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ABSTRACT 

Traditional DBSMs are suited for applications in which the 
structure, meaning and contents of the database, as well as the 
questions to be asked are already well understood. There is, 
however, a class of applications that we will collectively refer to 
as Interactive Data Exploration (IDE) applications, in which this 
is not the case. IDE is a key ingredient of a diverse set of 
discovery-oriented applications we are dealing with, including 
ones from scientific computing, financial analysis, evidence-based 
medicine, and genomics. The need for effective IDE will only 
increase as data are being collected at an unprecedented rate. 

IDE is fundamentally a multi-step, non-linear process with 
imprecise end-goals. For example, data-driven scientific discovery 
through IDE often requires non-expert users to iteratively interact 
with the system to make sense of and to identify interesting 
patterns and relationships in large, amorphous data sets. To make 
the most of the increasingly available complex and big data sets, 
users would need an “expert assistant” who would be able to 
effectively and efficiently guide them through the data space. 
Having a human assistant is not only expensive but also 
unrealistic. Thus, it is essential that we automate this task.  

We propose database systems be augmented with an 
automated “database navigator” (DBNav) service that assists as a 
“tour guide” to facilitate IDE. Just like a car navigation system 
that offers advice on the routes to be taken and display points of 
interest, DBNav would similarly steer the user towards interesting 
“trajectories” through the data, while highlighting relevant 
features. Like any good tour guide, DBNav should consider many 
kinds of information; in particular, it should be sensitive to a 
user’s goals and interests, as well as common navigation patterns 
that applications exhibit. We sketch a general data navigation 
framework and discuss some specific components and approaches 
that we believe belong to any such system. 

1. Introduction 
With the advance of auto navigation systems, your days of 

scribbling down vague directions from the web, struggling with 
oversized, out-of-date paper maps while driving, and stopping at 
gas stations to ask for directions are finally over. Now you can 
relax and enjoy the view as the navigation system guides you to 
your destination with turn-by-turn directions. It shows your 
location on a graphical map along with various classes of points 
of interest such as restaurants, gas stations, rest areas, or touristic 
attractions. If you are up for sushi, it can suggest and offer 
directions to the nearby restaurants that serve sushi. 

Taking this service one step further, if we are planning a trip 

to an unfamiliar part of the world, you might seek the advice of a 
travel agent or a tour guide who can ask you a series of questions, 
and based on your answers, will suggest an itinerary that is best 
suited for your interests. We also expect the guide to accompany 
you on your trip, and to dynamically make adjustments to your 
itinerary based on your reactions on what you have seen, what it 
knows about you, and its experience with other tourists. To 
facilitate IDE, we seek to provide an automated service, which we 
refer to as DBNav, similar to the auto navigator or the tour guide.  

In IDE applications, users try to make sense of the underlying 
data space typically by navigating through it, focusing (zooming 
in) on parts of the data as they identify interesting “stuff”, 
defocusing (or zooming out) on data that is of little or no interest, 
jumping to related to “stuff”, and repeating this process as much 
as necessary, typically all through a visual interface. IDE remains 
as a resource- and labor-intensive task despite its growing 
importance as current DBMSs cannot effectively support such 
interactive, multi-step tasks with imprecise goals. In particular, 
DBMSs fall short when providing the following key functionality: 

Interactive performance: DBMSs should support online 
query processing, which is critical for human-in-the-loop analysis 
and exploration. Interruptible queries and progressive, anytime 
results coupled with result-quality estimations can make 
exploration much faster, more effective and engaging, especially 
in the presence of big data. 

Navigation help: DBMSs should assist users with easy 
navigation through the data space. Such help can come in the form 
of allowing users to readily express exploratory query sequences, 
i.e., “query sessions”, automatically generate query sessions with 
little input from the user, or provide recommendations that guide 
users towards interesting parts of the data.  

Visualization: DBMSs should provide effective presentations 
of the underlying data space to allow users to quickly grasp the 
data “landscape” and identify interesting features.  The form of 
such presentations can vary according to what the system knows 
about users requirements. 

Personalization and customization: DBMSs should develop 
and leverage models of users interests, goals, and database 
interaction styles to provide user- and application-centric, 
customized query steering and data visualization support.  

