
CrowdQ: Crowdsourced Query Understanding

Gianluca Demartini† Beth Trushkowsky Tim Kraska♦ Michael J. Franklin

AMPLab, UC Berkeley U. of Fribourg–Switzerland† Brown University♦

{trush,franklin}@cs.berkeley.edu gianluca.demartini@unifr.ch kraskat@cs.brown.edu

ABSTRACT
Work in hybrid human-machine query processing has thus
far focused on the data: gathering, cleaning, and sorting. In
this paper, we address a missed opportunity to use crowd-
sourcing to understand the query itself. We propose a novel
hybrid human-machine approach that leverages the crowd
to gain knowledge of query structure and entity relation-
ships. The proposed system exploits a combination of query
log mining, natural language processing (NLP), and crowd-
sourcing to generate query templates that can be used to
answer whole classes of different questions rather than fo-
cusing on just a specific question and answer.

1. INTRODUCTION
Structured queries are beneficial because they allow for

query optimization as well as provide a clear expectation
for answers in the result set. However, users typically spec-
ify their information needs as unstructured keyword queries
[8], particularly in search engines. Efforts in deep-web search
and crowdsourced query processing in databases aim to bridge
this gap. Examples include CrowdDB [5] and Qurk [6] in tra-
ditional database systems, and [3], [1], and [4] in the context
of search engines.

However, these existing hybrid human-machine approaches
have so far been focused on the data. In other words, the
crowd has been used to gather, clean, and sort data in re-
sponse to an individual information request; the data for the
query is subsequently stored for future use. We believe there
is a missed opportunity to use crowdsourcing to instead tar-
get query semantics. This opportunity is particularly advan-
tageous in the context of search engines, where unstructured
keyword queries are common. Understanding query seman-
tics allows queries with similar structure to be grouped, and
this structure can be utilized to automatically provide direct
answers. Thus we can go beyond merely caching the results
of one crowdsourced query at a time, and instead amor-
tize the cost of using the crowd over many queries. Knowl-
edge of query structure, in particular entity relationships,
can also enable the decomposition and optimization of com-
plex queries. Furthermore, a fundamental understanding of
a user’s information need can be used to improve answers,

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

Query pattern
what is the average rainfall for ENTITY

what is the longest river in ENTITY
what is the largest city in ENTITY

who is married to ENTITY
movies being filmed in ENTITY

Table 1: Query patterns obtained by running an
entity extractor over AOL query logs.

refine the query, as well as suggest queries based on its sim-
ilarity to other queries.

In this paper we propose a novel system called CrowdQ
(Crowd-supported Query-answering) which uses the crowd
to understand the structure of keyword queries in order to
construct a repository of query templates. We can pre-
populate the repository by mining for patterns in query
logs and crowdsourcing their structure, as well as grow the
repository over time. The template repository will aid in
automatically answering future queries that are particular
instances of existing templates. To answer a query instance,
CrowdQ will find its match in the template repository and
first attempt to provide an answer by querying a structured
knowledge base (e.g., Freebase). Of course, answers not
found in the knowledge base can be sent to the crowd. We
describe next use cases that demonstrate the types of queries
that CrowdQ will tackle through the use of templates.

Understanding query patterns is a technique already used
to provide direct answers in search engine result pages for
common queries (e.g., “current weather in San Francisco”).
Approaches for translating natural language to structured
queries exist (e.g., [7, 9]). However, existing techniques have
not realized the full potential for query templates: to provide
answers for all instances of a simple query pattern, includ-
ing the uncommon ones, and to compose simple patterns to
form complex queries. Table 1 shows examples of common
patterns found when we analyzed AOL query logs using an
entity extractor. Note that these examples represent both
uncommon queries in addition to queries for which only some
instances may be directly answered by search engines.

Having query templates for these simple queries, i.e., those
that seek a single fact/attribute about a particular entity,
becomes even more useful when such queries are composed
to create more complex queries. Imagine a user wants to find
information about the average age of politicians in Europe.
She might try querying for ‘birth dates of the mayors of all
capital cities in Europe’. Unfortunately, this query cannot
be answered as-is by a search engine. The user will have to
first query for ‘countries in Europe’ to find a list of country
names, then for ‘capital city of Italy’, ‘capital city of Ger-
many’, etc., then for ‘mayor of Rome, Italy’, and, finally, for

Figure 1: Search engine result page visualizing the
structured results of a complex keyword query.

