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ABSTRACT
Although the problem of integrating IR and DB solutions is
considered “old”, the increasing importance of big data an-
alytics and its formidable demands for both enriched func-
tionality and scalable performance creates the need to re-
visit the problem itself and to see possible solutions from
a new perspective. Our goal is to develop a system that
will make large corpora aware of entities and relationships
(ER), addressing the challenges in searching and analyzing
ER patterns in web data and social media. We put for-
ward D-Hive, a system facilitating analytics over RDF-style
(SPO) triples augmented with text and (validity / transac-
tion) time capable of addressing the functionality and scala-
bility requirements which current solutions cannot meet. We
consider various alternatives for the data modeling, storage,
indexing, and query processing engines of D-Hive paying at-
tention to the challenges that must be met, which include
i) scalable joint indexing of SPO-text-time tuples (quads,
quints, octs, etc.), ii) efficient processing of complex queries
that involve RDF star and path joins, filtering and grouping
on text phrases, band joins over time, and more, as well as
iii) optimizing the execution plans for such analytics.

1. MOTIVATION
DB&IR integration has been a research topic for the last

decade, but the results have made little impact. In the era
of big-data analytics, new opportunities are arising for two
reasons: i) there is a wealth of data on the Web and in social
media that can be made fully coherent only by querying and
analyzing both structured data and textual phrases and by
placing them in the right temporal context, and ii) there is
a sea change in industry in trying and adopting new kinds
of NoSQL platforms and non-traditional data engines.

Novel data syntheses at scale emerge in several ways:

• Advances on information extraction (IE) and the Linked
Open Data (LOD) initiative have enabled the construc-
tion of huge knowledge bases like Yago, DBpedia, or Free-
base (the latter powering the Google Knowledge Graph).
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These are extensively interconnected through entity-level
sameAs links with each other and with further external
references to data on music, books, and much more [3,
9]. In total, the Web of Linked Data consists of more
than 30 Billion SPO triples and keeps growing.

• Using IE methods and techniques from data integration,
it has become possible to interpret Web tables and lists
in HTML (or Excel etc.) in a semantically informative
manner [14], reconstructing column domains and map-
ping cell values onto entities. Google Fusion Tables, ar-
guably the largest project of this kind, contains tens of
millions of tables and keeps growing.

• Structured annotations can be embedded in HTML pages
using RDFa or microformats, and are gaining momen-
tum. The industry standard schema.org escape the dilem-
ma of name heterogenity and the need for semantic match-
ing by defining a common vocabulary for types, attributes,
and relationships on a large and rapidly growing num-
ber of entity classes (e.g., Brewery, MotorcycleDealer,
InfectiousDisease, Campground, etc.). sindice.com has
indexed 600 million pages containing many billions of
SPO triples.

Our thesis is that the structured data/knowledge is only
a partial view of the full contents, derived from Web pages,
news articles, or social-media postings. For insightful ana-
lytics and coherence it is necessary to combine the struc-
tured parts with text predicates, e.g., to tap into entity
names (people, places, products), marketing slogans, quo-
tations, user comments, etc. Moreover, all this needs to
be properly positioned in time; the temporal dimension is
crucial for making sense of data from different periods (e.g.
in news archives or Internet archives). For example, when
combining knowledge-base facts on Angela Merkel with her
Wikipedia article, we can find her as an answer to a query
for female politicians from Germany (expressed in the RDF
query language Sparql) who worked on quantum chemistry
(expressed as an additional text predicate). When perform-
ing time-travel search over the Wikipedia history, we find
that she was leader of the parliamentary opposition in 2004.

Web tables and microformat data are embedded in HTML
pages. Thus, combining structured query predicates with
keywords and phrases to be matched in the surrounding text
allows much more expressive search. For example, when
searching for Germany and Greece over a tables corpus or
microformat data, we mostly obtain results on football. If
we are actually interested in political relationships, we can
add text phrases such as“political negotiations”or“financial
crisis” to a combined DB&IR query.