Although much of the functionality above has been explored 
and point solutions have been proposed (e.g., online and 
approximate query processing [HH07], query recommendations 
[CE09, SM10], collaborative databases [NB09], and user profiles 
[CF01]), offering integrated support for this collection implies 
fundamental changes in the design and architecture of DBMSs. 
Furthermore, in addition to providing the existing features at 
scale, DBMSs need to provide better support for: 

1. Query sessions: Just like how automobile navigation 
systems help with the planning of “trips”, DBMSs should do so 
with query sessions, which we define as a sequence of related 
queries. Exploration is data driven: each query typically serves as 
a jumping-off point for the next. As such, IDE rarely involves 
independent, entirely ad hoc query sequences. Thus, DBMSs 
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should be aware of this session-oriented usage pattern and provide 
primitives to express sessions and optimize their execution. 

2. User and application profiles: DBMSs provide generic, 
one-size-fits-all behavior for all users. Rich user models (e.g., 
profiles) that capture users’ interests and goals can be used to 
offer personalized services. Such user models can be manually 
specified and/or automatically learned by the system. In either 
case, interfaces that allow users to provide feedback to the system 
need to be provided. Likewise, while many large datasets have a 
relatively small set of sensible “trajectories” through them, 
DBMSs are agnostic about the overarching applications. Having a 
model of applications (e.g., possible operations, common 
navigational patterns) would allow a DBMS to further customize 
its operation per application.  

In the sequel, we focus primarily on how DBNav can provide 
these services to facilitate online IDE, highlighting the primary 
challenges and offering initial directions for solutions.  

2. Query Steering 
We use query steering to refer to the process of assisting a 

user to navigate through a complex data space. Steering typically 
results in a query session that is either generated by the user 
(perhaps with some prompting by the system), or entirely by the 
system (e.g., based on past user and application profiles).  

2.1 Steering Modes 
We envision the following steering modes for generating 

query sessions (in increasing order of system involvement): 
Manual Steering: The user would ask a sequence of queries from 
the same or related templates, tweaking the parameter values until 
she is content with the accumulated results (or runs out of time). 
We refer to this base usage mode as manual query steering, as the 
user manually specifies the queries in the session one by one.  
Power Steering: Alternatively, such a query session can be 
expressed through a steering policy applied on a steering 
template. The steering policy here indicates the range of values 
and the order each template parameter will be instantiated to 
generate the query sequence. We refer to this mode as the power 
steering, as the user can specify an arbitrarily long, prioritized 
query sequence at once, thus has the ability to explore large 
swaths of the data space easily. At the same time, the system can 
well optimize this known query sequence (e.g., [AC06, BS07]). 
Power steering is motivated by parameter sweeping tasks 
commonly used in finance [HS01] and scientific domains (e.g., 
climate modeling) in backtesting over historical data to identify 
the optimal model/parameter combinations.  

The user can also specify steering goals that include 
additional predicates and functions to identify a subset of queries, 
this time as a function of the underlying data or query results as 
opposed to the parameter values. For example, in a session over 
astronomical data, a user may ask for “the largest region in the 
sky where the average blue surface brightness value is higher than 
24”. While the ability to ask such a query is useful for exploration, 
it can neither be easily expressed nor optimized using standard 
GroupBy or windowing constructs, especially for 
multidimensional data. 
Auto Steering: The system takes control of steering by 
leveraging user profiles. Users may directly define (ir)relevant 
objects and features, and/or provide feedback on the relevance of 
system. The system builds the user profile, investigates the data 
space on behalf of the user in the background and automatically 
recommends queries that retrieve matching data. 
Integrated: All of the above steering techniques, manual, power 
and auto, should be tightly integrated into a single framework.  

2.2 Profiles and Interaction Histories 
DBNav relies on models of user interaction behavior and 

interests for personalization and optimization. We distinguish two 
profiles types, user profiles that characterize the interests and 
navigation actions of users [CF01] and application profiles that 
characterize the application-database interactions. Application 
profiles can be seen as summaries of how multiple users of the 
same application interact with the database. 

