
The Case for Invariant-Based Concurrency Control
(Abstract)

Peter Bailis
UC Berkeley

By the metrics of wide adoption and industrial deployment, serial-
izable transactions have failed. Despite the convenience and power
of serializability, in today’s RDBMSs, weak isolation guarantees
like Read Committed isolation are overwhelmingly the default op-
tion and are sometimes the strongest (particularly among “NewSQL”
stores) [3]. Even within the database community, many of us have
acquiesced by settling for models like Snapshot Isolation that are
apparently “good enough” despite exposing highly nuanced Write
Skew anomalies (i.e., races) [1]. Despite the hype surrounding the
return of serializability in systems like HStore [16], VoltDB, and
Spanner [8], serializable transactions remain prohibitively expen-
sive in a distributed (and, especially, geo-replicated) environment.
(Read-only and single-partition transactions are an exception, but,
as Stonebraker noted in 1985, these workloads have long been con-
sidered “delightful” from a concurrency control standpoint [15].)
These costs are no surprise. The algorithmic forebears of these new
systems [10, 14, 17] pre-date the era of large-scale Internet services,
and, more fundamentally, the performance, availability, and latency
limitations (i.e., the coordination overheads) are fundamental to
these strong semantics rather than the faults of any given imple-
mentation [4]. Any claims of unilateral performance or availability
parity between serializable systems and weaker alternatives should
be examined with suspicion.

Unfortunately, in the words of one anonymous five-star wizard
of data management, “once you give up serializability, you fall off
a cliff.” How do we program these weak isolation levels? Over-
whelmingly, and, in stark contrast to the beautiful abstraction of
serializability, the alternatives offered by weak isolation have been
driven by studying mechanisms rather than application requirements.
For example, in 1975, faced with the observation that strict two-
phase locking can be expensive, Jim Gray et al. asked [11]: what
happens if we hold read locks for shorter? A simple tweak to the
locking mechanism became a new policy (Read Committed isola-
tion) that has haunted database users for the last 38 years. When
is Read Committed isolation safe for a given application? The
literature lends few clues [6], and I challenge any self-respecting
concurrency control researcher—or, better, the end-users we serve
as a community—to provide a good answer. In retrospect, a better
question might have been: what alternatives to serializability can we
provide that make programming easier for developers? The former
pattern of discourse dominates the exhausting literature of alter-
native isolation levels [3], some of which this author is complicit
in inventing. I am hardly the first to pose the latter question, but,
today, most of these alternatives lie deep in the bowels of 1980s-era
concurrency control literature, largely forgotten in this new era of
cloud-enabled, Big Data, web-scale data management systems.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.

It is high time that concurrency control systems—as deployed in
practice and not simply in our undergraduate textbooks—actually
serve the requirements of end-user applications. High performance
non-serializable concurrency control must integrate application-
level criteria as a basis for correct execution. At SIGMOD 1979,
Kung and Papadimitriou taught us the (seldom heeded) lesson that,
without any knowledge of application semantics, we cannot do
better than serializability while ensuring correctness [13]. Yet the
demand for more scalable, less coordination-intensive and therefore
non-serializable concurrency control necessitates a shift beyond the
read-write interface and towards increased application semantics.

Invariants, or declarative constraints on acceptable database states,
are a promising means of capturing correctness criteria. First, in-
variants allow users to reason about their applications instead of
low-level read/write behavior. This eliminates the error-prone pro-
cess of manually translating between low-level read/write traces
(i.e., prohibited phenomena that define weak isolation levels) and
application correctness criteria [2]. Second, from an implementation
perspective, instead of specifying how an application’s correctness
should be guaranteed, an invariant leaves considerable leeway in
terms of implementation and optimization. In recent work, we have
demonstrated how invariants directly determine the potential for
coordination-free execution, illustrated via a 25-fold improvement
in compliant TPC-C New-Order throughput and order-of-magnitude
improvements over serializable isolation due to decreased coordi-
nation between concurrent transactions [4]. Third, invariants have
already crept into data management solutions in various forms, in-
cluding primary key, foreign key, and check constraints. In an ongo-
ing survey of open-source ORM-backed web applications, we have
found widespread adoption of user-level invariant-based concur-
rency control mechanisms (e.g., Ruby on Rails Validations), which
are largely undocumented in the database systems community yet,
by usage, are over an order of magnitude more prevalent than trans-
actions. The basic concept of (and arguments for) invariant-based
concurrency control date to at least the early 1970s [9]. However,
the recent rise (and re-discovery) of its similarly vintage cousins
weak isolation [11], eventual consistency [12], and distributed trans-
actions [7] heralds the possibility of a profitable rebirth.

Invariant-based concurrency control presents several opportuni-
ties for the CIDR community. My collaborators and I have already
begun classifying common invariants as requiring coordination or
not (and therefore achievable in a scalable system), yielding results
as above [4]. However, there are a range of existing challenges: how
should an invariant requiring coordination actually be maintained?
What is the space of programs that pass the necessary invariant
confluence condition [4], and how should we analyze full programs
beyond SQL? Which practical invariants—beyond those found in
RDBMSs today—are common cases ripe for optimization [5]? The
answers to these questions, coupled with the further development of
invariant-based concurrency control systems offers great promise.
We can do better, and our users deserve more humane and more
usable high performance database concurrency control abstractions.

http://creativecommons.org/licenses/by/3.0/


References
[1] A. Adya. Weak consistency: a generalized theory and

optimistic implementations for distributed transactions. PhD
thesis, MIT, 1999.

[2] P. Alvaro, P. Bailis, N. Conway, and J. M. Hellerstein.
Consistency without borders. In SoCC, 2013.

[3] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Highly available transactions:
Virtues and limitations. In VLDB, 2014.

[4] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in database
systems. In VLDB, 2015.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Scalable atomic visibility with RAMP transactions. In
SIGMOD, 2014.

[6] A. J. Bernstein, P. M. Lewis, and S. Lu. Semantic conditions
for correctness at different isolation levels. In ICDE, 2000.

[7] W. Chu and G. Ohlmacher. Avoiding deadlock in distributed
data bases. In ACM Annual Conference, 1974.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, et al. Spanner: Google’s globally-distributed
database. In OSDI, 2012.

[9] J. J. Florentin. Consistency auditing of databases. The
Computer Journal, 17(1):52–58, 1974.

[10] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. TKDE, 4(6):509–516, 1992.

[11] J. Gray, R. Lorie, G. Putzolu, and I. Traiger. Granularity of
locks and degrees of consistency in a shared data base.
Technical report, IBM, 1975.

[12] P. R. Johnson and R. H. Thomas. Network working group
RFC 677: Maintenance of duplicate databases, 1975.

[13] H.-T. Kung and C. H. Papadimitriou. An optimality theory of
concurrency control for databases. In SIGMOD, 1979.

[14] B. Liskov. Practical uses of synchronized clocks in distributed
systems. Distributed Computing, 6(4):211–219, 1993.

[15] M. Stonebraker. The case for shared nothing. In HPTS, 1985.
[16] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,

et al. The end of an architectural era: (it’s time for a complete
rewrite). In VLDB, 2007.

[17] A. Whitney, D. Shasha, and S. Apter. High volume transaction
processing without concurrency control, two phase commit,
SQL or C++. In HPTS, 1997.


