
Query Steering for Interactive Data Exploration
Ugur Cetintemel*, Mitch Cherniackƚ, Justin DeBrabant*, Yanlei Diao±, Kyriaki Dimitriadouƚ, Alex Kalinin*, Olga Papaemmanouilƚ, Stan Zdonik*

{ugur,debrabant,akalinin,zdonik}@cs.brown.edu, {mfc,kiki,olga}@cs.brandeis.edu, yanlei@cs.umass.edu
Brown University*, Brandeis Universityƚ, University of Massachusettes, Amherst±

ABSTRACT

Traditional DBSMs are suited for applications in which the
structure, meaning and contents of the database, as well as the
questions to be asked are already well understood. There is,
however, a class of applications that we will collectively refer to
as Interactive Data Exploration (IDE) applications, in which this
is not the case. IDE is a key ingredient of a diverse set of
discovery-oriented applications we are dealing with, including
ones from scientific computing, financial analysis, evidence-based
medicine, and genomics. The need for effective IDE will only
increase as data are being collected at an unprecedented rate.

IDE is fundamentally a multi-step, non-linear process with
imprecise end-goals. For example, data-driven scientific discovery
through IDE often requires non-expert users to iteratively interact
with the system to make sense of and to identify interesting
patterns and relationships in large, amorphous data sets. To make
the most of the increasingly available complex and big data sets,
users would need an “expert assistant” who would be able to
effectively and efficiently guide them through the data space.
Having a human assistant is not only expensive but also
unrealistic. Thus, it is essential that we automate this task.

We propose database systems be augmented with an
automated “database navigator” (DBNav) service that assists as a
“tour guide” to facilitate IDE. Just like a car navigation system
that offers advice on the routes to be taken and display points of
interest, DBNav would similarly steer the user towards interesting
“trajectories” through the data, while highlighting relevant
features. Like any good tour guide, DBNav should consider many
kinds of information; in particular, it should be sensitive to a
user’s goals and interests, as well as common navigation patterns
that applications exhibit. We sketch a general data navigation
framework and discuss some specific components and approaches
that we believe belong to any such system.

1. Introduction
With the advance of auto navigation systems, your days of

scribbling down vague directions from the web, struggling with
oversized, out-of-date paper maps while driving, and stopping at
gas stations to ask for directions are finally over. Now you can
relax and enjoy the view as the navigation system guides you to
your destination with turn-by-turn directions. It shows your
location on a graphical map along with various classes of points
of interest such as restaurants, gas stations, rest areas, or touristic
attractions. If you are up for sushi, it can suggest and offer
directions to the nearby restaurants that serve sushi.

Taking this service one step further, if we are planning a trip

to an unfamiliar part of the world, you might seek the advice of a
travel agent or a tour guide who can ask you a series of questions,
and based on your answers, will suggest an itinerary that is best
suited for your interests. We also expect the guide to accompany
you on your trip, and to dynamically make adjustments to your
itinerary based on your reactions on what you have seen, what it
knows about you, and its experience with other tourists. To
facilitate IDE, we seek to provide an automated service, which we
refer to as DBNav, similar to the auto navigator or the tour guide.

In IDE applications, users try to make sense of the underlying
data space typically by navigating through it, focusing (zooming
in) on parts of the data as they identify interesting “stuff”,
defocusing (or zooming out) on data that is of little or no interest,
jumping to related to “stuff”, and repeating this process as much
as necessary, typically all through a visual interface. IDE remains
as a resource- and labor-intensive task despite its growing
importance as current DBMSs cannot effectively support such
interactive, multi-step tasks with imprecise goals. In particular,
DBMSs fall short when providing the following key functionality:

Interactive performance: DBMSs should support online
query processing, which is critical for human-in-the-loop analysis
and exploration. Interruptible queries and progressive, anytime
results coupled with result-quality estimations can make
exploration much faster, more effective and engaging, especially
in the presence of big data.

Navigation help: DBMSs should assist users with easy
navigation through the data space. Such help can come in the form
of allowing users to readily express exploratory query sequences,
i.e., “query sessions”, automatically generate query sessions with
little input from the user, or provide recommendations that guide
users towards interesting parts of the data.

Visualization: DBMSs should provide effective presentations
of the underlying data space to allow users to quickly grasp the
data “landscape” and identify interesting features. The form of
such presentations can vary according to what the system knows
about users requirements.

Personalization and customization: DBMSs should develop
and leverage models of users interests, goals, and database
interaction styles to provide user- and application-centric,
customized query steering and data visualization support.

