
SQLVM: Performance Isolation in Multi-Tenant

Relational Database-as-a-Service

Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, Surajit Chaudhuri
Microsoft Research
Redmond, WA, USA

{viveknar, sudiptod, manojsy, badrishc, surajitc}@microsoft.com

ABSTRACT

A relational Database-as-a-Service provider, such as Microsoft

SQL Azure, can share resources of a single database server among

multiple tenants. This multi-tenancy enables cost reduction for the

cloud service provider which it can pass on as savings to the

tenants. However, resource sharing can adversely affect a tenant’s

performance due to resource demands of other tenants’ workloads.

Service providers today do not provide any assurances to a tenant

in terms of isolating its performance from other co-located tenants.

We present SQLVM, an abstraction for performance isolation

which is built on a promise of reservation of key database server

resources, such as CPU, I/O and memory, for each tenant. The key

challenge is in supporting this abstraction within a DBMS without

statically allocating resources to tenants, while ensuring low

overheads and scaling to large numbers of tenants. Our

contributions are in (1) formalizing the above abstraction of

SQLVM; (2) designing mechanisms to support the promised

resources; and (3) proposing low-overhead techniques to

objectively meter resource allocation to establish accountability.

We implemented a prototype of SQLVM in Microsoft SQL Azure

and our experiments demonstrate that SQLVM results in

significantly improved performance isolation from other tenants

when compared to the state-of-the-art.

1. INTRODUCTION
Services, such as Microsoft SQL Azure, which offer relational

Database-as-a-Service (DaaS) functionality in the cloud, are

designed to be multi-tenant; a single database server process hosts

databases of different tenants. Figure 1 illustrates such a multi-

tenant RDBMS architecture, called shared process multi-tenancy.

Multi-tenancy is crucial for cost-effectiveness since dedicating a

machine for each tenant makes the service prohibitively expensive.

Such multi-tenancy in DaaS is also relevant for on-premise clouds

where a single server consolidates databases of multiple

independent applications within the enterprise.

An important consequence of multi-tenancy is that a tenant’s

workload competes with queries from other tenants for key

resources such as CPU, I/O, and memory at the database server.

Tenants of a relational DaaS platform can execute arbitrary SQL

queries that can be complex and whose resource requirements can

be substantial and widely varied. As a result, the performance of a

tenant’s workload can vary significantly depending on the

workload issued concurrently by other tenants. Such performance

unpredictability arising from contention with other tenants for

shared database server resources can be a serious problem.

Therefore, a natural question to ask is: what assurances on

performance can a multi-tenant DaaS provider (or system) expose

to a tenant and yet be cost-effective?

Machine

Tenant 1
application

Tenant n
application

Network

Tenant 1
Database

Tenant n
Database

Storage

...

...

SQL SQL

Database Server process

Figure 1. A multi-tenant database system.

It might be tempting to consider assurances of high-level

performance metrics at the level of SQL queries, e.g., throughput

(queries/sec) or query latency. However, even on a database server

that is exclusively used by one tenant, the resource needs and

execution times of different instances of a single query template,

such as a parameterized stored procedure, can vary dramatically

depending on parameter values. Moreover, a tenant’s workload can

have a mix of various types of queries with very different

throughput and latency requirements. In addition, observe that

service providers need to support ad-hoc queries (i.e., queries not

seen previously) without limiting the workload type or the SQL

query language supported. Furthermore, a tenant’s data size,

distribution, and access patterns can change over time. These

factors contribute to even greater variability in query throughput

and latency. Thus, given the need to support complex and arbitrary

SQL workloads, meaningful assurances at the level of queries/sec

or query latency, while a worthwhile aspiration, are not even well

defined.

A fundamental challenge, however, is to reduce the variability in

performance that arises due to contention with other tenants for

critical shared database server resources. That is, provide an

assurance that a tenant’s workload is unaffected by the workloads

executed by co-located tenants. One approach is to provide tenants

assurances at the level resources such as CPU, I/O, buffer pool

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution

and reproduction in any medium as well allowing derivative works, provided

that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR '13).

January 6-9, 2013, Asilomar, Califonia, USA

memory for caching database pages, and working memory for

operators such as hash and sort. At first glance, it may appear that

techniques developed for resource management in traditional

enterprise DBMS may be adequate for such resource-level

assurances. These techniques are typically based on relative

priorities, proportional sharing, or enforcing maximum limits on

resource usage. However, particularly in a public cloud setting, a

major drawback of relative priorities and proportional sharing is

that the assurance of how much resources a tenant will receive is

not absolute – it depends on which other tenants are active (and

their priorities/shares). Similarly, enforcing maximum limits also

suffers from this drawback when the service provider overbooks

(i.e., promise more resources in aggregate to tenants than the

available system capacity) to increase utilization and cost-

effectiveness [14]. In contrast, a promise of a reservation of

resources is much more meaningful to a tenant of DaaS, since the

assurance of how much resources the tenant will receive is absolute

– i.e., not dependent on other tenants. As a concrete example,

consider the I/O resource. Suppose tenant T1 is promised a

reservation of 100 I/Os per second (IOPS). Then, the promise is that

if T1’s workload demands 100 IOPS (or more), then the system

assumes responsibility for granting 100 IOPS no matter which

other tenants are executing concurrently on the server.

Observe that we do not want to support such resource reservations

through static resource allocation since that would drastically limit

consolidation and increase the costs. It is therefore possible that a

tenant may not always receive the resources it was promised (e.g.,

due to overbooking). Thus, metering the promise becomes crucial

to establish accountability, i.e., the system must be auditable so that

when the promise is not met, it is possible to determine if this

violation occurred because the service provider allocated the

resource to other tenants instead, or the tenant’s workload had less

demand for the resources than it reserved. Referring to the I/O

example above, suppose T1’s workload actually achieves 80 IOPS

when its reservation is 100 IOPS. There are two reasons why this

might happen: (a) T1’s queries did not generate sufficient I/O

requests; (b) T1 generated sufficient I/O requests, but the database

system allocated IOPS to other tenants instead, thereby depriving

T1 of some of the resource it was promised. Note that such metering

is independent of the actual resource allocation mechanisms, and is

essential for providing performance assurances in a multi-tenant

environment.