In Figure 1, we illustrate a simplified application profile 
created from a pan-and-zoom style visual front-end. This is a 
hierarchical model that layers query template models and query 
parameter models. The template model shown is an order-1 
discrete-time Markov chain where the states (circles) correspond 
to query templates that are executed in response to pan-and-zoom 
user actions.  Query transitions (arcs) are labeled using steering 
operations (e.g., zoom in/out, etc) and transition probabilities. 
Steering operations correspond to the steering algebra operators 
described in Section 2.3. For each query template, we have a 
separate probabilistic query parameter model that can be used to 
predict with which parameter values the template will be 
instantiated next (e.g., for the “Pan” template, we show 
probabilistic association rules that model to which “logical data 
cells” the next pan operation will take us; a pan operation on data 
cell 2 will move the focus to cells 3 and 5 with probability 0.8).   

 

 
Figure 1: A navigational profile for a pan-and-zoom app 
Furthermore, DBNav automatically logs and stores all user-

database interactions. In addition to helping with the creation and 
maintenance of profiles, these interaction histories enable a 
number of useful navigation operations, including: (i) (time-
travel) going back to any point within an interaction history; (ii) 
(parallel worlds) branching off to explore alternative query paths; 
(versions) materializing the accumulated results; (replay) applying 
a subsequence of interaction histories on other data sets or the 
same data sets after revisions; (reuse) searching for others’ 
interaction histories to identify “workflows” that they can apply 
on their own of task after customization; and (suggestions) 
receiving suggestions about what new query branches they can 
explore next (i.e., a "forward" button).  

Similar navigation operations have been explored in the past, 
primarily in the context of visualization workflows [CF06]. The 
challenge here involves generalizing these ideas to exploratory 
query processing. Interaction histories and user logs have also 
been used in the context of security and auditing applications. 
However, our focus is on the optimization of query sessions based 
on predictions of user behavior. Finally, OLAP systems support 



similar user navigational activities (e.g., roll-up, drill-down/up, 
etc) with our data steering framework. In these applications, query 
optimization relies on data locality techniques (e.g., prefetching of 
surrounding data cells) instead of user interaction profiles and 
application navigational models, which is the focus of our work.  

2.3 Steering Algebra 
DBNav uses for the manual steering mode a steering algebra 

to represent and reason about query sessions. This algebra is data 
centric: it defines popular navigational idioms on the underlying 
data space without being tied to a specific query language. As 
such as it can formally describe query-to-query transitions and 
facilitate custom optimizations when processing query sequences.  

Our current algebra contains operators that represent common 
actions such as zooming in/out on attributes, asking for an 
overview or a more detailed view of query results, and relating 
(i.e., joining) query results with other relations. Examples 
operators (on a query Q) include (but are not limited to): 
• NARROW(P): Restricts the result set by adding the predicate 

“AND P” in the WHERE or HAVING clause of Q. 
• DRILLDOWN(B1,...,Bm,[A1=F1(E1),...,Am=Fm(Em)]): Provides a 

more detailed view by: (a) replacing non-aggregate 
expressions in the SELECT clause of Q with B1,...,Bm, (b) 
adding list of aggregate expressions, “Fi(Ei) AS Ai” to the 
SELECT clause of Q, and (c) adding B1,...,Bm to the GROUP BY 
clause of Q. 

• MOVE(P, V1,...,Vm): Replaces the parameters values of predicate 
P with the new list of values. 

• RELATE(R): Implements a join operation by: (a) adding R to 
the FROM clause of Q, (b) adding R.A = S.A to the WHERE 
clause of Q for each S relation in the FROM clause of Q that 
has a common attribute A with the R relation, and (c) adding 
unique attributes in R to the SELECT clause of Q. 
DRILLDOWN 
(age,  
avgD=avg(dosage)  
on Q0 

Q1: SELECT age, avg(dosage) AS avgD 
       FROM trials C 
      WHERE disease = “diabetes”  
      GROUP BY age 

RELATE (hospitals)  
on Q1 

Q2: SELECT age, avg(dosage) AS avgD,         
                     H.hospital_name, H.hospital_id 
      FROM trials C, hospitals H 
      WHERE disease = “diabetes” AND  
                     C.hospital_id= H.hospital_id 
       GROUP BY age 

NARROW 
(hospital_name=”MGH”) 
on Q2 
 

Q3: SELECT age, avg(dosage) AS avgD,  
                    H.hospital_name, H.hospital_id 
       FROM trials C, hospitals H 
       WHERE disease = “diabetes” AND  
                     C.hospital_id= H.hospital_id  AND 
                    H.hospital_name= “MGH” 
       GROUP BY age 

Table 1: Example steering operations 
Example. Let us assume an IDE query session in a clinical 

trial database searching for treatments related to a patient’s 
condition.  An initial user query, Q0, could be “SELECT * FROM 
trials C WHERE disease= “diabetes”, where trials is the table with the 
clinical trials information. In Table 1 we show the queries 
obtained by applying a sequence of steering operations that (1) 
return a more detailed view of the trials by evaluating the average 
insulin dosage per age, (2) relate the result trials with the hospital 
they took place and (3) zoom into the trials conducted at MGH.  

