Megastore: Providing Scalable,
Highly Available Storage for
Interactive Services

J. Baker, C. Bond, J.C. Corbett, JJ Furman, A. Khorlin,
J. Larson, J-M Léon, Y. Li, A. Lloyd, V. Yushprakh
Google Inc.

CIDR 2011 Jan. 12 2011 ,~ 1
GO glt

With Great Scale Comes Great
Responsibility

e A billion Internet users
o Small fraction is still huge

e Must please users
o Bad press is expensive - never lose data
o Support is expensive - minimize confusion
o No unplanned downtime
o No planned downtime
o Low latency

e Must also please developers, admins

GO0 gle

Making Everyone Happy

Easy
deployment
Happy
Admins
HA,
policy
Wide-Area
Replication
HA,
low latency

Automatic
management
Scalable
ACID
Transactions
good
experience
Happy
Users

Happy

Developers

read-modify-write

Google

Technology Options

Scalable

Eventual
Consistency

Bigtable Clustering

?

MySQL
Failover

ACID
Transactions

Wide-Area
Replication

Quaorum
Voting

GO0 81@""

Technology Options

Scalable
Eve

ntual Bigtable Clustering
ist

Viegasie r@

Wide-Area
Replication Co nsuste nt

Google

Megastore

e Started in 2006 for app development at Google

e Service layered on:
o Bigtable (NoSQL scalable data store per datacenter)
o Chubby (Config data, config locks)

e Turnkey scaling (apps, users)

e Developer-friendly features

e \Wide-area synchronous replication
o partition by "Entity Group"

GO0 gle

Entity Groups

Entity Groups are sub-databases

(()(0(0(0\\/

— oy

Entity Groups

Cheap transactions within an entity group (common)

e
S
e
S ————
—
B
=

— oy R

Entity Groups

Expensive or loosely-consistent operations across Entity

Groupw

/

==
S
e
S ————
N —
R
—

Scale Axis vs. Wide Replication Axis

Entity Groups /

partition the —*
datastore

Each entity group

is synchronously

replicated across
datacenters

Datacenters

N

TN
N

.

} ACID semantics

within an entity group

| Looser consistency
across entity groups

—

<——— Bigtables in each

H

Datacenter

GO0 81@""

Entity Group Mapping Examples

e Applications must choose their partitioning
e Common operations within an EG

Application [Entity Groups |Cross-EG Operations

Email User accounts |none (out-of-system)

Blogs Users, Blogs |Access control, notifications,
global indexes

Mapping Local patches |Patch-spanning ops (2PC)

Social Users, Groups |Messages, bi-directional
relationships, notifications

Resources |Sites Shipments

O

Achieving Technical Goals

Scale

e Bigtable within a datacenter
e Easy to add Entity Groups (storage, throughput)

ACID Transactions

e \Write-ahead log per Entity Group
e 2PC or Queues between Entity Groups

Wide-Area Replication
e Paxos
e Tweaks for optimal latency

GO gle

Paxos: Quorum-based Consensus

"While some consensus algorithms, such as Paxos,
have started to find their way into [large-scale
distributed storage systems built over failure-prone
commodity components], their uses are limited
mostly to the maintenance of the global configuration
iInformation in the system, not for the actual

data replication."

-- Lamport, Malkhi, and Zhou, May 2009

GO gle

Paxos: Megastore Tweaks

e Replicates transaction log entries on each write
e Writes: one WAN round-trip (avg.)
e Strong Reads: zero WAN round-trips (avg.)

o per-replica bitmap invalidated on faults

e Reads/Writes from any replica (no master)
o no pipelining: limited per-EG throughput
o batching will improve throughput

e Background scanners finish all operations

GO gle

Comparison with Other Approaches

NoSQL Megastore RDBMS
Minimal features |Scalable Full-featured
features
Highly scalable Highly scalable |Medium scale with effort

PK lookup and

Indexes, scans,

Storage abstraction,

consistency

consistency

scan physical complex query planning
clustering and execution
Limited/eventual Partitioned Global consistency

Goog

Features

e Declarative schema
e Serializable Transactions (within Entity Group)
e Queues and 2PC (between Entity Groups)
e Indexes
o declared fields
o full-text
e Online backup and restore
e Built-in encryption and compression

GO0 gle

Omissions (current)

e (currently) No query language

o Apps must implement query plans

o Apps have fine-grained control of physical placement
e (currently) Limited per-Entity Group update rate

GO0 gle

Is Everybody Happy?