In the SQLVM project at Microsoft Research, we adopt the above

approach to performance isolation. SQLVM is a reservation of a set

of resources for a tenant inside the database server. Conceptually,

the tenant is exposed a familiar abstraction of a virtual machine

(VM) with a specified set of resources such as CPU, I/O, and

memory, but inside the database server. Internally, new promise-

aware resource allocation mechanisms exercise fine-grained

control to orchestrate shared resources across tenants without

requiring static allocation upfront. If a tenant’s resource reservation

is not met, then metering logic for that resource establishes

accountability. Note that the obvious alternative of actually

creating VMs (one per tenant) and running an instance of the

database server process within each VM is too heavyweight and

fails to achieve the degree of consolidation demanded for DaaS [1].

In contrast, SQLVM is much more lightweight, allowing

consolidation factors of hundreds of tenants. Another key

advantage of SQLVM is that it applies to any RDBMS workload

without restrictions.

There are multiple challenges in the design and implementation of

the above abstraction within an RDBMS. First, since static resource

allocation is not cost-effective, scheduling mechanisms in the

DBMS need to change with the new constraints of fine-grained

resource sharing while meeting each tenant’s reservation; each

resource brings unique challenges. Second, the implementation of

these mechanisms needs to scale to hundreds of active tenants with

acceptably low overheads. Last, metering intuitively requires

tracking a tenant’s demand for resources at a fine granularity while

keeping the bookkeeping overheads low.

We briefly touch upon various other important issues that arise

when building an end-to-end multi-tenant system using this

approach. First, in addition to the tenants’ workloads, a database

server consumes resources for system tasks necessary to achieve

other crucial properties such as high availability (e.g., via

replication to other machines), checkpointing to reduce recovery

time, and backup/ restore. SQLVM also isolates a tenant’s resource

reservation from such system management activities. Interestingly,

such system activity can also be governed via the SQLVM

abstraction by logically treating the system as an “internal tenant”

with certain resource requirements. Second, service providers often

overbook the system to reduce costs by increasing consolidation.

Thus, if at any point, the combined resource requirements of all

active tenants exceed the available resources, the provider will be

unable to meet the promises of all tenants. In such a scenario,

additional policies within the system are necessary to determine

which tenants’ promises will be violated. These policies may take

into account potentially conflicting considerations: fairness to

tenants and the need to minimize penalties incurred when the

promise is violated. Resource scheduling in the presence of such

promises can be viewed as an online optimization problem. Last,

while SQLVM adds value by isolating tenants contending for

resources, it can also be viewed as a building block upon which

higher-level performance assurances (e.g., at the workload level)

can be designed. For example, SQLVMs of different “sizes” (e.g.,

Large, Medium, Small) can potentially be exposed, where each size

corresponds to a set of reservations of individual resources. This

could enable “recommender tools” to profile the tenant’s workload

against different sized SQLVMs and suggest one that is suitable to

meet the tenant’s higher-level performance goals.

The contributions of this paper can be summarized as follows:

 An abstraction for performance isolation in a multi-tenant

RDBMS based on promise of reservation of resources.

 New fine-grained resource scheduling mechanisms with the
goal of meeting each tenant’s reservations.

 Novel metering logic to audit the promise.

 An implementation of SQLVM and the associated metering

logic inside Microsoft SQL Azure. Our experiments

demonstrate that tenants achieve significantly improved

resource and performance isolation from other tenant

workloads when using SQLVM.

2. SQLVM
SQLVM is a reservation of key resources in a database system such

as CPU, I/O, and memory. Conceptually, a tenant is promised a VM

with specified resources, but within the database server process.

Unlike a traditional VM, a SQLVM is much more lightweight since

its only goal is to provide resource isolation across tenants. We

believe that this abstraction is well suited to a multi-tenant DaaS

setting since the assurance provided to a tenant is absolute, i.e., the

promise is not specified relative to other active tenants (unlike

assurances based on priorities or proportional sharing based on

tenant weights). In a cloud setting, a SQLVM can be mapped to a

logical server (similar to Amazon EC2, for instance), thus making

the promise independent of the actual capacity of the physical

server hosting the tenant.

The SQLVM abstraction is also accompanied by an independent

metering logic that provides accountability to tenants. When a

tenant is not allocated resources according to the promise, metering

must decide whether the tenant’s workload did not have sufficient

demand to consume the resources promised or whether the service

provider failed to allocate sufficient resources; this logic is unique

for each resource promised. A key challenge in metering stems

from the burstiness in requests—in the presence of such bursts,

metering must be fair to both tenants and the provider. We assume

there is a metering interval, i.e., a window of time over which this

metering is done. For example, if the metering interval is 1 second,

then the promised reservation must be met every second.

In the rest of this section, we define the notion of reservation and

metering for each key DBMS resource: CPU, I/O, memory (both

buffer pool and working memory). In principle, SQLVM can be

extended to encompass other shared resources as well, e.g.,

network bandwidth. Our experiments (Section 4) show that a

SQLVM with promises for the resources discussed below already

results in much improved performance isolation.

2.1 CPU
Database servers today run on processors with multiple cores. For

example, on a machine with two quad-core processors, the server

can run up to 8 tasks (i.e., threads) concurrently, or more if for

example there is hyper-threading. On each core, a scheduler decides

which among the tasks queued on that core gets to run next. A task

can be in one of the following states: running (currently executing

on the core), runnable (ready to execute but is waiting for its turn),

or blocked (waiting on some resource, e.g., a lock on a data item,

and hence not ready to execute). For a tenant, and a given core, the

CPU utilization over an interval of time is defined as the percentage

of time for which a task of that tenant is running on that core. This

definition extends naturally to the case of k cores as the total time

for which tasks of that tenant run across all cores, as a percentage

of (k × time interval).

