o
c
-g — 60 —+—Hot95-5 " 300 &
- 8 ——Hot80-20 3
: []
S 40 —=Uniform - 200 S
o Latency : S
n (7]
c 20 _ ~ 100 c
E m
= =
O N B — | I | O

95 97 99 101 103 105
Offered Load (K tps)

16

Major Technologies

Flash is append-only. Custom controller has
mechanisms for synchronization & fault tolerance

Storage is striped, with a self-adaptive algorithm
for storage allocation and load balancing

Fault-tolerant protocol for a totally ordered log

Fast meld algorithm to detect conflicts and merge
intention records into last-committed state

17

Summary of Contributions

A new data-sharing architecture for scaling out without
partitioning.

A fault-tolerant append-only log that arbitrates
concurrent appends by independent servers.

A log-structured multiversion binary-search-tree index.

An efficient meld algorithm to detect conflicts & merge
committed updates into the last-committed state.

A simulation analysis of the Hyder architecture under a
variety of workloads and system configurations.

18

Errata for the paper

* |n the 5th paragraph of Section 2.3 on sliding
window striping, “AppendStripe” should be

“AppendPage”.
* Also, the following paper should have been

included as related work:

— Radu Stoica, Manos Athanassoulis, Ryan Johnson,
Anastasia Ailamaki: Evaluating and repairing write
performance on flash devices. DaMoN 2009: 9-14

19

