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ABSTRACT
Cloud computing is characterized by shared infrastructure and a
decoupling between its operators and tenants. These two character-
istics impose new challenges to databases applications hosted in the
cloud, namely: (i) how to price database services, (ii) how to isolate
database tenants, and (iii) how to optimize database performance on
this shared infrastructure. We argue that today’s solutions, based on
virtual-machines, do not properly address these challenges. We hint
at new research directions to tackle these problems and argue that
these three challenges share a common need for accurate predictive
models of performance and resource utilization. We present our ap-
proach, called DBSeer, with our initial results on predictive models
for the important class of OLTP/Web workloads and show how they
can be used to address these challenges.

1. INTRODUCTION
The defining attributes of cloud computing are a shared infras-

tructure, and a layer of indirection that decouples the responsibility
of running the infrastructure from the applications that use it. This
decoupling simplifies some aspects of application deployment, as
the cloud provider manages reliability, security, and mapping of
software processes onto physical machines. Additionally, sharing
infrastructure and administration has clear economic benefits. In
most cloud services, these properties are delivered via virtualization,
where a fraction of the CPU, disk, and memory resources on a physi-
cal machine are dedicated to each application running on it. In these
cases, the cloud provider manages the placement of the virtual ma-
chines (VMs) and the operation of the physical infrastructure under
them, while users manage the operating systems and applications
running in the VMs. VMs provide “hard isolation” as there is little
or no sharing of resources or interaction between applications hosted
on the same physical machine. Unfortunately, this way of providing
cloud services is non-ideal for performance-sensitive applications
like databases for three key reasons:

1. For ease of accounting, cloud vendors require customers to do
capacity planning in terms of virtualized hardware resources instead
of measurable performance metrics of a database.
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2. Hard isolation prevents multiplexing and sharing of resources
when multiple databases are co-located on a machine, causing con-
siderable over-provisioning and commensurate loss of performance.

3. Higher degree of multi-tenancy and the decoupling of cloud
service providers from app-developers make tuning/provisioning
of the DBMS in the cloud more challenging than in conventional
database deployments.

These three limitations are primary reasons why many businesses
are reluctant to use the VM-based database-as-a-service (DBaaS)
[10]. Our belief is that, to fully realize the potential of cloud com-
puting in the database world, an alternative approach is needed. Part
of the solution is to avoid VMs, which introduce a performance
bottleneck. By using the same DBMS to host multiple databases
owned by different users of the cloud, it is possible to avoid some
of the shortcomings of a VM-based approach. Initial results have
shown that this alternative can have substantial benefits [5, 6].

Simply discarding VMs and running multiple databases in the
same DBMS instance, however, does not address the three limita-
tions discussed above. In this paper, we argue that what is needed is
innovation in several key technical areas:
Resource Attribution and Application-level SLAs. New research
is needed to provide mechanisms for mapping high-level metrics
such as transaction throughput and latency into underlying resources,
e.g., CPU cores, RAM capacity, disk I/O, network bandwidth. This
will enable providers to expose billing schemes and capacity plan-
ning tools that are more understandable to users.
Soft Isolation. In order to avoid the performance drawbacks of VM-
based hard isolation, we need to provide alternative mechanisms that
achieve soft-isolation, i.e., allow for resource sharing when the sys-
tem is underutilized, but enforce quotas when necessary. We argue
this could be done as a closed-loop admission-control in the DBMS,
which in turn requires a deep understanding of the performance-
resource tradeoff of users’ workloads.
Multi-tenant, Multi-machine DBMS Tuning. Workload-specific
DBMS tuning is crucial for high performance. In a decoupled,
multi-tenant setting such as a DBaaS, neither providers nor users
have the right combination of visibility/access/expertise to perform
proper tuning and provisioning. In current DBaaS offerings, users
are allowed to select one of a small number of fixed configura-
tions. We show that this is inefficient, and argue for new, auto-
mated solutions that achieve workload-specific DBMS tuning in a
multi-tenant fashion, where we observe multiple workloads running
on a pool of machines, extract performance/resource characteris-
tics of each workload (without ever observing it in isolation), and
solve workload-to-DBMS placement and DBMS tuning problems
(i.e., selecting groups of workloads and assigning them to DBMS
configurations in an optimal fashion). We call this multi-tenant,
multi-machine DBMS tuning.