Promise: SQLVM promises to reserve for the tenant (Ti) a certain

CPU utilization, denoted by ResCPUi. This promises Ti a slice of

the CPU time on available core(s) and does not require statically

allocating an entire core (or multiple cores) for a tenant. This allows

better consolidation since we can promise CPU utilization to many

more tenants than available cores. For example, on a single core

server, if ResCPU = 10%, then in a metering interval of 1 sec, the

tenant should be allocated CPU time of at least 100 msec, provided

the tenant has sufficient work.

Metering: The key challenge in metering CPU utilization is in

defining the notion of sufficient work for a tenant in terms of CPU

use. We observe that if a tenant has at least one task that is running

or is runnable, then it has work that can utilize the CPU. Thus, the

metering problem can be stated as follows: of the total time during

which the tenant had at least one task running or runnable, it must

receive at least ResCPUi percentage of the CPU; the provider

violated the promise otherwise. For instance, if T1 was promised

ResCPU1=10% and if T1 had at least one task ready to run (or

running) for 500ms, the provider violates the promise only if the

allocated CPU is less than 50ms, i.e., T1’s effective utilization is

less than 10%. This definition of metering is fair since the provider

is not held accountable for the tenant being idle (i.e., no tasks ready

to run), while ensuring that a provider cannot arbitrarily delay a

tenant’s task without violating the promise.

2.2 I/O
Achieving adequate I/O throughput (IOPS) and/or I/O bandwidth

(bytes/sec) is important for many database workloads. As in the

case of CPU, statically dedicating a disk (or set of disks) per tenant

to achieve acceptable I/O throughput limits the amount of

consolidation. Thus, fine-grained sharing of the IOPS available

from a disk is important. For simplicity in the discussion below we

refer to I/O throughput, although the definitions can be extended

for bandwidth as well. Note that the maximum available IOPS (or

capacity) of a disk can be determined offline using standard

calibration procedures.

Promise: SQLVM promises to reserve for the tenant a certain

IOPS, denoted ResIOPSi. This promise can again be viewed as a

slice of the IOPS capacity available of the underlying physical disk

drives. Note that our promise makes no distinction between

sequential and random I/Os. The rationale is that even though

DBMSs traditionally have developed optimizations for sequential

I/O, the stream of I/O requests in a server hosting independent

tenant workloads may not be sequential due to the high degree of

multiplexing across tenant workloads. However, for tenants whose

workloads require scanning large amounts of data (e.g., decision

support workloads), the promise can in principle be offered in terms

of I/O bandwidth (Mbps). This paper, however, focusses on IOPS.

Metering: The key challenge in metering I/O throughput is in

determining if the tenant had “sufficient I/O requests” to meet its

reservation and whether the I/O throughput achieved is

commensurate with the promise. Similar to CPU utilization,

observe that if a tenant had at least one I/O request pending, then it

had work to utilize the I/O resources. We define the effective I/O

throughput as the IOPS achieved for the time when the tenant had

at least one pending I/O request in the given metering interval. The

I/O metering logic flags a violation if the effective I/O throughput

is less than ResIOPSi. The rationale and argument for fairness is

similar to that in the case of CPU: if requests arrive in bursts, the

provider must issue enough I/O requests to meet the effective rate

of ResIOPSi, thus preventing the provider from unnecessarily

delaying the requests; the provider is not held accountable for

periods when the tenant was idle, i.e., did not have any pending I/O

requests.

2.3 Memory
While there are many uses of memory in a relational DBMS, we

focus here on the two major uses: buffer pool and working memory.

The buffer pool is a cache of database pages that is managed using

a page replacement strategy (e.g., LRU-k). If a page is not found in

the buffer pool, the DBMS incurs I/O to obtain it from secondary

storage. Working memory is private to a physical operator used in

a query execution plan, such as Hash or Sort. If working memory

is limited, the operator may need to spill its state (e.g., partitions of

the hash table) to secondary storage, thus again incurring additional

I/O. Therefore, promises on memory are also crucial for

performance. Similar to static reservation of CPU and I/O capacity,

statically allocating a tenant’s memory also limits consolidation.

Therefore, we seek a way to dynamically distribute memory across

tenants, but provide a precise promise to tenants that exposes an

illusion of statically-allocated memory.

Promise: To allow dynamic and fine-grained sharing of memory

among tenants, our promise is that the number of I/Os incurred in

the multi-tenant system is the same as though the system had

dedicated a certain amount (say 1GB) of buffer pool memory for

the tenant; a similar promise applies for working memory. For a

given amount of memory M, we define Relative IO as follows:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑂 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝐼𝑂𝑠 − 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐼𝑂𝑠 (𝑀)

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐼𝑂𝑠 (𝑀)

SQLVM promises a tenant Relative IO ≤ 0 for a given amount of

memory. Similar to other resources, a tenant is promised a memory

reservation (ResMemi). For example, suppose a tenant is promised

a 1GB buffer pool memory reservation. In effect, the promise is that

the tenant’s workload will see the same hit ratio as though a 1GB

buffer pool was reserved for the tenant. Similarly for working

memory, a promise of 500 MB implies that there would be no more

I/O to/from disk for Hash or Sort operators compared to 500 MB of

working memory dedicated to that tenant.

Metering: Since memory is allocated dynamically and a tenant’s

actual memory allocation might differ from ResMemi, the key

challenge for metering memory is to determine Baseline IOs (M);

Actual IOs can be measured directly. This requires a “what-if”

analysis to simulate the I/O behavior of the workload as though the

tenant had M units of memory dedicated to it. The challenge lies in

doing this baseline simulation accurately and with low overhead.

We have shown (via implementation in Microsoft SQL Azure) that

the baseline simulation is feasible in practice and accurate, both for

buffer pool memory and working memory. For example, for buffer

pool memory, the observation is that the relative I/O is dependent

on the page access order, page replacement policy and page

metadata (such as dirty bit), and not the actual contents of the pages.