2. USE CASES
Combining RDF-style (SPO) triples with text (X) and

time (T) supports use cases from different domains. We
sketch some of them, with needs for both interactive query-
ing and analytical reporting.

Politics. Catchphrases such as “small business owners”
or “euro zone stability” are widely used in political speeches.
An analyst may want to find all occurrences of such phrases
in a Web, news, or social-media corpus and aggregate them
by the quoted politician, her/his party, co-occurrences with
a particular topic or entity, and so on. A first step could be
to formulate/generate a SPOX query combining structured
predicates over automatically extracted triples with textual
predicates: ?p memberOf ?y . ?y type politicalParty .

?p quotedInMedia ?m {"small business owners"} where the
SPO pattern with the additional text predicate requires phrase
matching in the proximity of wherever matching SPO triples
were extracted.

Celebrities. Tabloid writers and readers are interested in
tracking the lives of entertainment stars. We could analyze
how Tom Cruise’s romantic affairs (true or speculated) co-
evolved with his starring in blockbuster movies, and find out
what people wrote about these at the time when they were
reported. This requires collecting SPOT data (after running
extensive IE over (social) media postings) by a query like
Tom_Cruise actedIn ?m ?t1 . Tom_Cruise romanceWith ?p ?t2

where ?t1 and ?t2 are time intervals extracted from text, and
subsequently joining the resulting quads by a temporal band
join on the timespans. This result then has to be extended
with text snippets in the proximity of where the matching
SPOT quads appear, as a basis for further analysis.

Health. When worried about their health, people tend
to consult Dr. Google. Often, though, they are not familiar
with medical terminology (e.g., “ulcerative colitis”), but in-
stead use colloquial terms (e.g., “chronic bowel irritation”).
Suppose a user wants to find medications for some health
issue and learn about their side effects. This could be ex-
pressed by the query (via GUI or speech-based UI):
?drug medicationFor ?disease {"chronic bowel irritation"}.

?drug hasSideEffects ?x

The point here is that the user’s vocabulary can be directly
used as a text predicate combined with an SPO triple pat-
tern. This is in contrast to an RDF-purist’s approach that
would require expressing the disease in the explicit terminol-
ogy of the underlying data or knowledge base (e.g., with a
triple pattern like ?drug medicationFor Ulcerative_Colitis).

Sports. Millions of sports afficionados like to see statis-
tics on the effectiveness of particular player combinations.
Given a corpus of SPO-annotated soccer match reports, users
may want to know how successful a specific set of midfield-
ers (e.g., Xabi Alonso, Sami Khedira, and Mesut Özil) were
in assisting their favorite striker (e.g., Cristiano Ronaldo).
This task requires and may need to consider the time di-
mension as well (e.g., comparing different seasons).

Products. Business analytics on entertainment products
has similar requirements. For instance, how do products like
Samsung S3 and iPhone 5 perform in the market and com-
pare in consumer opinions? Modern analytics needs to con-
sider consumer comments on review sites and other social-
media postings. Again, this requires querying, aggregating,
and analyzing SPO triples together with surrounding text
and the temporal dimension.

3. ARCHITECTURAL ALTERNATIVES
To manage combined RDF+text+time data and to sup-

port the outlined use cases and other applications, various
system architectures are conceivable: high-performance sys-
tems for SQL, XML, or RDF; NoSQL key-value stores such
as HBase and Cassandra; NoSQL document stores, such as
MongoDB or CouchDB; queryable map-reduce platforms,
such as Hive [12], HadoopDB/Hadapt [2], Hadoop++ [7], or
Shark [8]; parallel engines for JSON objects such as Elastic-
Search; text engines extended for semistructured data such
as Solr; and, of course, hybrid combinations of all these.
Each of these design choices comes with its own idiosyn-
crasies and limitations regarding the combined functionality
& scalability challenge.

