
Transactional Middleware
Reconsidered

Phil Bernstein

Sergey Bykov, Alan Geller, Gabriel Kliot, Jorgen Thelin

Microsoft Corporation

CIDR 2013, 1/7/13

Copyright © 2013 Microsoft Corporation

Transactional Database Applications

• Are hard to build

• Have a highly regular structure

2

3

Transactional Application Structure
An application system must coordinate the flow of requests between
message sources and apps that run requests as transactions.

Web Server

Request Controller

Transaction Server Transaction Server

intranet Other intranet

systems

Database System Database System

Queues

Other Internet
Sites

Application Server Architecture
• Transactional middleware simplifies app development

– Defines common app system structure

– Adds missing platform features

• 1970s – 1980s: RPC, multithreaded processes, session pooling,
forms, terminal management, automated recovery

• 1990s: OO programming, stateful communications,
web browsers, 2-phase commit, queuing.

• Since 2000 (J2EE, .NET Framework): SOA & web services, XML,
object-relational mapping

4

5

Today’s Problem: Cloud Apps that Scale Out

• Cloud apps are very hard for mainstream developers to build

• What’s hard?

– Ensuring scalability, elasticity, and load balancing

– Parallel programming, multi-threading

– Composing independent services

– Error-handling across services

– Fault tolerance

• This problem is getting surprisingly little attention

Orleans, an actor-oriented programming model

• Makes it easy to develop cloud apps that scale “by default”

6

7

Orleans Programming Model

Orleans

Runtime

Application

.NET + Azure

Programming

Model

Player Grain

try
IChirperPublisher account =
ChirperPublisherFactory.LookupUserId(id);
List<ChirperMessage> chirps = await
account.GetReceivedMessages(10);

foreach (ChirperMessage c in chirps)
{

Console.WriteLine(c.Message);
}

viewer = ChirperViewerFactory.CreateObjectReference(this);
await account.ConnectViewer(viewer);

}
catch(Exception exc)
{

Console. WriteLine("Error: " + exc.Message);
}

Grain

• Distributed, replicated
actors, called “grains”

– E.g., account, user, profile,

• Grains are single-threaded,
created when called

• Communication is async
and location transparent

• Apps scale through orders of
magnitude without rewriting

• Transparent load balancing
and fault tolerance

References

• Orleans: Cloud Computing for Everyone

– Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus,
Ravi Pandya, Jorgen Theln

– ACM Symposium on Cloud Computing, 2011

8