The CPU overhead necessary to simulate this baseline buffer pool

can be piggybacked on the actual buffer pool accesses and page

replacement, and is almost negligible in practice. Finally, we note

that if the metering logic determines RelativeIO > 0, any such

additional I/Os incurred for the tenant are not charged to the

tenant’s ResIOPS; these additional I/Os are charged to the system.

3. IMPLEMENTATION
We have built a prototype of SQLVM inside Microsoft SQL Azure.

In particular, we added the ability to specify a SQLVM

configuration for a tenant, modified the resource scheduling

mechanisms to enable the server to meet reservations of a tenant

for each of the key resources: CPU, buffer pool memory, working

memory and I/O, and implemented metering logic for each of these

resources. In this paper we only discuss the I/O scheduling

mechanism and its metering logic. Scheduling mechanisms and

metering logic for other resources are beyond the scope of this

paper. Note that many database systems already have support for

classifying incoming queries and associating them to tenants (e.g.,

[9]). SQLVM leverages such mechanisms to dynamically

determine which tenant issued a query.

3.1 I/O Scheduling
There are three major challenges in implementing I/O scheduling

in an RDBMS for meeting ResIOPS promised to each tenant. The

first challenge is the accuracy and efficiency of the actual

scheduling mechanism. The second challenge concerns accurately

accounting all I/O requests associated with a tenant irrespective of

whether an I/O request is directly issued during execution of a

tenant’s workload or issued by a background system activity on

behalf of the tenant. The third challenge pertains to the fact that

database systems often use multiple logical drives (volumes), e.g.,

one volume for storing data files and a separate volume for the log

file, or data striped across multiple volumes. Therefore, the I/O

scheduling mechanism must be able to handle such scenarios.

Scheduling mechanism: A tenant can have multiple queries

concurrently executing and issuing I/O requests. These queries can

run on multiple cores, and can issue I/O requests independently of

other queries belonging to the same tenant. Furthermore, in a multi-

core processor, I/O requests of a tenant are not guaranteed to be

evenly balanced across cores. Thus, the key challenge in meeting

ResIOPS accurately across multiple cores and queries is to

synchronize a tenant’s I/O requests from different cores and from

concurrent queries, but with minimal overhead.

Our scheduling mechanism is inspired by the I/O scheduling

technique proposed by Gulati et al. [5] for a hypervisor supporting

multiple VMs; although there are several new challenges in

adapting the technique for a DBMS. In our implementation, we

maintain a queue of I/O requests per tenant on each core (as part of

the scheduler’s data structures). When a tenant’s workload issues

an I/O request, it is assigned a deadline – a timestamp that indicates

the time at which the I/O should be issued in order for the tenant to

meet its ResIOPS. Intuitively, if an IO request is issued every T ms,

then it results in 1000/T IOPS. For example, if a tenant is promised

100 IOPS, then the system meets the promise by issuing one I/O of

the tenant every 10 msec. Thus, deadlines for I/O requests of a

particular tenant will be spaced 1/ResIOPS sec apart. This deadline

assignment requires synchronization across cores. However, this

synchronization is lightweight; it requires reading and updating a

single tenant-specific counter that is implemented using an atomic

operation natively supported on modern hardware architectures.

Thus, this mechanism scales well in terms of number of cores and

number of concurrent tenants, while providing accurate control

over I/O throughput. Once an I/O request is assigned a deadline, it

is queued in a pending I/O queue to be issued by the scheduler at

the opportune moment.

Whenever a task yields the CPU, the scheduler periodically checks

pending I/O requests whose deadline is before now. Referring to

Figure 2, if now = 110, then only Request Id: 1, 3 and 4 are de-

queued and issued.

Request Id: 3
Arrived: 100

Deadline: 100

Request Id: 4
Arrived: 100

Deadline: 110

Request Id: 5
Arrived: 100

Deadline: 120

Request Id: 6
Arrived: 100

Deadline: 130

Request Id: 1
Arrived: 90

Deadline: 110

Request Id: 2
Arrived: 90

Deadline: 130

Tenant 1
I/O queue

(Promise: 100 IOPS)

Tenant 2
I/O queue

(Promise: 50 IOPS)

Figure 2. I/O request queue.

Note that in our current implementation, I/O requests for a tenant

are issued in the order of arrival. However, since I/O requests can

potentially be reordered by the disk controller, preserving the order

of I/O requests is not a strict requirement. Therefore, it is possible

to reorder I/O requests of a tenant in our queues to achieve higher-

level optimizations for tenant workloads. For example, consider a

tenant that has issued a short query (requiring only a few I/Os)

concurrently with another long-running query (requiring a large

number of I/Os) that has already queued a number of I/O requests.

In this case, reordering the I/O requests issued by the queries of the

tenant can significantly reduce latency of the short query while still

achieving the ResIOPSi for the tenant. Observe also that in addition

to meeting ResIOPSi, the above mechanism “shapes” a burst of I/O

traffic of a tenant by issuing these requests spaced apart over a

period of time. Since a context switch on a scheduler is quite

frequent (typically several hundred times a second), fine-grained

control over I/O issuance is possible.

Finally, we observe that the DBMS only has control over when a

given I/O request is issued to the underlying storage subsystem; it

does not control when the I/O request completes. By controlling the

number of concurrent I/O requests issued to the storage subsystem,

it is possible to achieve a steady and predictable I/O latency (this

concurrency degree is obtained through typical calibration

techniques). In practice, we observe that in the steady state, the rate

of requests issued is same as that completed. However, in the

strictest sense, this algorithm only promises a reservation on I/O

requests per second issued by the database server on behalf of the

tenant.

Accurately accounting direct and indirect I/Os: I/Os issued by a

tenant’s workload can conceptually be categorized as direct – i.e.,

issued during the execution of the workload, or indirect – i.e.,

issued by a system thread on behalf of the tenant as part of a

background activity. Examples of direct I/Os are reads of data

pages required for query execution, log writes, and reads and writes

performed during a backup or restore database operation. Examples

of indirect I/Os include: flushing dirty data pages to the disk,

checkpointing, and data replication for availability. Direct I/Os are

readily accountable and can be directly associated with the tenant

that issued the I/O. However, since indirect I/Os are issued from a

system thread, additional information must be extracted from the

context to identify which tenant the I/O should be accounted to. For

example, for the system thread that lazily flushes dirty buffer pool

pages, we look up the file being written to, and from the file identify

the tenant database to whom the page belongs. Capturing all

indirect I/Os requires similar modifications to multiple components

within the database engine.