Although much of the functionality above has been explored
and point solutions have been proposed (e.g., online and
approximate query processing [HH07], query recommendations
[CE09, SM10], collaborative databases [NB09], and user profiles
[CF01]), offering integrated support for this collection implies
fundamental changes in the design and architecture of DBMSs.
Furthermore, in addition to providing the existing features at
scale, DBMSs need to provide better support for:

1. Query sessions: Just like how automobile navigation
systems help with the planning of “trips”, DBMSs should do so
with query sessions, which we define as a sequence of related
queries. Exploration is data driven: each query typically serves as
a jumping-off point for the next. As such, IDE rarely involves
independent, entirely ad hoc query sequences. Thus, DBMSs

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and
reproduction in any medium as well allowing derivative works, provided that you
attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6–9, 2013, Asilomar, CA, USA.

should be aware of this session-oriented usage pattern and provide
primitives to express sessions and optimize their execution.

2. User and application profiles: DBMSs provide generic,
one-size-fits-all behavior for all users. Rich user models (e.g.,
profiles) that capture users’ interests and goals can be used to
offer personalized services. Such user models can be manually
specified and/or automatically learned by the system. In either
case, interfaces that allow users to provide feedback to the system
need to be provided. Likewise, while many large datasets have a
relatively small set of sensible “trajectories” through them,
DBMSs are agnostic about the overarching applications. Having a
model of applications (e.g., possible operations, common
navigational patterns) would allow a DBMS to further customize
its operation per application.

In the sequel, we focus primarily on how DBNav can provide
these services to facilitate online IDE, highlighting the primary
challenges and offering initial directions for solutions.

2. Query Steering
We use query steering to refer to the process of assisting a

user to navigate through a complex data space. Steering typically
results in a query session that is either generated by the user
(perhaps with some prompting by the system), or entirely by the
system (e.g., based on past user and application profiles).

2.1 Steering Modes
We envision the following steering modes for generating

query sessions (in increasing order of system involvement):
Manual Steering: The user would ask a sequence of queries from
the same or related templates, tweaking the parameter values until
she is content with the accumulated results (or runs out of time).
We refer to this base usage mode as manual query steering, as the
user manually specifies the queries in the session one by one.
Power Steering: Alternatively, such a query session can be
expressed through a steering policy applied on a steering
template. The steering policy here indicates the range of values
and the order each template parameter will be instantiated to
generate the query sequence. We refer to this mode as the power
steering, as the user can specify an arbitrarily long, prioritized
query sequence at once, thus has the ability to explore large
swaths of the data space easily. At the same time, the system can
well optimize this known query sequence (e.g., [AC06, BS07]).
Power steering is motivated by parameter sweeping tasks
commonly used in finance [HS01] and scientific domains (e.g.,
climate modeling) in backtesting over historical data to identify
the optimal model/parameter combinations.

The user can also specify steering goals that include
additional predicates and functions to identify a subset of queries,
this time as a function of the underlying data or query results as
opposed to the parameter values. For example, in a session over
astronomical data, a user may ask for “the largest region in the
sky where the average blue surface brightness value is higher than
24”. While the ability to ask such a query is useful for exploration,
it can neither be easily expressed nor optimized using standard
GroupBy or windowing constructs, especially for
multidimensional data.
Auto Steering: The system takes control of steering by
leveraging user profiles. Users may directly define (ir)relevant
objects and features, and/or provide feedback on the relevance of
system. The system builds the user profile, investigates the data
space on behalf of the user in the background and automatically
recommends queries that retrieve matching data.
Integrated: All of the above steering techniques, manual, power
and auto, should be tightly integrated into a single framework.

2.2 Profiles and Interaction Histories
DBNav relies on models of user interaction behavior and

interests for personalization and optimization. We distinguish two
profiles types, user profiles that characterize the interests and
navigation actions of users [CF01] and application profiles that
characterize the application-database interactions. Application
profiles can be seen as summaries of how multiple users of the
same application interact with the database.

In Figure 1, we illustrate a simplified application profile
created from a pan-and-zoom style visual front-end. This is a
hierarchical model that layers query template models and query
parameter models. The template model shown is an order-1
discrete-time Markov chain where the states (circles) correspond
to query templates that are executed in response to pan-and-zoom
user actions. Query transitions (arcs) are labeled using steering
operations (e.g., zoom in/out, etc) and transition probabilities.
Steering operations correspond to the steering algebra operators
described in Section 2.3. For each query template, we have a
separate probabilistic query parameter model that can be used to
predict with which parameter values the template will be
instantiated next (e.g., for the “Pan” template, we show
probabilistic association rules that model to which “logical data
cells” the next pan operation will take us; a pan operation on data
cell 2 will move the focus to cells 3 and 5 with probability 0.8).