‘birth date of Gianni Alemanno’ (the mayor of Rome).
While most of these individual queries can be answered

by a modern search engine with only one or even no clicks
thanks to advances in web mining, it is still not possible
to get a direct answer for the original information need by
posing a single keyword query. The user has to issue many
queries in a cascaded fashion where the answer of one query
is used to compose the next one. By understanding the rela-
tionships between the entities in the original query, CrowdQ
will be able to decompose the complex query into the struc-
tured subqueries that can be answered by matching them
to existing query templates. We envision a direct answer to
this user’s complex information need being displayed on the
search engine’s result page, like the mockup in Figure 1.

The rest of this paper is organized as follows. In Sec-
tion 2 we highlight the challenges that need to be addressed
to answer complex keyword queries. Then in Section 3 we
describe the proposed CrowdQ system architecture that will
answer these queries using query decomposition and seman-
tic search against a structured repository; we particularly
focus on defining the novel steps involved in crowdsourcing
query structure and semantics. We conclude in Section 4.

2. RESEARCH CHALLENGES
The goal of building query templates to obtain answers to

complex information needs presents several challenges.
The first challenge is to take a keyword query about a

specific entity (e.g., ‘birthdate of Barack Obama’) and trans-
form it into the representation of an entire class of queries
about the same entity type (e.g., ‘birthdate of [person]’).
This process requires query parsing and annotation; com-
mon annotation procedures include Part-of-Speech (POS)
tagging and Named-Entity Recognition (NER).

The next challenge is to extract the semantics of the query
by identifying the principal components that reflect the in-
formation need, i.e., the relationships between entities. We
propose using paid crowdsourcing to aid in query decom-
position to understand the relationship between the query’s
different elements.

Another challenge is identifying the appropriate answer
type, e.g., date, name, picture, number, etc., for each com-
plex query. This is necessary because we aim to (automat-
ically) combine the answers to simple queries into the final
answer that addresses the original complex information need
by running a join query with aggregation operators over a
structured data repository. We plan to leverage the crowd
again to guide the choice of answer type.

Once query semantics information has been extracted, the
structured query must be composed and stored so it can be
reused to answer future complex queries that share simi-
lar structure without the need to further involve (and thus
pay) the crowd. We will design query template matching
techniques to decide whether for an given input query there
exists a template that can be used to automatically decom-
pose and answer the complex query.

In summary, the CrowdQ system needs to:

• Identify the key entities in the query (e.g., based on NLP
techniques)

• Identify the relations between the key entities (e.g., by
means of crowdsourcing)

• Compose the structured query and generate a query tem-
plate (i.e., DB/IR)

• Store and index the generated query templates to match
future queries (i.e., DB/IR)

• Integrate different structured datasets (e.g., data.nytimes.com,
geonames.org) to guarantee data quality, freshness, cov-
erage, and consistency (i.e., DB)

We describe how to address these challenges next.

3. CROWDQ

3.1 System Architecture
The proposed system architecture for CrowdQ, depicted

in Figure 2, is composed of an off-line pre-processing com-
ponent and an on-line query processing component. The
off-line pre-processing pipeline takes as input a search en-
gine query log and analyzes each query to populate a query
template repository, with help from the crowd as described
in Section 2. The on-line component takes as input a query
from a web search user and decides which type of answer
to return (similarly to how it is currently done for vertical
search selection [2]). If the query is classified as a complex
analytic search, then it is matched against the repository
of structured query templates. Answers for the matching
structured queries are obtained by running them against a
structured fact repository and results are aggregated into
the final search engine result page (SERP) (see Figure 1).

3.2 A Hybrid Pipeline for Structured Query
Template Extraction

The goal of CrowdQ is to understand the structure be-
hind complex search queries by decomposing them with the
steps depicted in Figure 3. We now describe in more detail
the off-line query template generation that leverages paid
crowdsourcing. The steps involved in the query template
generation and answering are the following.

Query Annotation and Entity Extraction.
The process begins with the input of a keyword query

q = {k1, ..., kn} where ki is a keyword. The first step con-
sists of automatically creating annotations for q as a list of

User

Keyword Query
On#line'Complex'Query

Processing
Complex

query
classifier

Crowdsourcing
Platform

Vetrical
selection,

Unstructured
Search, ...