Each of these three areas requires substantial innovation. How-
ever, there is a key enabling technology that underlies these three



problems: Resource and Performance Prediction. Specifically,
all the above problems require predictive models that, for a given
set of workloads running on a machine, can predict the resource
utilization (e.g., CPU usage, disk IOs/sec) required for a certain
level of performance (e.g., transactional latency and throughput),
and can estimate the achievable performance with a given set of
resources. These predictive models will help the three aforemen-
tioned problems as follows: (i) for the attribution/SLA problem,
they will allow cloud providers to determine how much to charge
per each type of transaction run by a user; (ii) for soft isolation,
they will allow the database service to determine what resources are
needed to meet certain SLAs, to co-locate tenants appropriately, and
to perform admission control; (iii) for tuning, accurate estimation of
the resource requirements of a given workload, will allow for setting
database parameters appropriately.

Building such models is tricky, as the performance of a given
workload or transaction varies depending on other transactions run-
ning in the system. For example, a given transaction may do many
I/Os when running alone, but fetch few pages in the presence of
another transaction that reads the same data. Alternatively, a given
transaction may do more I/Os in the presence of other transactions
that access many pages and put pressure on the buffer pool.

We have developed a tool for resource and performance predic-
tion, called DBSeer. In this paper, we describe encouraging pre-
liminary results, showing that DBSeer can solve the performance
modeling problem for transactional workloads in MySQL (Sec-
tion 2). We then describe how such models might be used to tackle
the three technical challenges described above, in Sections 3–5.

2. RESOURCE PREDICTION
To fully realize the next generation of database clouds, we need to

be able to accurately predict resource consumption and performance
of a given workload. Specifically, we focus on answering questions
like: “How many disk IOs/sec are needed to run TPC-C at 2000
transactions per second (TPS) on this DBMS configuration?” These
questions are of central importance in all three of the challenges
described above (see Sections 3–5).

In our preliminary efforts, in DBSeer, we have focused on the
hard-class of highly concurrent transactional (a.k.a. OLTP) work-
loads. With the exception of [1] where simple regression techniques
have been examined for OLTP settings, prior work on performance
prediction has only focused on OLAP databases [2, 7]. What makes
OLTP uniquely challenging is the presence of a large number of
highly concurrent, short-lived, and lock-prone transactions that do
small, random reads and writes. Due to high degree of concur-
rency and competition for non-linear resources (e.g., locks, cache,
I/O), even small changes in load can lead to a large change in the
performance of transactions.

In DBSeer, we have developed prediction models for MySQL that
we empirically show to be highly accurate. Although more research
is needed to generalize these models to other DBMSs, our initial re-
sults are highly promising as even these MySQL-specific results can
benefit millions of MySQL users. In the remainder of this section,
we briefly summarize our approach in DBSeer, which is based on a
combination of unsupervised machine learning, regression analysis
and resource-specific models to predict the resource utilization and
performance metrics of transactions.

2.1 Clustering Transactions
Transactional workloads are mostly composed of many instances

of a few transaction templates, where each template involves the
same or slightly different operations, but with the different con-
stants in each instance. Based on this observation, DBSeer first

clusters transactions (from a query log) into classes that execute the
same or similar templates, and characterizes a workload by the rate
and proportion of transactions that it runs from each template. For
example, in TPC-C there are 5 classes (corresponding to the five
transaction types in the benchmark). With this automatic cluster-
ing, DBSeer can classify and reason about incoming transactions.
Moreover, once the user gives a name to each extracted class (say,
by looking at a few instances of each), pricing schemes can be made
more intuitive to users, e.g. by assigning a cost to each transaction
based on its human-recognizable name.

