
How to Fit when No One Size Fits

Harold Lim
Duke University

harold@cs.duke.edu

Yuzhang Han
Duke University

yuzhangh@cs.duke.edu

Shivnath Babu
Duke University

shivnath@cs.duke.edu

ABSTRACT
While “no one size fits all” is a sound philosophy for system de-

signers to follow, it poses multiple challenges for application de-

velopers and system administrators. It can be hard for an applica-

tion developer to pick one system when the needs of her applica-

tion match the features of multiple “one size” systems. The choice

becomes considerably harder when different components of an ap-

plication fit the features of different “one size” systems. Consider-

able manual effort goes into creating and tuning such multi-system

applications. An application’s data and workload properties may

change over time, often in unpredictable and bursty ways. Conse-

quently, the “one size” system that is best for an application can

change over time. Adapting to change can be hard when applica-

tion development is coupled tightly with any individual “one size”

system.

In this paper, we make the case for developing a new breed of

Database Management Systems that we term DBMS+. A DBMS+

contains multiple “one size” systems internally. An application

specifies its execution requirements on aspects like performance,

availability, consistency, change, and cost to the DBMS+ declar-

atively. For all requests (e.g., queries) made by the application,

the DBMS+ will select the execution plan that meets the applica-

tion’s requirements best. A unique aspect of the execution plan in a

DBMS+ is that the plan includes the selection of one or more “one

size” systems. The plan is then deployed and managed automati-

cally on the selected system(s). If application requirements change

beyond what was planned for originally by the DBMS+, then the

application can be reoptimized and redeployed; usually with no ad-

ditional effort required from the application developer.

The DBMS+ approach has the potential to address the chal-

lenges that application developers and system administrators face

from the vast and growing number of “one size” systems today.

However, this approach poses many research challenges that we

discuss in this paper. We are taking the DBMS+ approach in a

platform, called Cyclops, that we are building for continuous query

execution. We will use Cyclops throughout the paper to give con-

crete illustrations of the benefits and challenges of the DBMS+ ap-

proach.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.

6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)

January 6-9, 2013, Asilomar, California, USA.

1. INTRODUCTION
The “no one size fits all” philosophy of system design has led

to a variety of systems being developed in recent years. Examples

include NoSQL systems, column-stores, MapReduce, data stream

managers, complex event processors, in-memory databases, and

others. While “no one size fits all” is a sound philosophy for sys-

tem designers to follow, it poses challenges for the application de-

veloper or system administrator under three situations:

• More choices could mean harder decisions: All too often, the

features of multiple “one size” systems may fit the primary

needs of an application. The application developer can have

a tough time deciding which system to use: should she use a

SQL system or a NoSQL system? within NoSQL, should she

use a key-value store or a column-family-oriented system or a

document-oriented database? and so on. Benchmarking differ-

ent systems is not easy, especially when the application has not

been developed fully.

• Jack of all trades or the masters of each? Sometimes an ap-

plication can have multiple components that have very differ-

ent execution requirements. (Illustrative examples are given

shortly.) In these cases, the application developer has to de-

cide whether to use one system that best matches these differ-

ent requirements or to use multiple “one size” systems that are

individually best for the various components of the application.

The system administrator may prefer the single-system option

because she has less systems to manage. However, the multi-

system option may give superior performance.

• Change is inevitable: The execution requirements of an ap-

plication can change significantly over time, sometimes unpre-

dictably. A fairly common scenario today is one where an ap-

plication becomes very popular over a short time period, and

its workload increases by many orders of magnitude. In such

cases, different “one size” systems may be best for the appli-

cation at different points of time. If application development

is coupled tightly with an individual “one size” system, then

dealing with change can be slow and hard.

Let us consider behavioral targeting (BT) as an illustrative appli-

cation. BT enables customized Web pages or advertisements to

be shown to each user based on her past and current interactions

with one or more Web sites [15, 59]. One major component of BT

involves learning statistical machine-learning models for possibly

millions of users from the terabytes of logs containing impressions

(when a user is shown an advertisement), clicks (when a user clicks

on an advertisement or URL), and searches. Another major compo-

nent of BT involves using these models in conjunction with recent

user activity to generate customized content in real-time. The first

component matches the features provided by systems like parallel

OLAP databases [39, 47, 53], MapReduce [26, 31, 21], column-

Relational Non-relational

Analytic Hadoop

Dryad

MapReduce

Mapr

Brisk

 Hadapt

Teradata Aster

 RainStor

EMC Greenplum

HP Vertica

SAP Sybase IQ IBM Netezza

Infobright Calpont

Operational SAP HANA
Oracle IBM DB2 SQL Server

MySQL PostgreSQL

Big tables Graph

Neo4J
NoSQL

DataStax Enterprise

 DEX

OrientDB

 Hypertable

 HBase

AppEngine

Datastore

Cassandra

NuvolaBase

Key value

 LevelDB

 Riak

 Redis

 Voldemort
-as-a-Service

DynamoDB
SimpleDB

Sap Sybase ASE

EnterpriseDB

Document

 Lotus Notes

Cloudant MongoHQ
CouchBase

 MongoDB

RavenDB

-as-a-Service
Amazon RDS

 Google Cloud SQL

SQL Azure

ClearDB

 FathomDB

Database.com

NewSQL

Search

Solr
Lucene Xapian

ElasticSearch Sphinx

-as-a-Service
StormDB

Xeround

New databases
MemSQL

SQLFire VoltDB

NuoDB

Clustrix SchoonerSQL GenieDB

Drizzle

Storage engines
ScaleDB

MySQL Cluster
Tokutek

Clustering/sharding ScaleArc

ScaleBase Continuent

Streaming

Storm

Muppet

Esper

Borealis

Gigascope

DataCell

Truviso

STREAM

S4

Oracle CEP

DejaVu

SQLStream
StreamBase

MapReduce Online

Dremel Impala

In-memory

Spark Shark Platfora GridGrain

HyperDex

MarkLogic InterSystems

Versant Starcounter

Progress

Druid

Figure 1: A categorization of the variety of data systems available, many of which have been developed in recent years. This figure is

an extension to a figure given in [7].

family-oriented systems [40, 61], and in-memory analytics systems

[52, 64]. The second component is a better match for low-latency

systems like key-value stores [14, 27], sharded database clusters

[41, 50, 62], and data stream processors [2, 23, 56, 9].

Another illustrative application creates the reports shown to the

people who advertise on social networks, search engines, and mi-

croblogs [38]. One component of this application, by processing

click and impression logs in real-time, shows advertisers how their

advertising dollars are being spent. This component requires the

generation of results in a predictable fashion and with low latency

so that advertisers can adjust their advertising campaigns quickly

when needed. Aggregate (approximate) results are acceptable here.

At the same time, a second component is billing advertisers for user

clicks. Here, advertisers want 100% accuracy, and care much less

about low-latency results.

The above two examples come from a growing class of applica-

tions where different components of an application fit the features

of different “one size” systems. In addition, the primary needs of

any individual application component may also match the features

of multiple “one size” systems. Considerable manual effort goes

into creating, tuning, and maintaining these multi-system applica-

tions today. In addition, it becomes nontrivial to keep the appli-

cations running smoothly as data, workload, and system properties

change over time, often in unpredictable and bursty ways.

One research approach to tackle this problem is to take a “one

size” system that is designed to do X , and then study how the sys-

tem can also be made to do Y with or without significant modifica-

tions. Some recent examples of this approach include: (i) MapRe-

duce Online, which adds pipelining and stream processing capa-

bilities to the batch-oriented MapReduce [18]; (ii) Online Aggre-

gation for MapReduce, which adds approximate answering capa-

bilities to MapReduce [46]; and (iii) HadoopDB, which enhances

MapReduce’s performance for SQL query processing while retain-

ing MapReduce’s fault-tolerance and fine-grained adaptivity [3].

In this position paper, we make the case for a different approach

that calls for developing a new breed of Database Management

 Application and Execution Requirements

…

User

Compute

System 1

…

DBMS+

Compute

System 2

…

Compute

System N

…

…

Storage

System 1

…

Storage

System M

…

Resource Manager (deploys execution plans on cluster resources)

Optimizer (generates multi-system execution plans)

Figure 2: An architectural overview of a DBMS+.