Governing multiple logical drives (volumes): A logical drive, or

volume, is a collection of disk spindles (or an SSD) that is exposed

to the OS as single device. A file on that drive is typically striped

across all spindles of that drive. Moreover, DBMSs often use

multiple volumes; a typical configuration might be to use one

volume for the data file(s) of a database and one volume for the log

file. In SQLVM, we govern each such volume independently. Thus,

an IOPS reservation for a tenant internally maps to an IOPS

reservation per volume. For the scheduling mechanism described

above, this implies that we need to maintain one logical queue of

I/O requests per tenant per volume.

3.2 I/O Metering
We describe the I/O metering logic using a running example.

Consider a reservation of 100 IOPS for a tenant. This promise can

have two different interpretations, and therefore two different

metering schemes. The strong version is that as long as the tenant

has at least one I/O request pending, the system will issue one I/O

every 10 msec (i.e., 1/100 sec). Such a promise might be attractive

to applications striving for low latency in addition to low variability

in I/O throughput. For this interpretation, the metering logic

computes the delay (d) between when the I/O should have been

issued and when it is actually issued (see Figure 3). The scheduling

mechanism described in Section 3.1 maintains a deadline for each

I/O that identifies the time by when the I/O should be issued to

achieve the desired ResIOPS. Thus, when an I/O request is actually

issued, the metering logic uses the deadline to compute the delay

(if any). At the end of the metering interval, a distribution of these

delays is reported (e.g., maximum, average, percentiles) that

quantifies the violation of the promise. Note that if delay (d) is 0

for every I/O request, then ResIOPS promise is met.

Arrived Deadline Actually Issued

Time
Metering interval

d

Figure 3. I/O Metering for reserved IOPS.

A weaker version promises that the average I/O throughput over

the meeting interval is at least 100 IOPS. This interpretation relaxes

the requirement to issue one I/O every (1/ResIOPS) sec as long as

the average rate for the interval meets the promised ResIOPS.

Metering for the weaker version also leverages the deadline. At the

end of the interval, each I/O request whose deadline lies within the

interval but was not issued represents a violation. If there are n such

violations in a metering interval of t sec, then the promise is

violated by n/t IOPS. Deadline assignment inherently factors out

idle time and hence this metering logic is equivalent to that

described in Section 2.2.

4. EXPERIMENTS
We present an evaluation of the SQLVM prototype implemented in

Microsoft SQL Azure. The goal of this evaluation is to demonstrate

the following: (i) when resources are not overbooked, SQLVM is

able to allocate resources as promised to a tenant, even when many

other tenants with resource-intensive workloads are concurrently

executing on the database server and contending for the resources;

(ii) when promises on key resources are met, using SQLVM results

in considerably better performance isolation (in terms of

throughput and response times of the tenant’s workload) compared

to other alternative approaches; and (iii) when resources are

overbooked and reservations cannot be met, our independent

metering logic detects these violations in the promised

reservations.. Our experiments demonstrate how metering can

establish auditability and accountability of the service provider to

the tenant.

4.1 Experimental Setup
Our evaluation uses a workload suite consisting of four different

workloads that represent diversity in resource requirements: TPC-

C [12] and Dell DVD Store [4] benchmarks are OLTP-style

workloads; TPC-H [13] benchmark is a DSS-style workload; and a

synthetic micro-benchmark (called CPUIO) that generates queries

that are CPU- and I/O-intensive.

The TPC-C benchmark consists of nine tables and five transactions

that portray a wholesale supplier. The five transaction types in

TPC-C represent a supplier’s business needs and workloads. A

typical TPC-C workloads represents a good mix of read/write

transactions where more than 90% of transactions have at least one

write operation (insert, update, or delete).

The Dell DVD Store benchmark represents an e-commerce

workload where transactions represent typical user-interactions

such as logging-in, browsing some products, adding items to an

order, and purchasing the order. This benchmark generates a good

mix of read and write transactions.

The TPC-H benchmark is a decision support benchmark that

consists of a set of twenty two business-oriented ad-hoc queries.

This workload simulates decision support systems that examine

large volumes of data, execute queries with a high degree of

complexity, and give answers to critical business questions.

Finally, the CPUIO benchmark comprises of a single table with a

clustered index on the primary key and a non-clustered index on the

secondary key. The workload consists of three query types: (i) a

CPU-intensive computation; (ii) a query involving a sequential

scan with a range predicate on the primary key of the table; and (iii)

a query with a predicate on the non-clustered index which performs

random accesses to the database pages.

Each tenant connects to a separate database and executes an

instance of one of these workloads. The tenants are hosted within a

single instance of the database server with a 12-core processor (24

logical cores with hyper-threading), data files striped across three

HDDs, the transaction log stored in an SSD, and 72 GB memory.

4.2 Meeting Reservations
In this controlled experiment, we use a micro-benchmark to

evaluate SQLVM’s ability to meet the resource reservations when

enough resources are available at the database server, i.e., the

resources are not overbooked. We focus on the I/O throughput and

CPU utilization. We focus on one resource-at-a-time to rule out any

interactions between resources. We co-locate two tenants executing

identical workloads but with different resource reservations set to

their corresponding SQLVMs. We use the CPUIO workload to

generate CPU- and I/O-intensive workloads. This experiment also

demonstrates SQLVM’s ability to dynamically adjust the resource

reservations of a tenant.

In the first part of the experiment, we focus on the I/O throughput.

The CPUIO benchmark only issues the I/O-intensive queries with

minimal CPU requirements. Tenant T1’s SQLVM is configured

with ResIOPS1 = 60 and T2’s configuration is ResIOPS2 = 20.