2.2 Modeling Resources
In DBSeer, we have developed models for predicting CPU, RAM,

network, disk I/O, and number of acquired locks per each table.
These profiles are built by only observing query logs and OS-level
statistics of a system in situ, i.e., as it is currently deployed, without
controlling the system’s execution. DBSeer passively observes
the natural fluctuations in the incoming transactions and the corre-
sponding change in the usage of different resources, and uses this
information to estimate parameters of its resource models. DB-
Seer can then use these models to make predictions about resource
usages for a certain mix of transactions at a certain throughput.

DBSeer uses simple linear models for CPU, network usage and
sequential I/O and they are fairly linear for typical OLTP workloads.
Other models, especially for predicting RAM, random I/O, and
degree of lock contention are considerably more sophisticated. Due
to space constraints, here we only focus on our disk-write model.

Estimating Disk Writes. Disk writes in transactional databases
consist of log writes and data writes. Log writes are mostly sequen-
tial, and linearly proportional to the number and type of transactions
executed (since each transaction writes the same number of log
records regardless of other concurrent transactions). As a result, log
writes are largely independent of configuration parameters (with the
exception of group-commit features). We thus model them using
linear regression. Data writes, on the contrary, are non-linear, tend
to be random, and are dependent on a multitude of configuration
parameters (e.g., buffer-pool size, log-size, flushing algorithms).

DBSeer models data writes as follows. First, to predict the
rate at which pages are being dirtied, DBSeer uses a cache model
(e.g., [11]). Then, to model data writes, DBSeer relies on a notion
of conservation of flow, which says that, in the steady state, the
rate at which pages are dirtied must match the rate at which dirty
pages are flushed. The challenge is in predicting exactly when these
flushes will happen, given an input transaction mix and rate. This
question can be answered using a monte-carlo simulation, but this
is typically very expensive. Instead, we have developed a simple
iterative algorithm that converges faster, provides very accurate
predictions, and also offers insight into how different transactions
contribute to the overall I/O seen by the system.

The details of the algorithm are beyond the scope of this vision
paper—the interested reader can find more details in [9]. Instead, we
present some evidence that this approach provides accurate estimates
on two benchmarks: TPC-C and Wikipedia.

We evaluate DBSeer’s model by training on logs of a given work-
load (TPC-C and Wikipedia) running at a certain transaction rate
and mixture, and testing the accuracy at predicting the same work-
load when running at a different rate and with a different transaction
mixture. Note that both transaction rate and mixture have been
changed: this makes for a challenging scenario.

Fig 1 shows the accuracy of DBSeer’s model for predicting
the data flush rate. The notation “wiki 100 - 900” means we ran
wikipedia at 100tps and tested at 900tps (with a different transaction
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Figure 1: Disk write flush rate prediction for Wikipedia and
TPC-C (Our model’s percentage error is annotated on the plot).

mixture as well). The set of experiments we present shows both
small and large differences between training and test configurations.

In summary, using DBSeer’s model, we are able to accurately pre-
dict the volume of disk writes for arbitrary mixtures and transaction
rates (always below 1MB/sec error), with a dramatic improvement
of the accuracy compared to the previous work [1] based on linear
regression, i.e. 10.8× on average and up to 71× more accurate. The
most impressive improvements are observed for the more realistic
workload (Wikipedia)—where data sizes and access skews stress
the non-linear characteristics of the system.

2.3 Modeling Performance
In this section, we discuss how DBSeer uses resource models

for predicting maximum transaction throughput. We have also
validated DBSeer’s models on predicting latency, and found similar
results, but omit the details due to space constraints. First, using
the individual models for different resources, DBSeer estimates
the resource utilization at a given TPS rate. Then, to determine the
maximum throughput of the system, DBSeer identifies the TPS at
which each model predicts the resource will be saturated (e.g., the
point where our I/O model predicts the disk will be saturated) and
then report the minimum TPS (for the bottleneck resource).

To evaluate this algorithm, we randomly generated 20 mixtures of
TPC-C with different ratios of transaction types. We grouped these
20 mixtures into three subsets: I/O bound mixtures, lock-bound
mixtures, and CPU-bound mixtures (only a few of our mixtures were
I/O bound, and approximately equal numbers were CPU and lock
bound). In Fig 2, we show the average relative error of estimating the
maximum throughput on different subsets of the mixtures. Here, we
compare our models to a few baselines1: a simple linear regression
on the CPU vs TPS (“LR for CPU”), and a simple linear regression
on the number of page flushes vs TPS (“LR for PageFlush”). We also
tried enhanced models where we performed a separate regression
for each transaction type (“LR + Clust for CPU”).