Systems that we term DBMS+.1 Figure 2 is an illustration of a

DBMS+. An application interacts with a DBMS+ like it interacts

with any conventional DBMS. For example, the application may

issue SQL queries. However, there is one crucial difference. In a

DBMS+, the execution requirements for the application—e.g., tol-

erable latency bounds on query performance or desired recovery

time under faults—are also specified declaratively along with the

application.

A traditional DBMS usually has one execution engine and one

storage engine. Typically, these two engines are coupled tightly

with each other, and are not usable individually. In contrast, a

DBMS+ contains multiple “one size” compute and storage systems

internally. Like the query optimizer in a DBMS, the Optimizer in

the DBMS+ (see Figure 2) has the responsibility of determining

the best execution plan to serve requests made by the application.

1The name DBMS+ represents “Data Management System for

Multiple Systems.” The S+ notation is a use of regular expression
syntax to denote one or more systems.

A novel aspect of the execution plan in a DBMS+—which is an-

other key difference between a DBMS and a DBMS+—is that the

plan includes the selection of one or more “one size” compute and

storage systems that can best serve the application’s requirements.

Broadly speaking, a DBMS+ commoditizes compute and storage

systems and treats them in the same way that a DBMS will treat a

physical operator like an index scan or a hash join.

The Resource Manager in the DBMS+ is responsible for deploy-

ing the execution plan on cluster resources by running the “one

size” systems selected by the plan. The execution of the plan is

monitored and managed automatically. If application requirements

were to change beyond what was planned for originally by the

DBMS+ Optimizer, then the application can be reoptimized and

redeployed; usually with no additional effort required from the ap-

plication developer.

Some crucial trends favor the DBMS+ approach. First, system-

independent, declarative languages like SQL continue to be pre-

ferred by application developers for applications to interact with

data systems compared to low-level or system-specific approaches

like MapReduce and programming languages. Second, data is get-

ting stored more and more in system-independent serialization for-

mats like Avro and Protocol Buffers [49]. System independence of

query languages and data gives the DBMS+ the freedom to choose

the best system for execution and to migrate execution across sys-

tems as needed. The third trend is the growing popularity of database-

as-a-service where application developers only care about getting

their requirements met and not which database is used. Providers

of database-as-a-service can use the DBMS+ approach to reduce

overall costs. A DBMS+ has the advantage that each of the indi-

vidual systems can be developed and improved independently as

long as the system’s external interfaces are preserved.

At the same time, the DBMS+ approach poses a number of re-

search challenges:

• Which “one size” compute and storage systems should be in-

cluded in the DBMS+ for a given application domain?

• How can the execution requirements of an application be spec-

ified declaratively?

• How can the DBMS+ Optimizer automatically map a (sub)query

Q from an application to the compute system that is the best

match forQ’s requirements?

• How can the DBMS+ Optimizer automatically map a base, in-

termediate, or derived dataset D to the storage system that is

the best match for D’s access and maintenance requirements?

• How can the DBMS+ Resource Manager coordinate the provi-

sioning of compute and storage resources to the systems in an

application-aware manner?

• When and how to perform automatic resource scaling, task mi-

gration from one system to another, and graceful load shedding

under load spikes in an application-aware manner?

Contributions and Roadmap: In this paper, we will first make a

case for the DBMS+ approach by considering a concrete applica-

tion domain, namely, continuous query processing [9]. At Duke

University, we are building a continuous query processing plat-

form called Cyclops. Cyclops instantiates the DBMS+ approach

by using multiple continuous query execution engines internally,

namely, the Esper centralized streaming system, the Storm dis-

tributed streaming system, and theHadoop system that is used pop-

ularly for batch analytics. We use examples from Cyclops through-

out the paper to give concrete illustrations of the benefits and chal-

lenges of the DBMS+ approach.

Section 2 introduces continuous query processing. Sections 3

and 4 drill down into continuous query processing in the context

of the “no one size fits all” philosophy. In particular, we consider

Stream

W1

W2

6 5 4 3 2 1

<4,3>

<1,2>

<3,2>

<2,2>

<3,5>

<1,8>

<2,7>

<1,4>

<4,1>

<2,6>

<4,4>

<3,5>

Range 4 seconds

Slide 2 seconds

Figure 3: An example showing two successive windows for a

windowed aggregation query with Range = 4 seconds and Slide

= 2 seconds. The two 〈K,V 〉 tuples arriving every second are

shown for time points 1 through 6.

Esper, Storm, and Hadoop to show how each system outperforms

the others in various regions of the continuous query processing

spectrum. Section 5 gives a brief introduction to the architecture

of Cyclops. Section 6 outlines a research agenda for applying the

DBMS+ approach to any application domain.

2. CONTINUOUS QUERIES
Processing a continuous query Q will generate new query re-

sults whenever the data or time relevant to Q changes. Continuous

queries arise in a wide range of applications such as behavioral tar-

geting, fraud detection, inventory management, network manage-

ment, and environmental monitoring. Data stream managers and

complex event processors are two popular examples of systems that

process continuous queries.

For ease of presentation, we will focus on an important class of

continuous queries called windowed aggregation. The following

SQL-like syntax gives the template for a windowed aggregation

query Q.

Q: Select S.K, aggr(S.V)

From S [Range n seconds, Slide d seconds]

(optional) Where where_condition

Group By S.K

(optional) Having having_condition

Here, S is a stream of timestamped tuples. Each tuple, without loss

of generality, contains two attributes K and V . K is the grouping

key and V is the value attribute on which the aggregation func-

tion aggr is performed per group. The optional Where and Having

clauses specify filter conditions on the tuples before and after the

grouping respectively.

The clause after S in the query specifies a sliding window over

the stream of tuples in S. This window is the main part that dif-

ferentiates Q from a conventional SQL query. The above template

refers to a time-based sliding window with a Range of n and Slide

of d. At any point of time t, the Range parameter defines the in-

terval of time over which tuples in the stream are part of the time-

based window. Specifically, all tuples with timestamp in the inter-

val (t−n, t] are part of the window. Hence, the query result at time

point t is the result of the filtering, grouping, and aggregation over

these tuples.

The Slide parameter specifies how the window advances over the

stream over time. If the tuples in the interval (t−n, t] constitute the
current window, the next Slide will lead to a window with tuples

in the interval (t − n + d, t + d]. We will illustrate windowed

aggregation with the scenario shown in Figure 3 which we will also

use as a running example throughout the paper.

Figure 3 shows a 6-second snippet of an example stream S. Two

tuples with schema 〈K,V 〉 arrive each second in the stream. Our

example windowed aggregation query over S specifies a Range of

4 seconds and a Slide of 2 seconds. K is the grouping key. A

sum aggregation is performed over the value attribute V for every

unique value of K per window. There are no filtering conditions.

Figure 3 shows the tuples belonging to two successive windows

W1 and W2. There is a 2-second overlap of tuples (4 tuples) be-

tween the two windows. For window W1, there are three tuples

withK = 1, and the sum of their V fields is 14. There are two tuples

each for K = 2 and K = 3, and the sum of their V fields are 9 and

7 respectively. There is only a single tuple with K = 4, so the sum

for this group is 3. The overall result of the query for W1 will be

<1,14>,<2,9>,<3,7>, and <4,3>. Performing the same computation

for windowW2 yields the following result: <1,12>,<2,13>,<3,10>,

and <4,5>.

The deceptively simple syntax for a windowed aggregation query

can capture a wide range of application requirements including

what has traditionally been considered batch analytics and what

has been considered real-time (or streaming) analytics. To illus-

trate this point, we present three practical instances of windowed

aggregation queries that arise in the context of a social networking

Web site like Facebook.

• CQ1: As part of behavioral targeting, the company wants to

perform the aggregation of each user’s activity for the past month,

updated daily.

• CQ2: As part of behavioral targeting, the company wants to

track each user’s unique clicks over the past 15 minutes, up-

dated every minute.

• CQ3: To keep track of the overall health of the Web site, the

company wants to track the number of user logins from each

region of the US over each five-minute interval.

CQ1 has a Range of 1 month and a Slide of 1 day. Because of these

large Range and Slide intervals, the amount of data per window

and new data per Slide can run into many terabytes. Furthermore,

a company like Facebook has hundreds of millions of active users.

So, a query like CQ1 that groups by user has to maintain a large

number of unique entries per window.