Traditional systems like relational engines with ADTs for
textual and spatio-temporal domains or XQuery Full-Text
provide sufficiently rich functionality. However, for the kind
of schema-free data that we consider (with hundred thou-
sands of different predicates/relations/attributes), they fall
short of scaling out to massive data on many machines. RDF
engines [1], key-value stores, and Hadoop extensions may
scale well for simple workloads like star joins on SPO triples,
key-value lookups, key-based grouping, and keyword search,
but fail to support complex workloads with long join chains,
band joins (e.g., for temporal analytics), or advanced text
predicates with composite phrases (e.g., entity names, quo-
tations, slogans), linguistic annotations (e.g., part-of-speech
tags), or text proximity search. Extended text engines lack
support for joins and other relational operators. Finally, hy-
brid solutions pose big burdens on application programmers
if code needs to be written against federated interfaces.

4. D-HIVE DATA MODEL
In principle, we could adopt a relational data model or an

XML-based model, the latter having the advantage of com-
ing with text-document support. However, these are very
generic models, not specifically targeted to the kind of data
that we consider: SPO triples, keywords and phrases, times-
tamps. Mapping RDF triples onto relational systems has not
been successful, introducing either a super-sparse universal-
relation table, or a generic SPO table entailing self-joins for
virtually every query, or a physical-design nightmare with
clustered tables. Moreover, in our setting, we need to move
from triples to quads, quints, etc., with further increase of
complexity. The data models that underlie key-value stores
or JSON are much simpler, but are very limited in terms
of the operations that they support: usually ignoring joins,
not to speak of phrase matching, time-travel predicates, etc.

To preserve the schema-free flavor of RDF data, includ-
ing the use of predicates (relations/attributes) as variables,
we decided to start from SPO triples and extend them into
quads, quints, etc. This gives a customized multi-dimensional
(cube-like) data model that programmers can easily under-
stand. The extra dimensions beyond SPO represent:

• 4: Text keywords associated with an SPO triple, e.g., de-
rived from the Web pages where the triple was extracted
from, or referring to the S entity of the triple as part of
an entity-specific statistical language model [17].

• 5: To support flexible phrase search (multiple consecu-
tive words or multiple words in proximity) rather than re-
lying on a precomputed fixed set of phrases (which would
then be treated as special words), we need to know the
position in the associated text where a keyword occurs.



Position indexes are standard in IR engines, but typi-
cally come with a major increase in storage and com-
putational costs, compared to vanilla inverted lists for
single keywords only.

• 6: The timepoint denoting the begin of the validity of
the SPO triple and its associated text (e.g., the begin of
a person’s term as a CEO).

• 7: The timepoint denoting the end of the validity of an
SPO triple and its text.

• 8: The timestamp when the SPO triple was captured
(“transaction time”).

Note that support for ad-hoc phrases with word positions is
crucial to tap into entity names (people, places, products)
which are not always in canonical representation (i.e., regis-
tered entities in the S or O roles of an SPO triple), marketing
slogans, people’s quotations, remarks in customer reviews,
etc. This aspect has been disregarded by prior work on text
cubes (e.g., [6]) and has been way underrated in much of
the DB&IR literature. Industrial-strength text engines like
those of Google, Bing, etc. or SAP TRex for enterprise
search [13] invest great care into phrase indexing.

As for the building blocks of a query language, we start
with Sparql-like triple patterns and extend them into multi-
dimensional patterns. An oct pattern has the form
S P O {teXt} @[begin,end] #t

where each of S,P,O,teXt,begin,end,t can be variables (start-
ing with ?, to be bound by answers) or input values. teXt can
be a composite predicate {(word1,pos1),(word2,pos2),...}

with standard phrase search like {(w1,?p),(w2,?p +1)} ab-
breviated as {"w1 w2"}. An example is ?s type politician

{"quantum chemistry"} @[1980,2000] (with arbitrary captur-
ing time, hence omitted). Multiple oct patterns or partial
octs such as triple, quad, or quint patterns can be conjunc-
tively combined to express joins. For example, we could
combine the above search pattern with a second one like ?s

bornIn Germany.