Note that the steering algebra operators are context sensitive: 
they cannot be interpreted in isolation.  They describe how to get 
from a given query to a successor query, and thus, require a 
context. The steering algebra can be used to manually define a 
query session. Leveraging the algebra to capture system-assisted 
steering operations (i.e., in power and auto steering modes) is one 

of the research challenges towards providing an integrated 
steering framework for IDE applications. 

2.4 Steering Optimizations 
Non-determinism is a salient aspect of query steering and 

arises due to two main reasons: First, in manual steering query 
transitions may not be known in advance. Second, a user can 
interrupt query execution at any time. Effectively dealing with 
such non-deterministic behavior requires novel profile-driven 
modeling and planning for reuse, which we briefly discuss below. 

Profile-driven prefetching and caching. Given an 
application profile (as shown in Figure 1) that shows probabilistic 
query transition sequences, we can prefetch more data than what 
Qi needs in anticipation for Qi+1. Given the probabilistic 
branching, there will often be multiple likely next queries (and 
parameter values), so the challenge is to decide what to prefetch 
under such uncertainty. Various tactics are possible here, 
including prefetching depth first, breadth first, or using a hybrid 
approach while pruning branches with low probability, or 
prefetching data that would benefit multiple branches. A 
complementary problem is that of profile-driven caching, where 
the profile information can be used to decide what data are least 
likely to be accessed in the future and thus can be evicted.  

In Figure 2, we quantify the potential benefits of profile-
driven prefetching/caching by running synthetically generated 
query sessions that mimic common analytic tasks in a stock-data 
analysis exploration application (e.g., fast upward/downward 
trending). For a pan-heavy workload, we learned a hierarchical 
application profile similar to the one depicted in Figure 1, for 
which we combined a variable-order Markov model for template 
modeling and sequential association rules per template. The figure 
compares the performance of DBNav (running on top of 
PostgreSQL) with prefetching and caching for varying think time 
values (i.e., average time between consecutive queries) vs. vanilla 
PostgreSQL (no prefetch/LRU), all running the same workload 
over a 50GB NYSE dataset on an Amazon EC2 m2.2x large 
instance. We see that the profile-driven approaches are effective 
in reducing query execution latencies especially for small caches 
(when smart use of the cache becomes more important) and long 
think times (that allows more data to be prefetched). 

Query checkpointing to facilitate reusable progress. The 
“overlap” of queries within the same session introduces 
opportunities for the reuse of the execution “progress”. We can 
devise execution strategies that would promote and maximize 
reuse. One approach that we introduced toward this end is query 
checkpointing in which we convert a query Q to one or more 
checkpoint queries, Q = f (C1, C2…,Cn), to be executed in turn. 
When a user transitions from Qi to Qi+1, the optimizer strives to 
express Qi+1 in terms of the already materialized checkpoints of 
Qi. In the example of Table 1, Q1’s checkpoint queries, Ci 
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evaluate the sum and count of dosage for each district age value, 
X, (instead of the average): 

     Ci: SELECT age, sum(dosage) AS sum, count(dosage) as count 
                  FROM trials C WHERE disease = “diabetes”  AND age=X 
Assuming Ci is materialized, RELATE(hospitals) operation can use 
these checkpoints and can be implemented as:  

         SELECT * FROM Ci, hospitals H  
              WHERE Ci.hospital_id= H.hospital_id 

A challenge is to design these checkpoints to maximize 
reusability in consideration of the predicted future queries. This 
can be seen as an online materialized view selection problem. We 
can leverage the knowledge of the semantics of steering operators 
and profiles to predict upcoming query transitions, e.g., attributes 
likely to be involved in grouping, aggregations, relate operations 
and predicates. The order of executing and materializing the 
checkpoints is also of concern as the user can interrupt the current 
query any time. Finally, more aggressive reuse across queries is 
possible at the level of transient data structures, such as hash 
buckets, which are created per query. 