Figure 1: A navigational profile for a pan-and-zoom app
Furthermore, DBNav automatically logs and stores all user-

database interactions. In addition to helping with the creation and
maintenance of profiles, these interaction histories enable a
number of useful navigation operations, including: (i) (time-
travel) going back to any point within an interaction history; (ii)
(parallel worlds) branching off to explore alternative query paths;
(versions) materializing the accumulated results; (replay) applying
a subsequence of interaction histories on other data sets or the
same data sets after revisions; (reuse) searching for others’
interaction histories to identify “workflows” that they can apply
on their own of task after customization; and (suggestions)
receiving suggestions about what new query branches they can
explore next (i.e., a "forward" button).

Similar navigation operations have been explored in the past,
primarily in the context of visualization workflows [CF06]. The
challenge here involves generalizing these ideas to exploratory
query processing. Interaction histories and user logs have also
been used in the context of security and auditing applications.
However, our focus is on the optimization of query sessions based
on predictions of user behavior. Finally, OLAP systems support

similar user navigational activities (e.g., roll-up, drill-down/up,
etc) with our data steering framework. In these applications, query
optimization relies on data locality techniques (e.g., prefetching of
surrounding data cells) instead of user interaction profiles and
application navigational models, which is the focus of our work.

2.3 Steering Algebra
DBNav uses for the manual steering mode a steering algebra

to represent and reason about query sessions. This algebra is data
centric: it defines popular navigational idioms on the underlying
data space without being tied to a specific query language. As
such as it can formally describe query-to-query transitions and
facilitate custom optimizations when processing query sequences.

Our current algebra contains operators that represent common
actions such as zooming in/out on attributes, asking for an
overview or a more detailed view of query results, and relating
(i.e., joining) query results with other relations. Examples
operators (on a query Q) include (but are not limited to):
• NARROW(P): Restricts the result set by adding the predicate

“AND P” in the WHERE or HAVING clause of Q.
• DRILLDOWN(B1,...,Bm,[A1=F1(E1),...,Am=Fm(Em)]): Provides a

more detailed view by: (a) replacing non-aggregate
expressions in the SELECT clause of Q with B1,...,Bm, (b)
adding list of aggregate expressions, “Fi(Ei) AS Ai” to the
SELECT clause of Q, and (c) adding B1,...,Bm to the GROUP BY
clause of Q.

• MOVE(P, V1,...,Vm): Replaces the parameters values of predicate
P with the new list of values.

• RELATE(R): Implements a join operation by: (a) adding R to
the FROM clause of Q, (b) adding R.A = S.A to the WHERE
clause of Q for each S relation in the FROM clause of Q that
has a common attribute A with the R relation, and (c) adding
unique attributes in R to the SELECT clause of Q.
DRILLDOWN
(age,
avgD=avg(dosage)
on Q0

Q1: SELECT age, avg(dosage) AS avgD
 FROM trials C
 WHERE disease = “diabetes”
 GROUP BY age

RELATE (hospitals)
on Q1

Q2: SELECT age, avg(dosage) AS avgD,
 H.hospital_name, H.hospital_id
 FROM trials C, hospitals H
 WHERE disease = “diabetes” AND
 C.hospital_id= H.hospital_id
 GROUP BY age

NARROW
(hospital_name=”MGH”)
on Q2

Q3: SELECT age, avg(dosage) AS avgD,
 H.hospital_name, H.hospital_id
 FROM trials C, hospitals H
 WHERE disease = “diabetes” AND
 C.hospital_id= H.hospital_id AND
 H.hospital_name= “MGH”
 GROUP BY age

Table 1: Example steering operations
Example. Let us assume an IDE query session in a clinical

trial database searching for treatments related to a patient’s
condition. An initial user query, Q0, could be “SELECT * FROM
trials C WHERE disease= “diabetes”, where trials is the table with the
clinical trials information. In Table 1 we show the queries
obtained by applying a sequence of steering operations that (1)
return a more detailed view of the trials by evaluating the average
insulin dosage per age, (2) relate the result trials with the hospital
they took place and (3) zoom into the trials conducted at MGH.

Note that the steering algebra operators are context sensitive:
they cannot be interpreted in isolation. They describe how to get
from a given query to a successor query, and thus, require a
context. The steering algebra can be used to manually define a
query session. Leveraging the algebra to capture system-assisted
steering operations (i.e., in power and auto steering modes) is one

of the research challenges towards providing an integrated
steering framework for IDE applications.