Compared toCQ1, CQ2 has a much smaller Range of 15 minutes

and Slide of 1 minute. Short Slide intervals indicate low-latency

requirements. However, despite the shorter Range, the number of

unique entries per window in CQ2 can be of the same scale as in

CQ1. CQ3 differs from CQ1 and CQ2 in that both the Range and

Slide in CQ3 have the same value of 5 minutes. Thus, there is

no overlap between successive windows while processing CQ3. In

addition, the average size of each window in CQ3 is also expected

to be much smaller than in the other two queries.

3. EXECUTION PLANS FOR WINDOWED

AGGREGATION
Continuous queries can be processed by different types of sys-

tems where each system has been designed to work well on a par-

ticular workload environment. Moreover, there are choices for con-

tinuous query execution that are independent of the systems used.

In this section, we describe how the windowed aggregation query

can be executed in different systems. We will continue to use our

running example shown in Figure 3.

3.1 Centralized Streaming System
In the past decade, there have been a number of centralized sys-

tems designed for real-time stream and event processing. These

systems have been designed with fast performance as the main pri-

ority. Thus, they store and process everything in the memory of

a single node. One example of this type of system is Esper [23].

Specifically, Esper is a centralized complex event processing en-

gine that is run as a single Java process. Esper provides a declara-

tive language, APIs for implementing specialized operators, as well

as other functions for custom handling of streams.

<PUNC>

<4,4>

<3,5>

<4,1>

<2,6>

<2,7>

<1,4>

<3,5>

<1,8>

(a) Non-Incremental

<4,5>

<3,10>

<2,13>

<1,12>

Input Stream

<PUNC>

<4,4,+>

<3,5,+>

<4,1,+>

<2,6,+>

<3,2,->

<2,2,->

<4,3,->

<1,2,->

<4,5>

<3,10>

<2,13>

<1,12>

Input Stream

Mem State:<4,3>,<3,7>,

<2,9>,<1,14>

W

GA

W

(b) Incremental

GA

Figure 4: An illustration of the operators in an Esper execution

plan performing both non-incremental and incremental pro-

cessing for windowW2 of the example stream.

Figures 4(a) and (b) illustrate respectively how Esper executes

the running example query non-incrementally and incrementally.

In this figure and in describing the other systems in the remainder

of this section, we focus on the processing of window W2 in the

example query. Esper has two operators running in pipelined ex-

ecution: window operator (labeled W) and Groupby-Aggregation

operator (labeled GA). Both of these operators are running contin-

uously while the input stream feeds into the window operator. The

window operator extracts tuples for each window and pushes them

to the GA operator. Since streams are processed continuously, the

GA operator needs a way to know the occurrence of a new window

and to differentiate tuples between successive windows. Thus, the

plan uses a punctuation tuple (labeled <PUNC> in the figure) that

is created by the W operator and is sent to the GA operator.

W2

Stream
6 5 4 3 2 1

<4,3>

<1,2>

<3,2>

<2,2>

<3,5>

<1,8>

<2,7>

<1,4>

<4,1>

<2,6>

<4,4>

<3,5>

P2 M2

Figure 5: An illustration of the insertions (P2) and deletions

(M2) of tuples in windowW2 of the example from Figure 3.

In non-incremental processing, all of the tuples within the win-

dow are extracted and sent to the GA operator. It also possible

to process the query incrementally by only processing the differ-

ences between successive windows. Figure 5 shows the same ex-

ample stream, but also shows the difference, in terms of insertions

(or pluses, P2) and deletions (or minuses, M2) of tuples for win-

dow W2 compared to W1. Figure 4(b) shows how Esper process a

query incrementally. Specifically, the W operator only sends the tu-

ples in M2 and P2. In order to differentiate between the two types

of tuples, the W operator also sets an additional meta information

(marked by - and + in the figure). In the incremental processing

plan, the GA operator maintains the previous aggregation results in

memory (e.g., the results of W1 are shown in the figure) as inter-

mediate state.

Going back to the running example, the query results of W2

can be computed by adding (subtracting) V values for the tuples

in P2 (M2) for each corresponding group in the query results of

W1 which was <1,14>,<2,9>,<3,7>, and <4,3>. For example, for

K = 1, the V field of <1,2> is subtracted from the V field of the

result of W1 for K = 1: <1,14>, which results in <1,12>. Like-

wise, for K = 2, the V field of <2,2> is subtracted from and the V

field of <2,6> is added to the previous window result <2,9>, which

W W

GA GA

…

…

hash(K)

<PUNC>

<3,5>

<1,4>

<PUNC>

<4,1>

<2,6>

Storm

Topology

<3,10>

<1,12>

<4,5>

<2,13>

Input Stream

<PUNC>

<3,5>

<1,8>

<PUNC>

<4,4>

<2,7>

hash(K)

Figure 6: Task-level illustration of a Storm execution plan per-

forming non-incremental processing for window W2 of the ex-

ample stream.

results in <2,13>. Performing incremental processing for the other

groups yields the same results for windowW2 when processed non-

incrementally: <1,12>,<2,13>,<3,10>, and <4,5>.

It should be noted that one way of processing a query is not al-

ways better than the other. Specifically, incremental processing of

a query is beneficial when the differences between successive win-

dows are small compared to the size of a window. However, in

other cases where there is minimal to no overlap between windows,

incremental ends up processing more data than non-incremental.

In both implementations, all of the states and computations are

done in memory and within a single process. Furthermore, Esper is

designed to utilize all the cores of a node for low-latency processing

of the stream. However, since it runs on a single node and every-

thing is kept in memory, Esper is not able to handle large amounts

of intermediate state data. It also does not have native support for

fault tolerance because none of the intermediate states or results are

materialized to disk.

3.2 Distributed Streaming System
Distributed real-time stream processing systems are natural ex-

tensions to the previously mentioned type of systems. They share

similar design goals in that they cater to queries with real-time re-

quirements. However, this type of system also focuses on hori-

zontal scalability, typically through a shared-nothing parallel archi-

tecture. Thus, distributed real-time stream processing systems can

handle larger loads of data. Storm [56] is an example system here

that has been gaining traction in the industry. Streams are processed

by a user-defined plan (called topology in Storm’s terminology) in

a cluster of Storm nodes. Storm uses a push-based mechanism that

pushes output tuples of one vertex to another in the topology. Com-

mon class abstractions are provided for defining how each vertex in

the topology processes tuples of a stream as they propagate through

the topology. Moreover, Storm provides APIs for specifying how

vertices are parallelized (e.g., number of parallel tasks for each ver-

tex) and for specifying how tuples are partitioned across tasks.

Storm is similar to Esper in that its implementation for the win-

dowed aggregation query also has two types of operators: Window

operator and Groupby-Aggregation operator. However, it also has

native support for pipelined as well as partitioned parallelismwhere

each operator runs multiple parallel tasks on different nodes. Fig-

ure 6 shows a task-level illustration of Storm for processing win-

dow W2 of the example stream. The tasks in Storm are running

continuously and the input stream feeds into the tasks of the W op-

erator continuously. In this implementation, the input stream is dis-

tributed across multiple parallel W tasks. Partitioned parallelism is

achieved by having a hash partition function in each of the W tasks.

This function is applied to the output tuples of W to determine to

which GA tasks to send each output tuple to.

Similar to the Esper implementation, the Storm implementation

also uses punctuation tuples to notify the GA tasks of the occur-

rence of a new window. In contrast to the Esper implementation,

the Storm implementation replicates and sends the punctuation tu-

ple to each GA task. Moreover, since the underlying infrastructure

of Storm does not provide any grouping and merging of tuples (i.e.,

tuples are pushed to another task as soon as they are produced),

each GA task has to synchronize internally. Each GA task merges

its input tuples by maintaining separate queues of input tuples from

each W task, and uses punctuation tuples to determine which win-

dow each tuple belongs to. Also, each GA task waits until it has

received punctuation tuples for each window from all W tasks be-

fore sending the results to the output stream.

W W

GA GA

…

…

hash(K)

<PUNC>

<3,2,->

<1,2,->

<PUNC>

<4,3,->

<2,6,+>

Storm

Topology

<3,10>

<1,12>

<4,5>

<2,13>

Input Stream

<PUNC>

<3,5,+>

<PUNC>

<4,4,+>

<4,1,+>

<2,2,->

Mem State:<3,7>,<1,14> Mem State:<4,3>,<2,9>

hash(K)

Figure 7: Task-level illustration of a Storm execution plan per-

forming incremental processing for windowW2 of the example

stream.