Query sequence optimizations. Power steering will benefit 
from well-studied multi-query optimization to more specialized 
and less studied techniques for query workloads as sequences 
[AC06, BS07]. The salient aspect of steering sequences is that 
they consist of correlated queries and thus aggressive reuse-
oriented techniques such as those sketched earlier would apply. 
Power steering with goal functions, on the other hand, requires 
fundamentally new query optimization techniques that are, in the 
most general case, similar to basic search algorithms used in AI. 
Query relaxation techniques that use lattice-based search 
structures to find queries with desired properties (e.g., [CK09]) 
are partially applicable but need to be significantly generalized so 
that a meaningful collection of constraints can be supported. This 
is an open area that would benefit from novel sampling and 
function indexing techniques.  

Efficient query learning. In auto steering, users engage in a 
conversation with the system and simply characterize data 
samples (objects, features, etc.) as relevant or irrelevant to their 
interests. Based on the user’s profile, the system automatically 
formulates “classification” queries that retrieve matching data. 
The user continues to approve or disapprove of new samples until 
new iterations receive mostly positive votes. 

Through this interactive process, the system must identify 
query attributes and predicates that match the user’s interests. 
While existing feature selection algorithms can identify relevant 
attributes, many often translate attributes to a lower dimensional 
space from which there is no straightforward reverse mapping to 
the original attribute space. One alternative is to use easier to 
interpret classification techniques, such as decision trees, that 
make it easier to (i) identify the classification attributes and values 
that maximize the information gain and (ii) translate back to query 
expressions (e.g., map each tree branch to a WHERE clause). 

Sample selection has a significant impact on auto steering. 
Initial samples should capture the diversity of the data space 
aiming to early on eliminate non-interesting data. This is 
essentially an online learning problem that involves striking a 
balance between exploration (of uncharted “territory”) and 
exploitation (of current profile information). We believe that rich 
multi-dimensional histograms that characterize the entire data 
space would provide useful when making such tradeoffs.  

Another challenge is to minimize the number of iterations 
required to converge to a result of an acceptable quality. An idea 
is to analyze past application and user profiles to “predict” a 
user’s interests and steer her along semantic “trajectories” of users 
with similar interests.  

Customized data visualization.  Profiles and interaction 
histories can be used to customize visualizations to further aid 
steering support. For example, objects can be non-uniformly 
scaled and drawn so that all the “important” objects are clearly 
visible. This approach has long been successfully used in hand-
designed tourist maps. DBNav should support algorithms to set 
the appropriate resolution for each object based on profiles and 
locality principles and adapt the resolution dynamically as 
navigation progresses. The visualization system should also 
support various interaction history operations (e.g., time-travel, 
replay, forward). Finally, the visualization environment should 
make it easy for the user to interact with the system, including the 
ability to input profile information and provide feedback. 

3. Conclusions and Ongoing Work 
We sketched our vision for how an automated navigation 

assistant service, DBNav, for interactive exploration of large 
datasets. DBNav would help a user quickly navigate through a 
complex large data spaces. We argued that such a service must be 
able to (1) suggest next steps in a query sequence that 
methodically move the user through the data in a meaningful way. 
We call this query steering. We have further argued that (2) query 
recommendations must be produced quickly. 

Profiles of both user interest and application characteristics 
are the key ingredients to realizing this vision. Profiles can be 
either supplied by the user or learned from interaction logs. We 
sketch three query steering modes: (1) manual steering, (2) power 
steering, and (3) auto steering. We give some simple examples 
suggestive of where this technology could go, but should not be 
interpreted in any way as the end point.  

A powerful visual front-end is critical IDE applications. The 
visual component would also use profiles to identify how to map 
visualizations to pixels in a way that best serves the user’s needs. 
We believe that a data navigation system such as the one sketched 
in this paper is essential to deriving insight from the huge and 
complex datasets that one encounters in modern applications such 
as those in the sciences. A modern DBMS must be a full 
participant in this endeavor and thus must supply a DBNav-like 
system alongside a traditional query interface. 
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