Figure 4 plots the actual I/O throughput achieved by each tenant.

The figure shows that both tenants were allocated their promised

I/O throughput. For instance, in the first 300 seconds of the

experiment, T1 received 63 IOPS on average with a standard

deviation of 6.9, and T2 received 20 IOPS on average with a

standard deviation of 3.8. After 300 seconds into the experiment,

we switch the IOPS reservation for the tenants, i.e., ResIOPS1 = 20,

ResIOPS2=60). Figure 4 shows that the IOPS achieved also

switches almost instantaneously.

Figure 4. Tenants' I/O throughput.

Although this experiment focused on two tenants, our evaluation

has shown that SQLVM continues to meet the promises even as

more tenants are added and the system has enough resources to

meet the promises. In an experiment with 25 tenants executing

CPU-bound workloads, where ResCPU1 = 50%, T1’s actual

average CPU utilization was 49.5%. Tenants other than T1 did not

have any CPU reservations.

4.3 Performance Isolation
In this experiment, four tenants concurrently execute one instance

of each workload in our suite of benchmarks. We ran different

workload combinations; for brevity, this experiment only reports

experiments with T1 executing the TPC-C workload and other

tenants are executing the remaining three workloads. We compare

three different configurations for the tenant (T1) of our interest: (i)

T1 is promised a resource reservation, i.e., executing within a

SQLVM; (ii) T1 is promised only a maximum limit on resources

with no reservations (represented as Max-only); and (iii) no

promises on resources, i.e., a “best-effort” Baseline server.

In the SQLVM configuration, T1 is promised ResCPU1 = 50%,

ResIOPS1 = 200, and ResMem1 = 2GB. The remaining tenants do

not have any reservations; however, they have a maximum limit of

50% CPU utilization, 250 IOPS, and 2GB memory. In the Max-

only configuration, all tenants have a maximum limit of 50% CPU

utilization, 250 IOPS, and 2GB memory. The Baseline has no

reservations or maximum limits. The experiment starts with T1 as

the only active tenant; a new tenant workload is added every five

minutes. When all four tenants are active, the system is overbooked

with respect to maximums but had enough resources to meet the

promised reservations.

Tenant T1’s workload is CPU-bound; T1 is executing the TPC-C

workload where the database (10 warehouses, about 1GB) fits into

the buffer pool allocated. Therefore, the end-to-end performance,

in terms of throughput and query response times, depends on the

CPU allocated to each tenant. SQLVM allocated 49% CPU to T1

on average, while the average CPU allocation for Max-only and

Baseline are 23% and 27% respectively. Since the system was

overbooked based on the max, the Max-only promise results in

lower actual utilization. Moreover, Baseline results in higher

utilization since T1 can potentially use more than 50% CPU at

certain time instances while Max-only always limits utilization to

50%; however, the actual utilization achieved in the two latter

combinations depends on the other tenants’ workloads.

Figure 5. T1's throughput as three other tenants are added.

Resource isolation in SQLVM in turn results in significantly better

performance isolation compared to the alternative configurations.

Figure 5 plots the throughput of tenant T1 (aggregated over a 30

second period) during the experiment; time since the start of the

experiment is plotted on the x-axis. The three vertical lines denote

the time when other tenants start executing their workloads. T1,

executing within a SQLVM, observed minimal impact on

throughput as other tenants are added; SQLVM ensures that T1

continues to receive the resources promised. Max-only and

Baseline, on the other hand, result is a significant impact on

throughput (about 40% lower compared to SQLVM) since the

actual resources allocated to T1 differ depending on the resource

demands of the other tenants. Further, in an experiment where 24

other tenants were added (one every minute) to the system, T1’s

throughput was 6X higher when executing within a SQLVM than

compared to the Max-only or Baseline configurations. In general,

by adding more tenants, it is possible to make the performance

degradation in Max-only and Baseline arbitrarily bad.

Table 1 reports the 99th percentile response times and its standard

deviation for T1 for the experiment with 24 other tenants. This

further demonstrates SQLVM’s superior isolation of T1 from the

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

I/
O

 T
h

ro
u

gh
p

u
t

(I
O

P
S)

Time (in sec)

Tenant 1 Tenant 2

0

100

200

300

400

500

0 1000 2000 3000 4000

Th
ro

u
gh

p
u

t
(t

xn
s/

se
c)

Time (in seconds)

Other tenants
arrive

Baseline
Max-only

SQLVM

other tenants’ workload. Specifically, for all TPC-C transaction

types, T1’s 99th percentile response time is about 4X lower than that

of the alternatives, while also having a lower standard deviation in

response times. Such low variance in response times is remarkable

considering that the server’s overall average CPU utilization was

more than 95% throughout the experiment.

Table 1. The 99th percentile and standard deviation of T1’s end-

to-end response time (in ms) with 24 other active tenants.

Operation
SQLVM Max-Only Baseline

99th % Std. Dev. 99th % Std. Dev. 99th % Std. Dev.

Delivery 935 181 4416 953 4056 1532

NewOrder 619 202 2762 672 2589 761

OrderStatus 113 3327 421 6392 390 4989

Payment 327 246 1042 358 1170 235

StockLevel 2437 2812 22580 5675 5897 2056

4.4 Validating Metering
Experiments reported in the earlier sections focused on scenarios

where the server had sufficient resources to meet the promised

reservations. That is, the sum of all the reservations did not exceed

the available resources at the server. However, cloud infrastructures

often overbook resources to minimize their operating costs. A

unique aspect of SQLVM is the independent metering mechanisms

to establish accountability in such situations. Metering provides the

ability to detect any violations in a tenant’s promise. In this

experiment, multiple tenants are promised reservations such that

the server is overbooked. The goal is to observe whether metering

accurately determines violations.