Our model’s average error ranges between 0-25%, with its worst
error on lock-bound mixtures. Our I/O model produces error that
is less than 1% on average, thanks to our accurate models for disk
writes. Note that the regression-based CPU models perform much
better on CPU bound workloads, and that the regression-based page
flush model does better on the I/O bound workload, but in all cases
our model does better.

Although we omitted the details of our models, these results show
that it is possible to build models that accurately predict resource
utilization across a range of transaction mixes and rates. The next
three sections are dedicated to describing how such models can be
leveraged to provide: (i) better attribution/pricing, (ii) soft-isolation,
and (iii) cloud DBMS tuning.
1We chose linear regression as a baseline since it has been pro-
posed by previous work work [1] as superior for predicting disk I/O
compared to other types of regression such as Gaussian processes.
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Figure 2: Max throughput prediction

3. RESOURCE ATTRIBUTION
As noted in the introduction, current cloud services charge cus-

tomers by the number and sizes of VM instances. From the perspec-
tive of database users, it would be greatly preferable to pay for an
application-level SLA – such as a guaranteed latency per transaction
or minimum transaction throughput. Additionally, billing would be
better done in terms of application-based resource usage, such as a
fixed cost per transaction. While such SLAs/billing schemes have
been the subject of research proposals (e.g., see [4] for piecewise
linear SLAs), supporting them in real commercial settings not only
requires efficient performance isolation mechanisms (see Section 4),
but also requires models like those described in Section 2 that can
correlate a workload’s performance to its resource utilization, in
order to determine the price to charge for a given level of service.

A challenge here is that resources in a shared database system
will be used concurrently by multiple different transactions, and the
utilization of some resources do not scale linearly with the number
of concurrent tenants or transactions. For instance, suppose work-
loads A and B generate 100 and 40 physical IOs/sec, respectively,
when run in isolation. When run concurrently (on the same DBMS),
the overall number of IOs/sec will likely not be 140; it may be less
(e.g., if workloads share data) or more (e.g., if workloads cause each
other’s pages to be evicted from buffer pool). Therefore, being able
to attribute non-linear resources such as disk, memory, locks (and
sometimes CPU), is a challenging problem both from a research
perspective as well as from an economic one.

Additionally, users only want to pay for what they are actually
using, regardless of what other tenants are doing in the system. This
also plays a role in the notion of “stability” of the billing, which
should be independent of the efficiency/optimization choices made
by the provider. An alternative solution is to construct a pricing
scheme that aligns provider’s and users’ interests, so that the users
are assured that any optimization performed by the provider will
be beneficial to both parties. Thus, the research problem here is
to find a billing scheme that is (i) expressed in terms of high-level
SLAs and performance goals that are directly relatable to users’
business objectives, (ii) proportional to the actual resources used to
deliver those SLAs, and (iii) stable to provider optimizations, and
(iv) intuitive as users prefer simpler pricing schemes.

4. SOFT ISOLATION
VMs are relatively good at providing hard performance isolation

between different tenants. However, as mentioned in the intro-
duction, hard isolation leads to underutilization of resources and
inefficiency. What is needed is a way to provide tenants with ded-
icated resources when they need them, but allow tenants to use
unused resources that were reserved for other tenants, when they
are underutilized. Moreover, VM’s success at hard isolation does
not always extend to virtualizing I/Os, e.g. VMs sharing the same
physical hard disk interfere with each other. Setting hard quotas
per tenant (say, in terms of IOs/sec) is not effective either, as hard
disks’ bandwidth (bytes transferred/sec) varies depending on the
randomness/sequentiality of the I/O requests. The alternative is soft
performance isolation. Soft isolation can be achieved via admission
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Figure 3: Erratic performance of YCSB when run on a
MySQL-based DBaaS offering.

control mechanisms (i.e., throttling of certain transactions or ten-
ants). Such mechanisms already exist in some database systems such
as Teradata2, but these throttles must be manually configured, i.e.
users need to define rules for dealing with every possible situation.