POS + NER tagging

Query Template Index

Crowd
Manager

N

Y

Queries Templ +
Answer Types

Structured
LOD Search

Result Joiner

Template Generation

SERP

t1
t2t3

Off#line'Complex'Query
Decomposition

Structured Query

Query
Logquery

N

An
sw

er
Co

m
po

sit
io

n

LOD Open Data Cloud

Match with existing
query templates

Figure 2: CrowdQ Architecture. The off-line processing starts at the top-right with a search log as input.
The on-line processing starts at top-left with a user keyword query.

q = birthdate of the main actor of forrest gump
noun noun

phrase
entity Which is the relation between:

main actor - forrest gump

SELECT ?y ?x
WHERE { ?y <dbpedia-owl:birthdate> ?x .
 ?z <dbpedia-owl:starring> ?y .
 ?z <rdfs:label> [MOVIE]
 }

Which is the answer type?
o birthdate
o main actor
o forrest gump
o other:

Is 'forrest gump' an
entity in the query?

Verify annotation
Query annotation

'starring' <dbpedia-owl:starring>

Is the relation between

Indiana Jones - Harrison Ford
Back to the Future - Michael J. Fox

the same as the one between

main actor - Forrest Gump

Verify Relation

SELECT ?y ?x
WHERE { ?y <dbpedia-owl:birthdate> ?x .
 ?z <dbpedia-owl:starring> ?y .
 ?z <rdfs:label> 'Forrest Gump'
 }

Query Template
Overall answer type

Entity relation identification Predicate Identification

Structured query composition

Figure 3: A hybrid pipeline for query decomposition and query template creation. Light blue steps are
performed automatically. Orange steps are crowdsourced.

POS tags as well as named entity tags. This step yields two
query representations qPOS = {POS1, ..., POSn} as well as
qE = {E1, ..., En}. While NLP techniques to perform such
annotation on natural language exist, they often rely on the
grammatical structure of text. It may be necessary to adapt
them to obtain high-quality annotation of keyword queries.
One possible approach to improve annotation quality is to
use crowdsourcing for low confidence cases. The first task
the crowd would perform is validation of the automatically
generated POS and entity annotations (the verify step, see
Figure 3). If the crowd deems the annotation incorrect, then
a crowdsourced fix step is added. Workers will have to in-
dicate the entities mentioned in the keyword query, which
will be used in the subsequent step of the pipeline. Ini-
tial experiments we performed have shown that the crowd
can effectively identify the main entities involved in complex
search queries (see Table 2).

In the next step, the generated query representations are
used both to create the query templates as well as to create
the task that will be presented to workers on the crowd-
sourcing platform. Specifically, different annotations will be
presented to the worker, with priority given to entity anno-

tations which are assumed to be more significant than the
POS annotations for the specific task. For example, a query
with its entity and POS annotations may look like:

noun noun phrase entity
birth date of the main actor of forrest gump

Entity Relation Detection.
Once the query has been correctly annotated and enti-

ties have been identified, the next challenge is determining
the relationships between different objects in the query. For
example, the system needs to understand that ‘birth date’
is an attribute of ‘actor’ and that ‘actor’ is related to the
‘movie’ class of which ‘Forrest Gump’ is an instance. Auto-
matic approaches that estimate probabilities for all possible
relationships between query objects may have low efficacy
due to poor language structure present in keyword queries.

Preliminary experiments have shown that crowd workers
can effectively identify the key entities involved in a query
but have difficulty determining entity relationships without
additional support. Table 2 shows entities and their rele-
vant attributes identified by the crowd for the mayor’s birth

query: Birth date of the mayor of the capital city of Italy
Key Entities Main Attributes

mayor (7) birth date (7), city (1)
city (5) capital (2), mayor (2), title (1)

country (2) capital (2), mayor (1), name (1)

Table 2: Entities and attributes identified by (n) out
of 10 workers on Amazon Mechanical Turk for one
query.

date query. While the crowd can effectively identify the key
entities involved in the query, it was difficult for workers to
identify the entities’ key attributes and relationships (e.g.,
determining that mayor-city and city-country are correct re-
lationships but mayor-country is not).

To address this challenge, we propose presenting workers
with a list of questions that directly asks for the relation-
ship between a pair of entities. All possible pairs can be
presented to an individual worker because a limited number
of elements is expected to be present in a keyword query.
Workers can either name the relationship or state that the
two elements are not related each other.

Overall Answer Type Identification.
The next step in the pipeline which can be tackled with

crowdsourcing is the identification of the answer type. The
answer type could be either mentioned in the query (and
thus workers will simply have to select the relevant keyword,
e.g., ‘birth date’) or the worker will have to determine the
implicit answer type.