Figure 7 shows a task-level illustration of Storm for incremental

processing for windowW2 of the example stream. The main differ-

ence in this implementation is that the W tasks only emit tuples of

M2 and P2. Like the Esper implementation, each tuple has an ad-

ditional +/- meta information to distinguish between insertion and

deletion tuples. Similarly, the GA tasks also maintain the interme-

diate state, such as the previous window’s results, in memory.

Similar to Esper, Storm is more suitable for a real-time continu-

ous query workload. Since Storm can partition the stream to par-

allel tasks, it can handle streams with larger amounts of data com-

pared to Esper. However, since Storm still keeps all intermediate

state in memory, it will not be able to handle workloads that need

to maintain large windows; but definitely larger than what Esper

can handle. Since Storm is designed first for scalability rather than

performance, Storm’s performance on a single node is less efficient

than that of Esper. Storm also has support for fault tolerance by

providing an API for replaying input streams after faults.

3.3 Distributed Batch System
Perhaps surprisingly, another type of system that can run con-

tinuous queries is the type designed for batch processing of large

amounts of data. MapReduce [21], Hadoop [26], and Dryad [31]

are examples of such systems. In contrast to the two types of sys-

tems mentioned before, these systems are not meant for queries

with low-latency requirements. However, these systems are de-

signed to handle very large datasets by utilizing both memory and

I/O resources as well as processing data in parallel using multiple

tasks across a cluster. We chose Hadoop as the representative ex-

ample of this type of system. Hadoop runs MapReduce jobs that

are each specified by a map and a reduce function. During job ex-

ecution, the input dataset is processed in parallel by a set of map

M M

R R

…

…

<2,7>

<1,4>

<3,5>

<1,8>

<4,4>

<3,5>

<4,1>

<2,6>

hash(K)
<3,5>

<3,5>

<1,8>

<1,4>

<4,4>

<4,1>

<2,7>

<2,6>

Job 2

<3,10>

<1,12>

<4,5>

<2,13>

Figure 8: Task-level illustration of a Hadoop execution plan

performing non-incremental processing for window W2 of the

example stream.

tasks. The output of map tasks are partitioned and processed in

parallel by a set of reduce tasks. The outputs of tasks are always

written to disk and are pulled by other tasks for further processing.

Memory-intensive operations like sorting and grouping spill data

to disk when dataset sizes exceed the available memory.

In contrast to the previous two systems, Hadoop’s tasks are not

running continuously. When a job is submitted to Hadoop, tasks

are scheduled, launched, and terminated when they are done. In

Hadoop, each window is processed by a separate MapReduce job.

Figure 8 shows a task-level illustration of a Hadoop job process-

ing window W2 of the example stream. One main difference is

that Hadoop does not directly process an input stream. Instead, a

control program launches the jobs for each window. This program

sets the input dataset for each job. In the figure, the input dataset

comprises the tuples inW2 of the stream.

Hadoop has native support for partitioned parallelism and mate-

rializes all outputs to disk. The input dataset is split and processed

in parallel by map tasks. Similarly, output tuples of map tasks are

partitioned, grouped, and merged by the underlying Hadoop infras-

tructure. Thus, the input to the reduce tasks are already grouped by

the grouping field. In the Hadoop implementation that does non-

incremental processing, the map tasks simply set the grouping key

of each tuple as the tuple’s map output key. The reduce tasks per-

form aggregations for each unique grouping key that they receive.

Figure 9 shows a task-level illustration of a Hadoop job perform-

ing incremental processing for window W2 of the example stream.

In contrast to Storm, intermediate state such as the previous results

are not stored in memory because tasks are not running continu-

ously. Thus, the inputs to the Hadoop job are of three types: M2,

P2, and the results of the previous job. In this case, the map tasks

also tag each input tuple based on which type it belongs to (+, -,

and J1 in the figure). When the reduce tasks receive the tuples for

each group, they apply the tuples with either +/- tags to the previous

result for this group (i.e., tuples with J1 tag).

Hadoop is designed for processing big data; thus, it can handle

very large windows of streams. Moreover, Hadoop utilizes both

memory and I/O through spilling of tuples to disk during grouping

and sorting of tuples, which allows it to handle queries with large

intermediate state. However, since many tasks have to be sched-

uled, launched, and run on the cluster, there is overhead for start-

ing up and cleaning up each MapReduce job (around 30 seconds).

Thus, Hadoop is not ideal for close to real-time continuous query

workloads. However, since output tuples are always materialized

to disk, Hadoop can simply restart tasks when failures occur.

4. ANALYSIS AND EVALUATION
As mentioned previously, windowed aggregation queries have a

wide spectrum of applications. The most suitable execution plan

M M M

R R

…

…

M2

<3,2>

<2,2>

<4,3>

<1,2>

P2

<4,4>

<3,5>

<4,1>

<2,6>

Results of Job1

<4,3>

<3,7>

<2,9>

<1,14>

hash(K)
<3,7,J1>

<3,5,+>

<3,2,->

<1,14,J1>

<1,2,->

<4,3,J1>

<4,4,+>

<4,1,+>

<4,3,->

<2,9,J1>

<2,6,+>

<2,2,->

Job 2

<3,10>

<1,12>

<4,5>

<2,13>

Figure 9: Task-level illustration of a Hadoop execution plan

performing incremental processing for window W2 of the ex-

ample stream.

0

1

2

3

4

5

6

1 2 3

N
o

rm
a

li
ze

d
 T

im
e

 t
o

 P
ro

ce
ss

 a

W
in

d
o

w
 (

Lo
w

e
r

is
 B

e
tt

e
r)

Hadoop

Storm

Esper

Figure 10: The performance of Hadoop, Storm, and Esper on

different workloads.

to execute a window aggregation query varies depending on the

characteristics of the query. Specifically, we identify two charac-

teristics: i) window specification, which is defined by the Range

and Slide parameters, as described previously, and ii) stream ar-

rival rate, which describes the number of incoming tuples for each

unit of time and affects the amount of data per window.

In this section, we evaluate the performance of Esper, Stream,

and Hadoop for processing windowed aggregation queries. The

goal of our evaluation is to motivate and show that no one system

dominates the others. In the experiments, both Hadoop and Storm

are run on a 11-node m1.large Amazon EC2 cluster. Esper is run

on a single m1.large Amazon EC2 node. The stream tuples are pre-

generated before each experiment, stored in the Hadoop Distributed

Filesystem (HDFS), and replayed during the experiment.

Figure 10 shows the performance (normalized time to process a

window) of Hadoop, Storm, and Esper for processing windowed

aggregation queries. In each system, we show the performance of

the technique (incremental Vs. non-incremental) that results in the

best performance. The queries executed in this experiment are sim-

ilar to our running example of performing summation on a window,

but with different stream arrival rates and window specifications.

Each tuple in the stream consists of a K field and a V field. The

queries group on the K field and sum the V field.

The results show that “no one size fits” even with the same type

of windowed aggregation query. Specifically, each individual sys-

tem performs better and also worse than the other two systems (by

at least 4x) depending on the characteristics of the query.

1000

10K

100K

1M

10M

1 10 100 1000

A
rr

iv
a

l
R

a
te

(T
u

p
le

s
/

S
e

co
n

d
)

Slide Size (Second)

Hadoop

Storm

Esper

Figure 11: Two-dimensional grid showing which of the three

compute systems performs best on a given combination of ar-

rival rate and Slide size. Range is set the same as the Slide.

In the first query (labeled 1 in the figure), Hadoop outperforms

both Storm and Esper. Analyzing the characteristics of this query

explains the result. In this query, the window specifies a Range

of 1 hour and a Slide of 10 minutes. Moreover, the stream has an

arrival rate of 220 thousand tuples per second. In a Slide of 10

minutes, this arrival rate results in 132 million new tuples in each

Slide and 792 million tuples in each window. Thus, it is not sur-

prising that Hadoop performs better because of the size of the data,

which Hadoop can efficiently process using compute and storage

resources. On the other hand, Esper performs the worst because it

is not able to partition and parallelize the processing of the stream.