Admins
e linear scaling, transparent rebalancing (Bigtable)
e instant transparent failover
e symmetric deployment

Developers
e ACID transactions (read-modify-write)
e many features (indexes, backup, encryption, scaling)
e single-system image makes code simple
e little need to handle failures

End Users
e fast up-to-date reads, acceptable write latenc

e consistency C L) 8 | C

Take-Aways

e Sync WAN replication on each write
e Constraints acceptable to most apps
o EG partitioning
o High write latency
o Limited per-EG throughput
e Turnkey scaling achieved
o >100 apps
o >3 billion writes/day
o >20 billion reads/day
o ~1PB data (before index, replication)
o Most apps get carrier-grade (five 9's) availability
e |n production use for over 4 years

GO0 gle

For more information

e Read our full paper
e Become a Megastore customer:

o Use Google App Engine ("high replication")
e Ask a question...

GO0 gle

Extra Slides

Google

Megastore Architecture

Replica A (full) Replica B (full) Replica C
- ~ P \ (witness)
App Server App Server
Megastore Library Megastore Library
J

| l \\-\
Replication Replication Replication
Server [e] Server [e] \1 Server

Bigtable Bigtable Bigtable

Logs + Data Logs + Data Logs

Google

Why Not Lots of RDBMS's?

e Functional

o Need a place to store global and full-text indexes
e Space and Time

o Create new local EG in ~10ms

o Overhead of <1KB per EG
e Administration

o Load-rebalancing

o Fault recovery

o Monitoring

o Operational team

GO0 gle

Schema

CREATE SCHEMA PhotoApp;

CREATE TABLE User {

required int64 user_id;

required string name;

} PRIMARY KEY (user_id), ENTITY GROUP ROOT;

CREATE TABLE Photo {

required int64 user_id;

required int32 photo_id;

required int64 time;

required string full url;

optional string thumbnail url;

repeated string tag;

} PRIMARY KEY/(user_id, photo_id), IN TABLE User,
ENTITY GROUP KEY (user_id) REFERENCES User;

CREATE LOCAL INDEX PhotosByTime ON Photo(user _id, time);
CREATE GLOBAL INDEX PhotosByTag ON Photo(tag) STORING (thumbnail url);

(50 .ghzs“‘

Locality

e Bigtable

o column-oriented storage
o faster access to nearby rows

Row key User.name |Photo.time [Photo.tag Photo.url Photo.-I.
PhotosByTime

101 John

101,500 12:30:01 Dinner, Paris |http://...

101,502 12:15:22 |Betty, Paris |http://...

101,12:15:22,502 X

101,12:30:01,500 X

102 Mary

GOoOgle

Timeline of read algorithm

Replica C

Client Coordinator A Replica A Replica B
| Check Coordinator
Find Pos Optional Majority Read
i::::::::I:I::::ZZI:::::j::::::IZ::::::I:::;:Z::::::I:I:::Z:Z ________________________
Catchup Get Logs
e_______________i|_‘
> Apply Logs
Validate
1 e
Query Data R

Timeline of write algorithm

Client Replica A Replica B Replica C Coordinator C
| Accept Leader | '

Optional Prepére Messages |

__

Operations Across Entity Groups

Entities (units of data)
|
Most transactions)
are within a single 120 Entity Group 1
entity group Local _....,O\
Index |—
N SN
Cross entity group \\ Global Indexes
transactions supported via receive | Span entity
Two-Phase Commit send——qiais groups but have
4 - weaker
%/ consistency

[_‘
Asynch communication Local|—
Index |—

between entity groups -
supported by Queues |

Entity Group 2

Google

AN