5. D-HIVE ARCHITECTURE
Figure 1 depicts a system architecture that we envision

for D-Hive. Queries, posed against the API sketched in the
previous section, are first processed by an optimizer, which
decides whether a Map-Reduce (MR) execution strategy or
a DBMS-style query-processing (QP) strategy is preferable.
For instance, for highly selective queries, an MR strategy
would be unnecessarily consuming resources, reading from
disk and transferring over the network items not needed for
the result. With a QP strategy, the execution plan would
consult specialized D-Hive indices which can surgically ac-
cess only the items of interest to the query.

D-Hive indices are either basic indices, such as B-/R-trees
and inverted lists per keyword, or more sophisticated in-
dices to handle time intervals, phrases and word proxim-
ity, and multi-dimensional queries involving, for example,
quints, octs, and more exotic operations like band joins and
adjacency joins on time intervals or keyword positions. In-
dices can also be built to support more efficient processing
of MR strategies, along the lines of [2, 7]. The optimizer also
decides about which indices to employ and how to process
them (e.g., loading small indices in memory, etc).

At the storage layer, D-Hive is designed like a federated
system, thus being able to utilize different stores. Note that
this federation level is transparent to application program-

Figure 1: D-Hive System Architecture

mers; it refers solely to the storage layer and is encapsulated
under the D-Hive API. We are currently experimenting with
(i) Hadoop DFS, (ii) key-value stores (HBase and Cassan-
dra), document stores (MongoDB), RDBMSs (PostgreSQL)
– and plan to consider further variants. The idea here is
to replicate the data a modest number of times with differ-
ent representations for the replicas (using different underly-
ing stores), this way giving more degrees of freedom to the
query/analytics optimizer.

6. CHALLENGES
Query Language. We have alluded to extensions of

Sparql for querying the combination of RDF, text, and time
data, and we have used ad-hoc extensions in examples. How-
ever, the design of an appropriate language is a widely open
issue and presents the first key challenge. Extending SPO
triple patterns with a fourth and fifth dimension of text
and time predicates is only one option. The choice of lan-
guage primitives and composition principles is particularly
demanding and critical because queries should be building
blocks of more advanced data analytics.

Data Stores. A baseline approach would be to use spe-
cialized stores for different dimensions of the D-Hive data
items. For instance, an RDF engine (e.g., RDF-3X) may be
employed to store SPO triples, text engines (e.g., Lucene)
may be utilized for the text parts, and an RDBMS may be
used to store time points and intervals (each on all nodes of
a cluster). Such an approach would be appropriate if queries
involved exclusively either SPO triples, or text phrases, or
time predicates. However, for the D-Hive functionality such
a fully federated approach is problematic. Going from triples
to quads (e.g. with queries involving SPO triples and key-
words) would necessitate a large number of needless data
accesses and transfers; for instance, the RDF engine’s in-
dex would not rule out SPO triples not satisfying the key-
word constraints and vice versa. Going from quads to quints
(e.g. adding capture-time predicates to the query) or to octs
(adding time begin and end points for validity and capture
times) would greatly exacerbate this problem.

Indexing. Indices may be stored at a different system
than the raw data. For instance, a key-value store may be
appropriate for indices, in the form of key-value tables.