In contrast, Esper outperforms Storm and Hadoop in the second

query. This query has a real-time requirement, with a Range of

5 seconds and Slide of 1 second. The stream has an arrival rate

of a million tuples per second, which is small enough for Esper to

handle efficiently. On the other hand, Hadoop and Storm have addi-

tional overheads—such as job startup costs in Hadoop and network

communication in both systems—due to the focus on scalability in

their design. Note that running Storm on a single node does not

eliminate these overheads. Specifically, when the second query is

run on a single Storm node, the time to process each window is 6x

worse than that for Esper.

The third query has similar real-time properties as the second

query, but with a slightly larger Range of 30 seconds and Slide of

15 seconds. Thus, Hadoop still performs worst out of the three

systems. However, in this query, Storm is able to perform better

than Esper. The increase in Range and Slide results in larger size of

data for each window, which Storm partitions and processes across

multiple tasks in parallel.

To further show that “no one size fits” for processing continuous

queries, we ran windowed aggregation queries with different com-

binations of characteristics. Specifically, we varied the arrival rate

of tuples from 1000 to 10 million tuples per second and the Slide

(and Range) parameter from 1 to 1000 seconds. Figure 11 shows

the region of the space where each compute system performs better

than the others.

5. CYCLOPS
So far we saw multiple systems for continuous query processing

and how each system works well for a specific range of execution

requirements. Similar results have been shown for other applica-

tion domains, e.g., those served by NoSQL systems [19]. These

observations lead naturally to the DBMS+ approach. In this sec-

tion, we introduce the Cyclops DBMS+ system that we are building

for continuous query processing. The next section will use Cyclops

to give concrete illustrations of the benefits and challenges of the

DBMS+ approach.

Figure 12 shows a deployment of Cyclops to support continuous

analytics in a multi-tiered Web service. Notice that the deployment

has a cyclic nature of data flow among the tiers. Going back to the

behavioral targeting application introduced in Section 1, the front-

end tier has systems (e.g., Web, application, and cache servers) re-

sponsible for displaying content to users in real-time. In order to

personalize the content displayed to users, the front-end tier relies

on user models that are generated by the back-end cluster.

Building these models requires information about each user. Thus,

user-activity logs are extracted from the front-end tier and streamed

to an in-memory queuing system (e.g., Kafka) or a key-value store

(e.g., HBase). Continuous queries are run on the back-end cluster

that perform data analytics, such as windowed aggregation and ma-

chine learning, to build the models. The generated models may be

stored in a low-latency key-value store.

Today, considerable manual effort goes into setting up a deploy-

ment like Figure 12 that can support different types of execution

requirements on continuous queries. (Recall the example queries

CQ1–CQ3 from Section 2.) For example, an application developer

may choose to write queries with low-latency requirements to run

on a distributed streaming system such as Storm. Another devel-

oper may choose to run continuous queries using MapReduce since

she may be concerned about future increases in intermediate data

sizes. Very quickly, the back-end cluster ends up running a num-

ber of technologies like stream processing, MapReduce, custom

scripts and Java code, and distributed storage; leading to consider-

able frustration in both application development (e.g., debugging)

and operations (e.g., tuning and resource provisioning).

Cyclops addresses this problem using a DBMS+ approach that

brings all continuous query processing under a single, distributed,

but centrally-managed, platform. The architectural overview of Cy-

clops is shown in Figure 12. Notice how this architecture is an in-

stantiation of the general DBMS+ architecture shown in Figure 2

with a specific set of “one size” systems for continuous query pro-

cessing.

Cyclops exposes a common language for applications to express

continuous queries and their execution requirements. This lan-

guage, which is independent of the underlying compute and storage

systems, is an extended version of the SQL-like template shown for

windowed aggregation in Section 2. Currently, Cyclops supports

the declarative specification of application execution requirements

at the level of performance. Specifically, the Slide parameter of

the continuous query specifies the latency requirement to process

a window. For example, low-latency requirements are specified by

having a short Slide.

When a continuous query is submitted, Cyclops’ Optimizer takes

the specified requirements into account to select the best execu-

tion plan. The execution plan space is a combination of logical

choices like incremental Vs. non-incremental processing as well as

system choices: Esper (a centralized streaming system), Storm (a

distributed streaming system), and MapReduce (a distributed batch

processing system). The Hadoop Distributed File System (HDFS)

is supported as a shared storage for intermediate states/data. HDFS

shares the same cluster resources as the compute systems.

After the Optimizer picks the best execution plan, Cyclops uses

YARN [63] to provision cluster resources for the chosen system(s).

YARN provides the mechanisms for running heterogeneous sys-

tems on the same cluster resources. The Resource Manager in Cy-

clops determines the amount of resources to allocate for running

each execution plan.

6. DBMS+ RESEARCH AGENDA
Designing and building a DBMS+ leads to a number of research

challenges. In this section, we identify six research topics and also

discuss some directions for solutions.

…

…

 Intermediate tier

(fast read/write store)
Front-end tier

 Back-end cluster

for continuous query

 processing

Cache Servers

…

App Servers

…

Web Servers

…

User

 Kafka

 HBase

…

…

HDFS

YARN Resource Manager

Cyclops

Optimizer

Continuous Queries and Execution Requirements

MapReduce Storm Esper

Figure 12: The system architecture of Cyclops and its deployment for running continuous analytics on a typical multi-tiered scalable

Web service.

6.1 How to Integrate Systems into a DBMS+?
One research challenge is to decide at which level of the system

software stack should the DBMS+ interact with and control. Fig-

ure 13 shows two approaches—federated and imperial—for how

the DBMS+ can interact with its internal “one size” systems.

In the federated approach (shown in Figure 13 (a)), the DBMS+

integrates full-fledged query processing systems while exposing a

common language to applications. These full-fledged systems tend

to have their own languages and semantics. In this approach, each

system is fairly autonomous and responsible for how queries are ex-

ecuted internally. The main advantage of this approach is that the

DBMS+ can be lean by reusing existing functionality of the under-

lying systems. MaxStream [12] is a research project that provides

a thin federated layer on top of heterogeneous stream processing

systems. However, one challenge in this approach is that semantic

query execution differences between systems should be modeled

and reconciled in order to achieve correct system integration. SE-

CRET [13] attempts to solve this problem by providing a model for

comparing the semantics of different stream processing systems.

With an imperial approach (shown in Figure 13(b)), the DBMS+

directly uses the execution and/or storage engines of the underly-

ing systems. The advantage of the imperial approach is that the

DBMS+ has full control of what gets executed and how. The

DBMS+ does not have to deal with semantic differences among

the query languages supported by various systems. Cyclops uses

the imperial approach for interacting with the underlying systems.

MySQL’s pluggable storage engine architecture is another use of

the imperial approach [42]. MySQL hides the complexity of the

underlying storage engines from applications by providing a com-

mon API. If application requirements change, then the underlying

storage engine can be changed with no significant code changes.

Some trends in newer “one size” systems facilitate the imperial

approach. Most of these systems make it easy for applications

to specify exactly how queries should be executed. Furthermore,

these systems are predominantly open-source, thus stripping away

software layers to expose the raw execution and storage engines is

possible.

6.2 Which Systems to Include?
Another challenge is to determine which systems to include in

a DBMS+. For example, windowed aggregation queries can be

run by a wide range of systems ranging from pure streaming sys-

tems [23, 56] to batch processing systems [31, 26]. As our experi-

mental results show, none of these systems dominates all other sys-

tems in all settings. However, this information alone does not help

us decide which systems to include in Cyclops. Instead a method-

ology like the following is needed:

• Identify the spectrum of execution requirements for the appli-

cation domain of interest

• Pick the set of systems whose features covers as much of the

execution requirements as possible

• Eliminate redundant systems, i.e., systems that, in any setting,

are outperformed by some other system

This methodology led us to pick Esper, Stream, and Hadoop as the

systems to include in Cyclops.

6.3 Which Execution Plan to Pick?
The DBMS+ Optimizer is responsible for picking the most suit-

able execution plan for a given query. The execution plan not only

involves choosing techniques (e.g., incremental Vs. non-incremental

processing) for running the query, but also choosing the most suit-

able system. Within each system, there may also be a number of

parameters that affect the performance of a query. For example,

Hadoop has many job-level configuration parameters such as the

degree of parallelism and memory size for sorting. Thus, designing

a multi-system query optimizer for a DBMS+ is a nontrivial chal-

lenge. Moreover, the optimizer should be able to adapt to changes

in application requirements over time.