2.4 Steering Optimizations
Non-determinism is a salient aspect of query steering and

arises due to two main reasons: First, in manual steering query
transitions may not be known in advance. Second, a user can
interrupt query execution at any time. Effectively dealing with
such non-deterministic behavior requires novel profile-driven
modeling and planning for reuse, which we briefly discuss below.

Profile-driven prefetching and caching. Given an
application profile (as shown in Figure 1) that shows probabilistic
query transition sequences, we can prefetch more data than what
Qi needs in anticipation for Qi+1. Given the probabilistic
branching, there will often be multiple likely next queries (and
parameter values), so the challenge is to decide what to prefetch
under such uncertainty. Various tactics are possible here,
including prefetching depth first, breadth first, or using a hybrid
approach while pruning branches with low probability, or
prefetching data that would benefit multiple branches. A
complementary problem is that of profile-driven caching, where
the profile information can be used to decide what data are least
likely to be accessed in the future and thus can be evicted.

In Figure 2, we quantify the potential benefits of profile-
driven prefetching/caching by running synthetically generated
query sessions that mimic common analytic tasks in a stock-data
analysis exploration application (e.g., fast upward/downward
trending). For a pan-heavy workload, we learned a hierarchical
application profile similar to the one depicted in Figure 1, for
which we combined a variable-order Markov model for template
modeling and sequential association rules per template. The figure
compares the performance of DBNav (running on top of
PostgreSQL) with prefetching and caching for varying think time
values (i.e., average time between consecutive queries) vs. vanilla
PostgreSQL (no prefetch/LRU), all running the same workload
over a 50GB NYSE dataset on an Amazon EC2 m2.2x large
instance. We see that the profile-driven approaches are effective
in reducing query execution latencies especially for small caches
(when smart use of the cache becomes more important) and long
think times (that allows more data to be prefetched).

Query checkpointing to facilitate reusable progress. The
“overlap” of queries within the same session introduces
opportunities for the reuse of the execution “progress”. We can
devise execution strategies that would promote and maximize
reuse. One approach that we introduced toward this end is query
checkpointing in which we convert a query Q to one or more
checkpoint queries, Q = f (C1, C2…,Cn), to be executed in turn.
When a user transitions from Qi to Qi+1, the optimizer strives to
express Qi+1 in terms of the already materialized checkpoints of
Qi. In the example of Table 1, Q1’s checkpoint queries, Ci

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

0	
 0.2	
 0.4	
 0.6	
 0.8	
 1	
 1.2	

Ru
nt
im
e	

(s
ec
s)
	

Relative	
 Cache	
 Size	

PostgreSQL	

(No	
 Prefetch)	

ThinkTime	
 =	

Low	

ThinkTime	
 =	

Medium	

ThinkTime	
 =	

High	

Figure 2: Impact of profile-driven prefetching and caching

evaluate the sum and count of dosage for each district age value,
X, (instead of the average):

 Ci: SELECT age, sum(dosage) AS sum, count(dosage) as count
 FROM trials C WHERE disease = “diabetes” AND age=X
Assuming Ci is materialized, RELATE(hospitals) operation can use
these checkpoints and can be implemented as:

 SELECT * FROM Ci, hospitals H
 WHERE Ci.hospital_id= H.hospital_id

A challenge is to design these checkpoints to maximize
reusability in consideration of the predicted future queries. This
can be seen as an online materialized view selection problem. We
can leverage the knowledge of the semantics of steering operators
and profiles to predict upcoming query transitions, e.g., attributes
likely to be involved in grouping, aggregations, relate operations
and predicates. The order of executing and materializing the
checkpoints is also of concern as the user can interrupt the current
query any time. Finally, more aggressive reuse across queries is
possible at the level of transient data structures, such as hash
buckets, which are created per query.

Query sequence optimizations. Power steering will benefit
from well-studied multi-query optimization to more specialized
and less studied techniques for query workloads as sequences
[AC06, BS07]. The salient aspect of steering sequences is that
they consist of correlated queries and thus aggressive reuse-
oriented techniques such as those sketched earlier would apply.
Power steering with goal functions, on the other hand, requires
fundamentally new query optimization techniques that are, in the
most general case, similar to basic search algorithms used in AI.
Query relaxation techniques that use lattice-based search
structures to find queries with desired properties (e.g., [CK09])
are partially applicable but need to be significantly generalized so
that a meaningful collection of constraints can be supported. This
is an open area that would benefit from novel sampling and
function indexing techniques.