Our goal is to replace this tedious, manual process of adjusting
numerous throttling rules with a closed-loop control framework
that adjusts the admission rates of different tenants and transac-
tion classes in real-time. Application of feedback control to data-
intensive services has been limited to data movement and replication
mechanisms (e.g., see [12, 8]) to cope with load changes or SLA
violations. However, designing a control framework for soft per-
formance isolation in a DBaaS is an orthogonal but challenging
task. Migrating tenants might be reasonable when overload per-
sists, but delivering consistent performance under stringent SLAs
is a real-time task which requires automatic throttling of different
requests. Such a framework has to minimize the overall cost of
SLA violations, which is where predictive models of resource and
performance (e.g., those built in DBSeer) need to be incorporated
into the control mechanism. Using such models, the controller can
map the load (i.e. admission rates) to their resource consumption
and in turn, to their performance impact on the SLAs. This approach
will also eliminate the problem of I/O interference between different
tenants, as the system will be able to estimate the effect of admitting
each transaction on the total number of (sequential and random)
physical I/Os. We believe such an approach can guarantee that
tenants receive reserved resources while providing substantial cost
savings due to resource sharing and soft isolation.

5. CLOUD DBMS TUNING
It is well-known that DBMSs require careful, workload-specific

tuning to achieve good performance. In the cloud, multi-tenancy
and the decoupling of the service provider from the application de-
veloper make this problem much harder by: (i) reducing the DBA’s
visibility into the workloads, e.g. they observe collective resource
consumption rather than individual consumption of each workload,
and (ii) preventing much of the coordination between administrators
and application developers, which is often instrumental in achieving
good performance. The current (insufficient) solution is to offer
one or a small number of fixed configurations to the user to choose
from. Even the most advanced auto-tuning features of academic
proposals [3] and commercial DBMSs do not address the problem
of re-assigning workloads to machines in a way that would allow
for more specialized tuning. As an example, in Fig 3, we report the
results of running a YCSB benchmark on one of the major commer-
cial DBaaS offerings (based on MySQL). It is easy to notice the
erratic performance behavior of latency. We speculate that this is
due to a mismatch between the write pressure of our workload and
the log-recycling policy in the MySQL configuration used by the
DBaaS provider. Proper tuning of MySQL on equivalent hardware
resources leads to a much more stable performance.

The performance/resource models, such as those presented in
2
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Section 2, can be used to estimate the performance impact of differ-
ent tuning parameters, and the effect of various changes in resource
allocation amongst different databases running on a shared DBMS.
Additionally, workload models and our transaction clustering ap-
proach allow us to extract performance/resource characteristics of a
single workload, even when it is only observed on a shared DBMS.
Using such knowledge, it should be possible to explore the optimiza-
tion space by leveraging a combination of workload-placement [5]
and auto-tuning [3]. Clearly, much research is needed in this space,
and the models we present are only the first step in this direction.
A more immediate application of our models consists in automati-
cally assigning workloads to a set of differently tuned DBMSs (e.g.,
with different buffer pool sizes, write-back policies, log sizes, with
group-commit or not) which we also plan to explore.

6. CONCLUSIONS
In this paper, we argued that current approaches to cloud com-

puting suffer from their own advantages: infrastructure sharing and
the decoupling of applications from providers of the service are
why clouds are popular, but these features also cripple performance-
sensitive services such as databases. We argued for three key needs
before clouds are appropriate for database services: (i) pricing
schemes that reflect their operational costs but are also simple and
intuitive to users, (ii) performance efficient mechanisms to isolate
the performance of tenants from each other, while allowing soft-
sharing of resources, and (iii) workload-specific tuning for each
tenant. We illustrated that all these three problems enjoy a common
denominator which is developing models and tools for predicting
resource utilization and performance. We introduced a new tool,
called DBSeer, that provides such models for OLTP databases, and
presented some initial results that are quite encouraging. Finally,
we discussed a number of other issues that need to be addressed to
fully tackle each of these three challenges.
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