The federated and imperial approaches lead to different opti-

mization techniques. In a federated approach, each system usually

has its own cost-based optimizer. Thus, the DBMS+ can function

mostly as a query rewriter that inputs the query or its subqueries

to the per-system optimizers. The ASPEN project [36], which fo-

cuses on sensor network applications, uses this approach to opti-

mize queries across different systems (e.g., sensor and stream en-

gines). It is able to divide a query and decide which piece runs best

on a particular system. This design enables a divide-and-conquer

search strategy that allows each compute system to independently

cost the execution plans. An advantage of this approach is that the

DBMS+ does not need a complex optimizer. However, the cost

metrics used by one system’s optimizer may not be the same as

another system’s optimizer. The DBMS+ needs to ensure that the

cost metrics obtained from different systems are compatible; if not,

the DBMS+ is responsible for reconciling the costs.

In contrast, an imperial approach does not depend on each sys-

tem’s optimizer, and hence, does not have to deal with incompatible

costs. In the imperial approach, the DBMS+ builds a cost model

by itself for the execution plan space and uses the model to pick the

best plan for a given query. One option for building models is to

use white-box modeling which entails building analytical models

Declarative Language

Compute System 1

Parser

Query Optimizer

Execution Engine

Storage API

DBMS+

Resource Manager

Optimizer

Declarative Language

Compute System N

Parser

Query Optimizer

Execution Engine

Storage API

…

Declarative Language

Compute System 1

Parser

Query Optimizer

Execution Engine

Storage API

DBMS+

Resource Manager

Optimizer

Declarative Language

Compute System N

Parser

Query Optimizer

Execution Engine

Storage API

…

 Application and Execution Requirements

User

 Application and Execution Requirements

User

(a) Federated (b) Imperial

Figure 13: An illustration of the (a) federated and (b) imperial approach for a DBMS+ to interact with its internal “one size” systems.

by understanding the internals of each system. However, the un-

derlying systems can be complex and may need complex analytical

models that are hard to develop and maintain.

Hadoop Storm Esper Hadoop Storm Esper

1K
10K

100K
1M

10M

1

10

100

1000
100

10
1

Slide Size

(Second) Arrival Rate (Tuples / Second)

N
o

rm
a

li
ze

d
 T

im
e

 t
o

 P
ro

ce
ss

 a

 W

in
d

o
w

 (
Lo

w
e

r
is

 B
e

tt
e

r)

Figure 14: A three-dimensional visualization showing the per-

formance of Hadoop, Storm, and Esper with different combi-

nations of stream arrival rate and Slide size.

Another option is to use black-box modeling which involves three

steps: (i) running selected benchmark queries on each system to

collect training data; (ii) fitting models to this data in order to gen-

erate an initial cost model; and (iii) refining the model over time

as more and more queries are executed [55]. All three steps pose

interesting research challenges.

Cyclops uses black-box modeling to build cost models. For ex-

ample, consider Figure 14. Windowed aggregation queries with

different combinations of stream arrival rate (from 1000 to 10 mil-

lion tuples per second) and Slide parameters (from 1 to 1000 sec-

onds) are run on Esper, Storm, and Hadoop. The figure shows the

normalized time to process a window in each case for each system.

Cyclops applies regression techniques on the data collected from

such runs in order to build the cost models.

6.4 How to Provision Resources?
With the popularity and ease-of-use of cloud-based platforms

such as Amazon EC2 [22], there is a trend of running workloads in

the cloud using pay-as-you-go cluster resources. Another emerg-

ing trend is to run multiple systems on the same cluster resources

using platforms that can balance resource sharing and isolation [29,

63]. These platforms pose the challenge for the DBMS+ to allocate

cluster resources on demand to meet all application requirements.

In addition to identifying the most suitable system to run queries,

the ideal cluster or node-level configuration setting for running the

system has to be found. Moreover, multiple queries can be running

concurrently on different systems in the cluster.

The challenge of provisioning resources also involves dynami-

cally adapting to changes in the query characteristics. Cloud-based

services and resource managers (e.g., YARN resource manager)

provide the mechanisms for elasticity. However, coming up with

an effective policy to decide when to provision and the amount

of resources to provision is a research challenge. Our previous

work [35] attempts to address this challenge by designing a feed-

back controller to dynamically provision resources, but only fo-

cuses on provisioning for a single system. In contrast, the DBMS+

must deal with provisioning multiple systems that are potentially

sharing the same cluster resources; which, in conjunction with the

DBMS+ Optimizer, turns the challenge of resource provisioning

into a multi-tenant, multi-query optimization problem.

6.5 How is the Data Stored?
Our case study focused on windowed aggregation queries where

inputs and outputs are streams of data. In this case, the amount of

data (state) maintained within each system is limited to the amount

of data being processed in a window. However, other application

domains may have different requirements. For example, consider

ad-hoc queries that mine information from historical data. The

DBMS+ needs to manage how the data is stored and accessed by

the systems for processing these queries.

One approach is to have a specialized and tightly-coupled stor-

age system for each compute system. The advantage of this ap-

proach is that data can be stored and accessed efficiently by the

compute system. However, interoperability among compute sys-

tems may be a challenge because of the custom storage formats

used by each system. Furthermore, it is possible that migrating

a query across systems requires copying data across systems and

possibly converting from one data format to another format. Aside

from the overhead of data transfer, maintaining multiple copies of

data across systems is expensive.

Another approach is to have one or few global storage systems

(e.g., HDFS, HBase) that can be accessed by all compute systems.

With such a decoupled approach, the DBMS+ does not have to

migrate data across systems. However, accessing the data may not

be as efficient for each system. Recent work has made accessing

data on a global storage system more efficient, e.g., column stores

on HDFS and serialization formats for storing structured data [49].

6.6 What are Application Requirements?
Cyclops currently focuses on performance as the only applica-

tion execution requirement. Note that the results in Figures 10, 11,

and 14 are all in terms of latency, namely, the time to process a

window. Applications can have other execution requirements. We

identify five types of requirements: performance, availability, con-

sistency, cost, and dealing with changes.

A research challenge is to develop declarative abstractions and

semantics for applications to specify their execution requirements.

There has been progress in this direction in recent years. For ex-

ample, the availability requirements for an application can be spec-

ified in terms of two properties: (i) recovery time objective (RTO),

which specifies the amount of time that the application can be down

after a failure, and (ii) recovery point objective (RPO), which spec-

ifies the data loss that can be tolerated after a failure. A related

challenge is to provide continuous semantics for requirements that

are seemingly boolean. For example, rather than simply specifying

whether an application requires or does not require strict consis-

tency, language abstractions can be developed that define consis-

tency in terms of bounds on staleness of results.

0

50

100

150

200

250

0 1000

T
im

e
 t

o
 P

ro
ce

ss
 W

in
d

o
w

(S
e

co
n

d
s)

Time (Seconds)

Hadoop Static

Hadoop

Dynamic

Provision

Run on 30

nodes

Instead of

10 nodes

160 seconds

slide requirement

Figure 15: The potential for adaptivity to bursts in stream

arrival rate in Hadoop by temporarily provisioning more re-

sources.

Providing abstractions for applications to specify how they want

to deal with changes can also be important. The DBMS+ Opti-

mizer can take such requirements into account and select execution

plans that are more adaptive to changes. For example, Figure 15

shows the potential for adaptivity to bursts in stream arrival rate in

Hadoop. Recall that the execution plan for a windowed aggregation

query in Hadoop processes each window as a separate MapReduce

job; which gives considerable scope for adaptivity. In Figure 15,

the stream arrival rate starts out with 62.5K tuples per second and

then jumps to 3000K tuples per second for around 10 minutes be-

fore going back to the original arrival rate. The query has Range

and Slide of 160 seconds each. Without adaptivity, the time to pro-

cess a window increases to 230 seconds from less than 100 sec-

onds. Hadoop is able to adapt to the increase in stream arrival rate

by temporarily provisioning more nodes to execute the query.

In contrast, Esper and Storm have continuously running tasks to

process the query, making change a nontrivial exercise. The chal-

lenges that arise include coming up with query performance instru-

mentation mechanisms and policies for migrating from one plan to

another, while ensuring little to no disruption or violation of the ap-

plication requirements. A punctuation-based framework for stream

processing systems was introduced in [54] that allows on-the-fly

modifications of continuous queries.