Efficient query learning. In auto steering, users engage in a
conversation with the system and simply characterize data
samples (objects, features, etc.) as relevant or irrelevant to their
interests. Based on the user’s profile, the system automatically
formulates “classification” queries that retrieve matching data.
The user continues to approve or disapprove of new samples until
new iterations receive mostly positive votes.

Through this interactive process, the system must identify
query attributes and predicates that match the user’s interests.
While existing feature selection algorithms can identify relevant
attributes, many often translate attributes to a lower dimensional
space from which there is no straightforward reverse mapping to
the original attribute space. One alternative is to use easier to
interpret classification techniques, such as decision trees, that
make it easier to (i) identify the classification attributes and values
that maximize the information gain and (ii) translate back to query
expressions (e.g., map each tree branch to a WHERE clause).

Sample selection has a significant impact on auto steering.
Initial samples should capture the diversity of the data space
aiming to early on eliminate non-interesting data. This is
essentially an online learning problem that involves striking a
balance between exploration (of uncharted “territory”) and
exploitation (of current profile information). We believe that rich
multi-dimensional histograms that characterize the entire data
space would provide useful when making such tradeoffs.

Another challenge is to minimize the number of iterations
required to converge to a result of an acceptable quality. An idea
is to analyze past application and user profiles to “predict” a
user’s interests and steer her along semantic “trajectories” of users
with similar interests.

Customized data visualization. Profiles and interaction
histories can be used to customize visualizations to further aid
steering support. For example, objects can be non-uniformly
scaled and drawn so that all the “important” objects are clearly
visible. This approach has long been successfully used in hand-
designed tourist maps. DBNav should support algorithms to set
the appropriate resolution for each object based on profiles and
locality principles and adapt the resolution dynamically as
navigation progresses. The visualization system should also
support various interaction history operations (e.g., time-travel,
replay, forward). Finally, the visualization environment should
make it easy for the user to interact with the system, including the
ability to input profile information and provide feedback.

3. Conclusions and Ongoing Work
We sketched our vision for how an automated navigation

assistant service, DBNav, for interactive exploration of large
datasets. DBNav would help a user quickly navigate through a
complex large data spaces. We argued that such a service must be
able to (1) suggest next steps in a query sequence that
methodically move the user through the data in a meaningful way.
We call this query steering. We have further argued that (2) query
recommendations must be produced quickly.

Profiles of both user interest and application characteristics
are the key ingredients to realizing this vision. Profiles can be
either supplied by the user or learned from interaction logs. We
sketch three query steering modes: (1) manual steering, (2) power
steering, and (3) auto steering. We give some simple examples
suggestive of where this technology could go, but should not be
interpreted in any way as the end point.

A powerful visual front-end is critical IDE applications. The
visual component would also use profiles to identify how to map
visualizations to pixels in a way that best serves the user’s needs.
We believe that a data navigation system such as the one sketched
in this paper is essential to deriving insight from the huge and
complex datasets that one encounters in modern applications such
as those in the sciences. A modern DBMS must be a full
participant in this endeavor and thus must supply a DBNav-like
system alongside a traditional query interface.

4. Acknowledgements
This work is funded in part by NSF Grant IIS-1049974, IIS-

1111423, IIS-0905553, and a gift from Intel.
References
[AC06] S. Agrawal, E. Chu, and V. Narasayya, “Automating Physical
Database Design: Workload as a Sequence,” in SIGMOD’06.
[BS07] I. T. Bowman and K. Salem, “Semantic Prefetching of Correlated
Query Sequences,” in ICDE’07.
[CE09] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis, “Query
Recommendations for Interactive Database Exploration,” in SSDBM’09.
[CF01] M. Cherniack, M. Franklin and S. Zdonik, “Expressing User
Profiles for Data Recharging,” in IEEE Personal Communications, 2001.
[CF06] S. P. Callahan, J. Freire, E. Santos, et al., “VisTrails: Visualization
meets Data Management,” in SIGMOD’06.
[CK09] C. Mishra and N. Koudas, “Interactive query refinement,” in
EDBT’09.
[HH07] J. Hellerstein, P. Haas, and H. J. Wang, “Online aggregation,” in
SIGMOD’97.
[HS01] H. Hochheiser and B. Shneiderman, “Interactive exploration of
time series data,” in DS’01.
[KW04] A. Kadlag, A. V. Wanjari, J. Freire and J. R. Haritsa, “Supporting
Exploratory Queries in Databases,” in DASFAA’04.
[NB09] N. Khoussainova et al, “A Case for a Collaborative Query
Management System,” in CIDR'09.
[SM10] E. Sadikov, Jayant Madhavan, Lu Wang, A. Y. Halevy,
“Clustering Query Refinements by User Intent,” in WWW’10.