Index size is a great concern. The simple conceptual jump
from triples to quints, and from there to octs and higher-
dimensional items, may result in exponentially growing in-
dex sizes. Simple strategies employed, for example, by in-



dexing all combinations of S, P, and O (as in RDF-3X [11]),
although appropriate for their environment, are clearly in-
appropriate for D-Hive data. With a realistic number of
unique SPO triples upwards of 100 million, a few hundred
of keywords and phrases, on average (making up the text
part of each SPO fact), hundreds of documents where each
SPO triple can occur, and with each document having hun-
dreds of temporal versions (e.g., for longitudinal analytics
[15]), D-Hive will have to index hundreds of trillions of data
items, requiring hundreds of terabytes or even petabytes.
What is clearly needed is a judicious selection of appropri-
ate indices for some of the key combinations of each data
items’ dimensions and use of appropriate multi-dimensional
indices, along with specialized indexes for text and time.

Data Dynamics. D-Hive applications are expected to
have high dynamics, mostly in the form of insertions of new
data (versions). Accomodating these updates, at poten-
tially high rates, poses demanding constraints on indexing.
It is widely open how to reconcile the performance needs
of complex queries with the required throughput of new in-
sertions. Note that until just a few years back (i.e., before
Google introduced its Percolator architecture), this kind of
problem was unsolved already for the much simpler case of
text only. The combination of RDF data, text, and time
turns the update problem into a major challenge.

Advanced Query Processing. Extended triple pat-
terns like quint or oct patterns are not sufficient to facili-
tate the envisioned kind of entity-relation-text-time analyt-
ics. Obviously, we need to add aggregation and grouping
operators. While this is straightforward for the SPO part,
the challenge lies in coping with the text and time dimen-
sions as well and designing a seamless suite of operators.
In addition, various kinds of special operators are needed
to cope with word positions and proximity. Most notably,
we consider band joins [5], and more specifically the special
case of adjacency joins (with a band size 1), as an important
building block. For example, a phrase search for “quantum
chemistry” combined with an SPO pattern can be seen as
an adjacency join between two patterns on the word-position
dimension. This idea generalizes to proximity search, for ex-
ample, when we want to accept text like “quantum physics
and its role in chemistry” as an approximate match to the
above query predicate.

Likewise, n-gram analysis, e.g., for frequent user com-
ments in product reviews or for analyzing text-block copying
in social media, needs n-1 band joins on the position dimen-
sion. Note that this is a conceptual view, from the perspec-
tive of expressing queries and analytic tasks; the implemen-
tation may use different operators with specific algorithms.
Reconciling the ease of use at the conceptual data model
level with an efficient and scalable system level is a critical
part of the combined functionality & scalability challenge
that we are posing.

Temporal adjacency is another case to consider in more
depth, for example, to determine time intervals whose end
and begin meet exactly. A query that needs such predicates
could be for politicians who start being a company’s CEO
right after finishing their term in a political office.

Optimization of Execution Plans. Estimating the se-
lectivity of combined SPO+text, SPO+time, or SPO+text
+time queries is an entirely new game. For RDF data alone,
decent methods for selectivity estimation have been devel-
oped, and there are good optimizers for join ordering based

on such statistics [11]. However, when going from triple
patterns to quint patterns and beyond, there is another leap
in complexity that join-order optimizers need to cope with.
Keyword selectivities cannot be cast into histograms or sim-
ilar kinds of statistical synopses, and the support for phrases
and word proximity makes this issue even harder. Thus, op-
timizing and efficiently processing select-join queries over all
D-Hive dimensions is already a big challenge. For advanced
analytics, with additional operators such as n-gram analysis,
we need to understand the interplay in the entire pipeline of
data-centric and text-centric operators. Prior work [10, 4]
has looked into such issues for the case of rule-based infor-
mation extraction, but mostly focused on the sweet spot of
pushing down selective operators. Our setting is even more
challenging.

7. CONCLUSION
We have an early version of D-Hive running and have

started to conduct performance studies using the Yago knowl-
edge base (with more than a billion RDF triples) in combi-
nation with the history (monthly versions) of the Wikipedia
full text. We are convinced that now is the right time to
reconsider and advance the cross-pollination of DB and IR
methods at Web scale for analytics applications that need
to integrate RDF, text, and time.
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