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Transactional Database Applications

• Are hard to build

• Have a highly regular structure
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Transactional Application Structure
An application system must coordinate the flow of requests between 
message sources and apps that run requests as transactions.
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Application Server Architecture
• Transactional middleware simplifies app development

– Defines common app system structure

– Adds missing platform features

• 1970s – 1980s: RPC, multithreaded processes, session pooling, 
forms, terminal management, automated recovery

• 1990s: OO programming, stateful communications,
web browsers, 2-phase commit, queuing.

• Since 2000 (J2EE, .NET Framework): SOA & web services, XML, 
object-relational mapping
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Today’s Problem: Cloud Apps that Scale Out

• Cloud apps are very hard for mainstream developers to build

• What’s hard?

– Ensuring scalability, elasticity, and load balancing

– Parallel programming, multi-threading

– Composing independent services

– Error-handling across services

– Fault tolerance 

• This problem is getting surprisingly little attention



Orleans, an actor-oriented programming model

• Makes it easy to develop cloud apps that scale “by default”
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Orleans Programming Model
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try
IChirperPublisher account = 
ChirperPublisherFactory.LookupUserId(id);
List<ChirperMessage> chirps = await
account.GetReceivedMessages(10);

foreach (ChirperMessage c in chirps)
{

Console.WriteLine(c.Message);
}

viewer = ChirperViewerFactory.CreateObjectReference(this);
await account.ConnectViewer(viewer);

}
catch(Exception exc)
{

Console. WriteLine("Error: " +  exc.Message);
}

Grain

• Distributed, replicated 
actors, called “grains”

– E.g., account, user, profile, 

• Grains are single-threaded, 
created when called

• Communication is async
and location transparent

• Apps scale through orders of 
magnitude without rewriting

• Transparent load balancing 
and fault tolerance



References

• Orleans: Cloud Computing for Everyone

– Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, 
Ravi Pandya, Jorgen Theln

– ACM Symposium on Cloud Computing, 2011

8