It is also possible that the specified application requirements can-

not be satisfied (e.g., not enough resources). A research challenge

is to provide applications with results that they can still reason

about, while degrading gracefully. Prior work introduces the con-

cept of shedding load by dropping random tuples in the stream [8].

One issue with this approach is that it is difficult for applications

to reason about the accuracy of the results. Thus, we take a dif-

ferent approach in Cyclops where load is shed by increasing the

Slide parameter in the query. Intuitively, this approach preserves

the accuracy of the result, but updates the result at a slower rate

compared to when resources are plentiful. Specifically, Cyclops’

Optimizer increases the Slide until a suitable execution plan can be

found that satisfies the relaxed Slide requirement.

7. RELATED WORK

7.1 “One Size” Systems
“One Size” Systems for Continuous Queries: Aside from our

choice of using Esper in Cyclops, there are a number of centralized

stream processing systems available [2, 4, 20, 9]. The STREAM

system [9] provides a continuous query language (CQL) that en-

ables users to reason about streams using relational algebra seman-

tics. Aurora [2] is another centralized stream processing system

that provides users with an interface for specifying their applica-

tions through “boxes” and “arrows”. It has mechanisms for load

shedding to improve the quality of service (QoS). Both Aurora and

STREAM perform dynamic query optimization (e.g., combining

and reordering operators) by collecting run-time statistics.

In addition to Storm, there are a number of distributed real-time

stream processing systems [1, 6, 5, 18, 33, 17, 45, 43, 51, 57, 25,

16, 60, 10]. Similar to Storm, S4 [43] is a distributed stream com-

puting platform from Yahoo! that provides APIs for implementing

processing elements. Borealis [1] is a follow-up project to Aurora

and provides parallel processing of streams. It has an optimizer that

uses local and neighbors’ load information to balance the work-

load across a cluster by moving operators. StreamCloud [25] is

a system that runs on top of Borealis. It transforms queries into

subqueries that minimize the distribution overhead of parallel pro-

cessing. TelegraphCQ [16] relies on adaptive routing to optimize

query plans. It decides how to route data to different operators. It is

also able to dynamically decide the optimal partitioning of streams

for parallel processing.

There are also a number commercial systems that support dis-

tributed stream processing [5, 6, 45, 51, 57], each with its own spe-

cialization and differences. For example, Oracle CEP [45] is a Java

container that works well with an event-driven architecture and pro-

vides both a native programming model and a declarative language

for building an event processing network. System S [6] provides

partitioned parallelism strategies that split streams into subgroups

of split, aggregation, and join operators. The Sybase Event Stream

Processor [51] provides users with a declarative language to specify

their applications. Moreover, it is able to collect real-time statistics

and monitor the performance of the cluster.

In addition to systems developed for real-time requirements, there

are a number of other systems developed for batch processing of

large amounts of data that can be used for processing continuous

queries [28, 31, 11, 26, 30, 21, 37, 44, 64]. Comet [28] modifies

Dryad [31] to have better support for batched stream processing by

spliting a query into subqueries and reusing results of previous sub-

queries. Spark [64] is a cluster computing system for data analytics

that provides abstractions and primitives for supporting in-memory

computing. Recently, they have introduced a new primitive called

d-streams that performs batch computations on small intervals of

streams which avoids the overhead of per-tuple processing that is

common in stream processing systems [65]. Nephele [37] extends

parallel data processing systems, such as MapReduce [21], to han-

dle streaming workloads with latency requirements. It automati-

cally adjusts the output buffer size and dynamically chains tasks

based on run-time measurements.

Other “One Size” Systems: Note that Cyclops instantiates the

DBMS+ approach for management and execution of continuous

queries. There are a large number of “one size” systems developed

in recent years for other types of queries. Figure 1 shows a cate-

gorization of “one size” systems. For example, there are database

systems that are either more suited for OLAP or OLTP workloads.

Column-store databases, such as Vertica [61], can potentially per-

form better than row-store databases on OLAP workloads because

of the large amounts of read operations. While traditional databases

enforce strong consistency, there are new database systems, such as

Cassandra [14] and Voldemort [48], that improve latency by having

an eventual consistency data model.

7.2 Integration of Multiple Systems
The goal of this paper is to highlight the challenges of integrat-

ing different “one size” compute and storage systems for different

types of applications. There is a lot of work related to systems

integration, but this body of work focuses on some subset of the re-

search challenges that we have identified. Tatbul [58] enumerates

the challenges in integrating stream processing systems, such as the

lack of a common semantic model across different systems, opti-

mization challenges, and transactional issues. Recently, there was

an attempt to standardize the language and semantics of different

stream processing systems [32].

MaxStream [12] is a middleware that integrates heterogeneous

stream processing systems, but lacks the optimizer for selecting

the most suitable system. Similarly, MySQL integrates a num-

ber of storage engines through its pluggable storage engine archi-

tecture [42]. MySQL provides a common storage API that al-

lows diverse storage engines to be used with MySQL. Moreover,

MySQL encapsulates the implementation details of the storage en-

gines from applications and queries. This feature allows applica-

tions and queries to be mapped to different engines based on their

requirements. However, like MaxStream, MySQL lacks an opti-

mizer for automatically selecting the most suitable storage engine

based on the execution requirements of applications.

ASPEN [36] is another project that integrates multiple stream

processing systems, but in the context of sensor networks. ASPEN

has a federated optimizer for optimizing queries across systems,

but lacks support for orchestration and management of systems.

Unlike the DBMS+ approach to systems integration, a number

of projects take a “one size” system that is designed to do X ,

and then study how the system can also be made to do Y with

or without significant modifications. For example, DataCell [34]

is a stream processing engine that is built using a database ker-

nel to take advantage of the existing algorithms and techniques in

databases. Truviso [60] is a system that provides integrated stream

and relational query processing.

7.3 Mechanisms for DBMS+

Public and private cloud infrastructure providers, such as Ama-

zon EC2 [22] and Eucalyptus [24], have provided a virtual ma-

chine abstraction for easily launching and running diverse “one

size” systems. In addition, some recent projects provide a higher-

level resource abstraction for running multiple distributed systems

on shared cluster resources. Examples include the next generation

Hadoop, which is also called YARN [63], and Mesos [29]. In con-

trast to the current version of Hadoop that supports MapReduce

jobs only, YARN can run heterogeneous execution engines and ap-

plications concurrently on the same cluster resources. Mesos [29]

is a cluster manager that handles fine-grained resource allocation

and sharing across different systems such as MapReduce, high-

performance computing (HPC) systems based on message passing

interfaces (MPI), and in-memory analytics systems such as Spark.

These projects reinforce the “no one size fits all” philosophy

and further motivate the need for a DBMS+ that can automatically

manage and launch components of an application on the most suit-

able system. While these projects provide the mechanisms for sup-

porting our proposed DBMS+, none of them focus on the policy

questions, such as selecting the best systems to run a given query

on, and determining the amount of resources to allocate for each

system.

8. SUMMARY
In this paper, we described the challenges that application devel-

opers and system administrators face due to the “no one size fits

all” philosophy of system design. Specifically, there are a num-

ber of “one size” systems available, and choosing the most suit-

able subset of systems requires considerable effort. Moreover, cur-

rent applications are coupled tightly with individual systems, which

makes dealing with changes to application execution requirements

or workload characteristics nontrivial. Thus, we made the case for a

new approach, called DBMS+, for managing applications and their

execution requirements on a number of “one size” systems.

While conventional Database Management Systems (DBMS) sup-

port applications with a single execution engine and a storage en-

gine, a DBMS+ integrates and manages multiple “one size" com-

pute and storage systems. In this approach, users submit their appli-

cation and execution requirements to the DBMS+. The optimizer

in the DBMS+ is responsible for determining the most suitable ex-

ecution plan, which includes choosing the most suitable compute

and storage systems for a given application and its requirements.

The DBMS+ also has a resource manager that is responsible for

managing and orchestrating the systems for running the applica-

tions.

However, building a DBMS+ leads to a number of research chal-

lenges. These challenges include how the DBMS+ interacts with

its internal systems, how to select the systems to integrate, how to

select the most suitable execution plan, how to provision resources,

how the data is stored, and what application execution requirements

to support. As a concrete instantiation of the DBMS+ approach, we

introduced the Cyclops platform for continuous query processing

that we are currently building at Duke University. Cyclops manages

and integrates three systems: Esper, Storm, and Hadoop, which

can be categorized respectively as a centralized streaming system,

a distributed streaming system, and a distributed batch processing

system.