Predicate Selection.
For each identified relationship, a Resource Description

Framework (RDF) predicate needs to be selected. This se-
lection can be accomplished, for example, based on text sim-
ilarity between the relationship and candidate predicates in
the RDF store. However, automatic systems can fail on this
task because the RDF store may contain synonyms as well
as cryptic predicate names. To improve accuracy, an addi-
tional verify step can be done for RDF predicate selection
(see Figure 3): for each selected RDF predicate, the crowd is
shown example relationships from the knowledge repository
and asked if the relationship is the same as that between the
entities in q.

For example, for the crowd-identified relation ‘starring’
between ‘Forrest Gump’ and ‘main actor’ the predicate <dbp-
prop:starring> is selected. The examples (‘Indiana Jones’
- ‘Harrison Ford’) and (‘Back to the Future’ - ‘Michael J.
Fox’) are shown to the crowd to verify that the relation is
the same and thus that the predicate is correct.

Structured Query Composition.
At this point in the pipeline, a structured SPARQL query

is composed:

SELECT ?y ?x

WHERE { ?y <dbpedia-owl:birthdate> ?x .

?z <dbpedia-owl:starring> ?y .

?z <rdfs:label> ‘Forrest Gump’

}

This query run against the BTC091 dataset returns the
following answers:

<http://dbpedia.org/resource/Robin_Wright_Penn> 1966-04-08
<http://dbpedia.org/resource/Tom_Hanks> 1956-07-09
<http://dbpedia.org/resource/Sally_Field> 1946-11-06
<http://dbpedia.org/resource/Gary_Sinise> 1955-03-17
<http://dbpedia.org/resource/Mykelti_Williamson> 1960-03-04

The final phase in creating the query template consists
of replacing specific entity instances in the structured query
with wildcards. For example, instead of ‘Forrest Gump’ we
will consider a generic entity type [movie]. Thus, the gen-
erated template can match any raw keyword query of the
same POS/NER annotation structure as q.

Note that some of the crowdsourcing tasks, e.g., the selec-
tion of the correct predicate for entity relationships, could
be gamified (presented as a challenging game) and thus com-
pleted by the crowd at no cost rather than being done by
paid crowdsourcing.

4. CONCLUSION
In this paper we introduced CrowdQ, a novel hybrid human-

machine system for answering complex keyword queries by
leveraging the crowd to understand query semantics. By
building a repository of structured query templates with the
help of both algorithms and people, answers to new queries
can be automatically provided by matching them to tem-
plates and taking advantage of structured knowledge bases.
We described the challenges in realizing this vision, as well
as our initial results and future plans for addressing them.
The proposed system architecture combines techniques from
areas such as DB, NLP, IR, Data Mining, and human intelli-
gence to understand the need behind a user keyword query.

5. ACKNOWLEDGEMENTS
This research is supported in part by the Swiss NSF grant

IZK0Z2 142896, by NSF CISE Expeditions award CCF-1139158,
gifts from Amazon Web Services, Google, SAP, Blue Goji, Cisco,
Cloudera, Ericsson, General Electric, Hewlett Packard, Huawei,
Intel, Microsoft, NetApp, Oracle, Quanta, Splunk, VMware and
by DARPA (contract #FA8650-11-C-7136).

6. REFERENCES
[1] O. Alonso and M. Lease. Crowdsourcing for information

retrieval: principles, methods, and applications. In SIGIR,
2011.

[2] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo. Sources of
evidence for vertical selection. In SIGIR, 2009.

[3] M. S. Bernstein et al. Direct answers for search queries in
the long tail. In CHI, 2012.

[4] M. J. Cafarella et al. Webtables: exploring the power of
tables on the web. Proc. VLDB Endow., 1(1), 2008.

[5] M. J. Franklin et al. CrowdDB: Answering Queries with
Crowdsourcing. In SIGMOD, 2011.

[6] A. Marcus, E. Wu, S. Madden, and R. Miller. Crowdsourced
Databases: Query Processing with People. In CIDR, 2011.

[7] C. Unger, L. Bühmann, J. Lehmann, A.-C. Ngonga Ngomo,
D. Gerber, and P. Cimiano. Template-based question
answering over RDF data. In WWW, 2012.

[8] R. W. White, M. Bilenko, and S. Cucerzan. Studying the use
of popular destinations to enhance web search interaction. In
SIGIR, pages 159–166, 2007.

[9] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath,
V. Tresp, and G. Weikum. Natural language questions for
the web of data. In EMNLP-CoNLL, 2012.

1The dataset consists of more than one billion RDF triples
and is available at: http://vmlion25.deri.ie/