In this experiment, eight tenants are co-located at the same SQL

Server instance. Each tenant is promised ResIOPSi = 80. Therefore,

the aggregate of all I/O reservations is 640 IOPS which is more than

double of the approximately 300 IOPS capacity of the underlying

disk sub-system. That is, this server is overbooked on I/O

throughput. Each tenant is an instance of one of the four workloads

in our benchmark suite; each workload is executed by exactly two

tenants. The tenant workloads are configured to be I/O-intensive;

the server has enough CPU to process the queries in the workloads

and generate the I/O requests.

Figure 6 plots the number of read I/O requests for two of the eight

tenants: T1 is executing the TPC-C workload and T2 is executing

the Dell DVD store workload (DS2). As is evident from the figure,

after about 300 seconds into the experiment, when the fourth tenant

starts executing its workload, the read I/O throughput achieved by

both tenants is lower than their respective reservations, which is 80

IOPS. Therefore, the tenants’ promises might potentially be

violated, provided the tenants had sufficient pending I/O requests

to meet the reservation. Figure 7 plots the I/O violations for the two

tenants reported by the I/O metering logic. The y-axis of Figure 7

plots the number of I/O operations that were tagged to be issued in

a given metering interval but were not issued due to insufficient

capacity of the disk sub-system. As is evident from the figure, I/O

violations are reported for both tenants.

The metering logic’s ability to differentiate between a violation and

insufficient requests by the tenants’ workload is also evident from

Figure 7. Even though both tenants were promised 80 IOPS and T2

achieved a lower read I/O throughput compared to T1, the IOPS

violated for T1 is typically higher than that of T2. This implies that

T1 is more I/O-intensive that T2 and T1’s workload generated a

higher demand for I/O. That is, one of the contributing factors for

T2’s lower I/O throughput is the insufficient number of I/O

requests. If we just considered the IOPS achieved, as shown in

Figure 6, one may incorrectly conclude T2’s promised reservation

was violated to a greater extent. This ability to differentiate these

two scenarios is critical for a relational DaaS provider that serves a

variety of workloads and does not control which queries the tenants

will execute. Therefore, metering provides a mechanism to audit

the scheduling algorithms, if needed, and establish accountability.

Figure 6. Tenant’s read I/O throughput.

Figure 7. IOPS violated due to overbooking of the I/O capacity.

Note that in this experiment, we considerably overbooked the

server to magnify the effect of overbooking and validate the

metering logic. In practice, a service provider can be intelligent in

determining which tenants to co-locate such that even when a

server is overbooked, the chances of a violation is low. A provider

can leverage the fact that many tenants often do not have enough

work to utilize all resources reserved. Such techniques are

orthogonal to SQLVM mechanisms and are interesting directions

of future work.

5. RELATED WORK
From a tenants’ perspective, performance isolation in the form of

workload-level service-level agreements (SLAs), such as queries

per second or end-to-end query latency, would be ideal. For

instance, Chi et al. [2] proposed using piecewise-linear latency

SLAs for differentiated service and scheduling of queries in a

batch-oriented system. However, as pointed out earlier in this

paper, a relational DaaS platform such as Microsoft SQL Azure,

must support flexible, parameterized, and often ad-hoc SQL

queries. In such a setting, robust estimation of the expected

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500

R
e

ad
 IO

P
S

Time (in seconds)

Tenant 1 (TPCC) Tenant 2 (DS2)

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500

IO
P

S
V

io
la

te
d

Time (in seconds)

Tenant 1 (TPCC) Tenant 2 (DS2)

response time, resource requirements, and progress of an arbitrary

SQL query remains an open and challenging problem. Therefore, it

is extremely hard for a provider to guarantee a latency (or

throughput) SLA with a high confidence. Moreover, tenants’

workload, data access distributions, and query mixes may change

over time. As a result, supporting latency SLAs even for

parameterized SQL queries is also challenging. Finally, even when

a high-level SLA is exposed, tenants will eventually share

resources at a server. Therefore, a fine-grained resource sharing

abstraction, such as SQLVM, is important to allocate appropriate

resources to a tenant’s workload in the presence of other contending

workloads.

Curino et al. [3] and Lang et al. [7] approach consolidation of

multiple databases in a single server by analyzing the workloads,

identifying how these workloads interact with one another, and

recommending which databases should be co-located in order to

meet performance goals (or SLO – Service-Level-Objectives).

Xiong et al. [15] constructs machine learning models to predict

query performance as a function of resources allocated to it, and

then use such models to allocate resources so that query latency

SLO can be met. SQLVM is complementary to these approaches

since it provides resource-level isolation from other tenants, and

makes no assumptions about the specific workloads of tenants.

SQLVM can potentially be used as a building block to build such

recommenders, since SQLVM can ensure that the tenants are

actually allocated the resources that the models assume.

Armbrust et al. [1] propose a SQL-style data independence layer on

top of a key-value store for achieving the SLO of predictable

response times for queries. Their model limits the kinds of queries

that users can pose, which in turn enables bounding the work done

per query. In contrast, SQLVM provides assurances at the level of

resources, but does not impose any restrictions on the queries that

tenants can execute.

Resource management has been supported in many commercial

relational DBMSs for a while. However, such support has been

limited to providing a maximum limit on resource utilization,

assigning affinities between resources and tenants (such as

affinitizing one or more cores to tenants), or throttling runaway

queries. As shown in our experiments, such Max-only approaches

are not enough for providing performance isolation while

supporting high consolidation factors. Reserving resources with a

minimum promise for a tenant and then metering the promise to

establish accountability are SQLVM’s novel contributions.

The resource reservation abstraction has also been proposed in the

context of operating systems and shared computational grids. For

instance, Mercer et al. [8] proposed supporting processor capacity

reserves in operating systems for real-time multimedia

applications. Similarly, Smith et al. [10] proposed the concept of

reservations in shared grid computing systems. SQLVM differs

from these approaches by presenting an abstraction for resource

reservations at a fine granularity within a DBMS (unlike coarse-

grained reservations in large shared grids used predominantly for

batch-oriented jobs) and without requiring any advance knowledge

about the workload or requiring workloads to have certain behavior

(unlike real-time multimedia systems).