9. REFERENCES
[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,

J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In CIDR, 2005.

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. B. Zdonik. Aurora: A New
Model and Architecture for Data Stream Management. VLDB J.,
12(2):120–139, 2003.

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin. HadoopDB: An Architectural Hybrid of MapReduce and
DBMS Technologies for Analytical Workloads. In VLDB, 2009.

[4] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. DBToaster:
Higher-order Delta Processing for Dynamic, Frequently Fresh Views.
PVLDB, 5(10), 2012.

[5] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona,
P. Wang, P. Zabback, A. Kirilov, A. Ananthanarayan, M. Lu,
A. Raizman, R. Krishnan, R. Schindlauer, T. Grabs, S. Bjeletich,

B. Chandramouli, J. Goldstein, S. Bhat, Y. Li, V. D. Nicola, X. Wang,
D. Maier, I. Santos, O. Nano, and S. Grell. Microsoft CEP Server and
Online Behavioral Targeting. PVLDB, 2(2), 2009.

[6] H. Andrade, B. Gedik, K.-L. Wu, and P. S. Yu. Scale-Up Strategies
for Processing High-Rate Data Streams in System S. In ICDE, 2009.

[7] M. Aslett. Updated database landscape graphic.
http://blogs.the451group.com/information_management/2012/11/02
/updated-database-landscape-graphic/.

[8] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
Aggregation queries over Data Streams. In ICDE, 2004.

[9] S. Babu and J. Widom. Continuous Queries over Data Streams.
SIGMOD Record, 30(3), Sept. 2001.

[10] N. Backman, R. Fonseca, and U. Çetintemel. Managing Parallelism
for Stream Processing in the Cloud. In HotCDP, 2012.

[11] D. Borthakur, J. Gray, J. Sarma, K. Muthukkaruppan, N. Spiegelberg,
H. Kuang, K. Ranganathan, D. Molkov, A. Menon, S. Rash, et al.
Apache Hadoop goes Realtime at Facebook. In SIGMOD, 2011.

[12] I. Botan, Y. Cho, R. Derakhshan, N. Dindar, L. Haas, K. Kim,
C. Lee, G. Mundada, M.-C. Shan, N. Tatbul, Y. Yan, B. Yun, , and
J. Zhang. Design and Implementation of the MaxStream Federated
Stream Processing Architecture. Technical report, ETH Zurich, 2009.
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/6xx/632.pdf.

[13] I. Botan, R. Derakhshan, N. Dindar, L. Haas, R. J. Miller, and
N. Tatbul. SECRET: a Model for Analysis of the Execution
Semantics of Stream Processing Systems. PVLDB, 3(1-2), 2010.

[14] Apache Cassandra. http://cassandra.apache.org/.

[15] B. Chandramouli, J. Goldstein, and S. Duan. Temporal Analytics on
Big Data for Web Advertising. In ICDE, 2012.

[16] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman,
F. Reiss, and M. A. Shah. TelegraphCQ: Continuous Dataflow
Processing for an Uncertain World. In CIDR, 2003.

[17] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable
Continuous Query System for Internet Databases. In SIGMOD, 2000.

[18] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears. MapReduce Online. In NSDI, 2010.

[19] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking Cloud Serving Systems with YCSB. In SOCC, 2010.

[20] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk.
Gigascope: A Stream Database for Network Applications. In
SIGMOD, 2003.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In OSDI, 2004.

[22] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2/.

[23] Esper. http://esper.codehaus.org/.

[24] Eucalyptus. http://www.eucalyptus.com.

[25] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, and P. Valduriez.
StreamCloud: A Large Scale Data Streaming System. In ICDCS,
2010.

[26] Apache Hadoop. http://hadoop.apache.org/.

[27] Apache HBase. http://hbase.apache.org/.

[28] B. He, M. Yang, Z. Guo, R. Chen, B. Su, W. Lin, and L. Zhou.
Comet: Batched Stream Processing for Data Intensive Distributed
Computing. In SOCC, 2010.

[29] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica. Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center. In NSDI, 2011.

[30] Apache Hive. http://hive.apache.org/.

[31] M. Isard, M. Budiu, and Y. Yu. Dryad: Distributed Data-Parallel
Programs from Sequential Building Blocks. In EuroSys, 2007.

[32] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom,
H. Balakrishnan, U. Çetintemel, M. Cherniack, R. Tibbetts, and
S. Zdonik. Towards a streaming SQL standard. PVLDB, 1(2), Aug.
2008.

[33] W. Lam, L. Liu, S. Prasad, A. Rajaraman, Z. Vacheri, and A. Doan.
Muppet: MapReduce-style Processing of Fast Data. PVLDB, 5(12),
2012.

[34] E. Liarou, R. Goncalves, and S. Idreos. Exploiting the Power of
Relational Databases for Efficient Stream Processing. In EDBT,
2009.

[35] H. C. Lim, S. Babu, and J. S. Chase. Automated Control for Elastic
Storage. In ICAC, 2010.

[36] M. Liu, S. R. Mihaylov, Z. Bao, M. Jacob, Z. G. Ives, B. T. Loo, and
S. Guha. SmartCIS: Integrating Digital and Physical Environments.
In SIGMOD, 2009.

[37] B. Lohrmann, D. Warneke, and O. Kao. Massively-Parallel Stream
Processing under QoS Constraints with Nephele. In HPDC, 2012.

[38] N. Marz. How to beat the CAP theorem.
http://nathanmarz.com/blog/how-to-beat-the-cap-theorem.html.

[39] Microsoft SQL Server Analysis Services.
http://www.microsoft.com/sqlserver/en/us/solutions-
technologies/business-intelligence/analysis.aspx.

[40] MonetDB. http://www.monetdb.org/Home.

[41] mongoDB. http://www.mongodb.org/.

[42] Overview of MySQL Storage Engine Architecture.
http://dev.mysql.com/doc/refman/5.1/en/pluggable-storage-
overview.html.

[43] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed
Stream Computing Platform. In ICDMW, 2010.

[44] Oozie - Yahoo!’s Workflow Engine for Hadoop.
http://yahoo.github.com/oozie/.

[45] Oracle CEP.
http://www.oracle.com/technetwork/middleware/complex-event-
processing/.

[46] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online
Aggregation for Large MapReduce Jobs. PVLDB, 4(11), 2011.

[47] Pentaho Mondrian. http://mondrian.pentaho.com/.

[48] Project Voldemort. http://www.project-voldemort.com/voldemort/.

[49] Protocol Buffers. https://developers.google.com/protocol-buffers/.

[50] Redis. http://redis.io/.

[51] SAP Sybase Event Stream Processor.
http://www.sybase.com/products/financialservicessolutions/complex-
event-processing/.

[52] SAS In-Memory Analytics. http://www.sas.com/high-performance-
analytics/how-does-it-work/in-memory.html.

[53] SAS OLAP Server.
http://www.sas.com/technologies/dw/storage/mddb/index.html.

[54] K. Sheykh-Esmaili, T. Sanamrad, P. M. Fischer, and N. Tatbul.
Changing Flights in Mid-air: A Model for Safely Modifying
Continuous Queries. In SIGMOD, 2011.

[55] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s
LEarning Optimizer. In VLDB, 2001.

[56] Storm. http://storm-project.net/.

[57] StreamBase. http://www.streambase.com.

[58] N. Tatbul. Streaming Data Integration: Challenges and Opportunities.
In NTII, 2010.

[59] TellApart. http://tellapart.com/.

[60] Truviso. http://www.truviso.com.

[61] Vertica. http://www.vertica.com.

[62] Windows Azure SQL Database. http://msdn.microsoft.com/en-
us/library/windowsazure/ee336279.aspx.

[63] Apache Hadoop NextGen MapReduce (YARN). http://hadoop.
apache.org/docs/r0.23.0/hadoop-yarn/hadoop-yarn-site/YARN.html.

[64] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.
Spark: cluster computing with working sets. In HotCloud, 2010.

[65] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized
Streams: An Efficient and Fault-Tolerant Model for Stream
Processing on Large Clusters. In HotCloud, 2012.