Note that for a variety of reasons (e.g., see [11]), DBMSs typically

need to assume control of most resources, and therefore cannot

benefit from such OS- or hypervisor-level mechanisms.

Furthermore, database workloads and the DaaS context bring

unique challenges that require us to rethink the assurances and the

mechanisms necessary to support them within the DBMS.

Therefore, it is critical to provide an abstraction for fine-grained

resource sharing and isolation such as SQLVM.

Finally, there has been extensive work in area of workload

management, particularly in a traditional data warehouse setting

where queries can be resource intensive (Krompass et al. [6] present

an overview). We believe that SQLVM can be valuable even in

such traditional enterprise scenarios since it can be used to more

tightly control resource allocation to different classes of queries.

6. CONCLUDING REMARKS
We presented SQLVM, a lightweight abstraction of a VM running

within a database server that provides resource reservations.

Implementing this abstraction requires new fine-grained resource

allocation mechanisms aware of reservations, in conjunction with

metering logic that audits whether or not the promise is met. Our

implementation in Microsoft SQL Azure demonstrates the value

that SQLVM provides in resource and performance isolation.

One important area of future work in SQLVM arises for the case of

overbooking, where the mechanisms and policies used by the

system need to be able to trade-off between multiple criteria such

as reducing penalties due to violations of the promise, and fairness

to tenants. Finally, while SQLVM already manages several key

DBMS resources, there is an opportunity for even greater

performance isolation by extending SQLVM to other resources

such as network bandwidth and data/instruction cache. The

feasibility of such extensions requires further investigation.

7. ACKNOWLEDGMENTS
Feng Li, Hyunjung Park, Vamsidhar Thummula, Willis Lang, and

Hamid Mousavi have contributed significantly to the SQLVM

project when they visited Microsoft Research. Several members of

the Microsoft SQL Azure product group, including Peter Carlin,

George Reynya, and Morgan Oslake, have provided valuable

feedback that has influenced our work. The authors would also like

to thank Christian Konig, Ishai Menache, Mohit Singh, Johannes

Gehrke, and the anonymous reviewers for their insightful

comments on earlier drafts of this paper.

8. REFERENCES
[1] Armbrust, M., Curtis, K., Kraska, T., Fox, A., Franklin, M.

J., and Patterson, D.: A. PIQL: Success-Tolerant Query

Processing in the Cloud. In Proc. of the VLDB Endowment,

5(3), pp. 181-192, 2011.

[2] Chi, Y., Moon, H. J., and Hacigumus, H.: iCBS: Incremental

Cost-based Scheduling under Piecewise Linear SLAs. In

Proc. of the VLDB Endowment, 4(9), pp. 563-574, 2011

[3] Curino, C., Jones, E. P. C., Madden, S., and Balakrishnan,

H.: Workload-aware database monitoring and consolidation.

In Proc. of the ACM SIGMOD Int. Conf. on Management of

Data, pp. 313-324, 2011.

[4] Dell DVD Store Database Test Suite: The DVD store version

2 (DS2), v2.1, http://linux.dell.com/dvdstore, Retrieved: Nov

20th, 2012.

[5] Gulati, A., Merchant, A., and Varman, P. J.: mClock:

Handling Throughput Variability for Hypervisor IO

Scheduling. In Proc. of the 9th USENIX Symp. on Operating

Systems Design and Implementation (OSDI), pp. 437-450,

2010.

[6] Krompass, S., Scholz, A., Albutiu, M, Kuno, H. A., Wiener,

J. L., Dayal, U., and Kemper, A.: Quality of Service-enabled

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Krompass:Stefan.html
http://linux.dell.com/dvdstore
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Krompass:Stefan.html

Management of Database Workloads. In IEEE Data Eng.

Bull. 31(1), pp. 20-27, 2008.

[7] Lang, W., Shankar, S., Patel, and J., Kalhan, A.: Towards

Multi-Tenant Performance SLOs. In Proc. of the 28th IEEE

Int. Conf. on Data Engineering (ICDE), pp. 702-713, 2012.

[8] Mercer, C., Savage, S., and Tokuda, H.: Processor Capacity

Reserves: Operating System support for Multimedia

Applications. In Proc. of the Int. Conf. on Multimedia

Computing and Systems, pp. 90-99, 1994.

[9] Resource Governor, Microsoft SQL Server 2012.

http://msdn.microsoft.com/en-us/library/bb933866.aspx,

Retrieved: Nov 20th, 2012.

[10] Smith, W., Foster, I. T., and Taylor, V. E.: Scheduling with

Advanced Reservations. In Proc. of the 14th Int. Parallel and

Distributed Processing Symposium (IPDPS), pp. 127-132,

2000.

[11] Stonebraker, M. Operating System Support for Database

Management. Communicatons of the ACM, 1981.

[12] Transaction Processing Performance Council, TPC-C

Benchmark, v5.10, http://www.tpc.org/tpcc, Retrieved: Nov

20th, 2012.

[13] Transaction Processing Performance Council, TPC-H

Benchmark, v2.10, http://www.tpc.org/tpch, Retrieved: Nov

20th, 2012.

[14] Urgaonkar, B., Shenoy, P. J., and Roscoe, T.: Resource

Overbooking and Application Profiling in Shared Hosting

Platforms. In Proc. of the 5th USENIX Symp. on Operating

System Design and Implementation (OSDI), 2002.

[15] Xiong, P., Chi, Y., Zhu, S., Moon, H. J., Pu, C., and

Hacigumus, H.: Intelligent management of virtualized

resources for database systems in cloud environment. In

Proc. of the 27th IEEE Int. Conf. on Data Engineering

(ICDE), pp. 87-98 2011.

http://www.informatik.uni-trier.de/~ley/db/journals/debu/debu31.html#KrompassSAKWDK08
http://www.informatik.uni-trier.de/~ley/db/journals/debu/debu31.html#KrompassSAKWDK08
http://msdn.microsoft.com/en-us/library/bb933866.aspx
http://www.tpc.org/tpcc
http://www.tpc.org/tpch

