
Faster Evaluation of Labor-Intensive Features

Michael R. Anderson
University of Michigan

mrander@umich.edu

Feature engineering—developing a set of values that effec-
tively describe raw data for a machine learning task—can be
a lengthy, repetitive process. Further, good features for one
learning task may not be suitable for another, so creating
effective features can largely be a process of trial-and-error.
Difficulties aside, however, the ultimate success of a trained
system depends on the ability of the features to accurately
represent the task-specific variations within the raw data.

Developing features can be highly iterative, with signifi-
cant engineer downtime during the execution of the feature
functions over the raw dataset. Reducing this downtime can
improve both the engineer’s productivity and the trained
system’s overall quality. We model the feature engineering
process as follows:

1. The feature engineer writes or modifies a set feature
functions that process a raw data input and emit a
vector of numeric values.

2. The feature functions are applied to the raw data using
a bulk data processing system, such as MapReduce,
producing a training set of feature vectors.

3. The training set is provided to a machine learning
system, which is trained to produce a learned artifact.

4. The engineer evaluates the quality of the learned arti-
fact using standard evaluation metrics. If the artifact
is judged not good enough, she begins again at Step 1.

While most traditional machine learning research focuses
on improving the learning system itself (Step 3), our research
focuses on the efficient development and execution of feature
functions over very large raw datasets (Steps 1 and 2).

Standard feature sets exist for many learning tasks, such
as token counts for text-based tasks and SIFT for computer
vision tasks. Commodity features like these are often the
first attempt at developing a feature set for a learning sys-
tem. However, these features are by necessity general: they
cannot take advantage of nuances in a specific raw dataset or
learning task. Using commodity features as a starting point,
a feature engineer can develop additional features tailored to
the particular dataset by applying domain expertise [1, 3].

This article is published under a Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0/), which
permits distribution and reproduction in any medium as well
allowing derivative works, provided that you attribute the original
work to the author(s) and CIDR 2015.

7th Biennial Conference on Innovative Data Systems Re-
search (CIDR ’15) January 4-7, 2015, Asilomar, California,
USA.

We have implemented a system that saves considerable
time in the above development cycle by reducing the time
cost of generating the feature vectors for a suitable training
set (Step 2) [2]. Like giving a developer a faster compiler,
these savings allow the feature engineer to iterate on feature
code quickly; tasks can be completed faster or with a higher
quality outcome than under standard development processes.

Our system leverages the observation that in a large corpus
of raw data, such as a web crawl, a large amount of the data
items are redundant or irrelevant to a given learning task.
By quickly finding potential inputs that are relevant and not
yet redundant, our system can generate a training set that
is much smaller, yet just as effective as one generated by
using the entire raw dataset. The reduction in training set
size directly translates into a reduction in feature extraction
processing time (Step 2) because far less of the dataset is
processed. (Small training sets are also the goal of active
learning [4], but those methods typically require generating
the features for all raw data—exactly what we wish to avoid.)

In a one-time initialization procedure, the raw dataset is
clustered using a general clustering method suitable for the
data type and an index data structure is built over these
clusters. Using online learning techniques, our system builds
a mapping between the clusters and the internal state of the
learning system during the feature extraction process. It can
quickly identify and exploit the raw data clusters likely to
contain items that will produce feature vectors useful to the
training set. The overhead of this input selection process
is negligible for all but the simplest feature functions, and
our experiments show that our system can generate a good
training set from three to ten times faster than standard
methods for a variety of learning tasks.

The features used for a machine learning task are essential
for a successful trained system, and engineering great features
is a difficult task. Our research aims to remove some of the
tedium and unproductive thumb twiddling inherent in the
current practice of feature engineering by providing tools to
find the right features for the right data, allowing the feature
engineer to quickly build effective machine learning systems.

REFERENCES
[1] M. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. Cafarella,

A. Kumar, F. Niu, Y. Park, C. Ré, and C. Zhang. Brainwash: A
data system for feature engineering. In CIDR, 2013.

[2] M. R. Anderson, M. Cafarella, Y. Jiang, G. Wang, and B. Zhang.
An integrated development environment for faster feature
engineering. In VLDB, 2014.

[3] P. Domingos. A few useful things to know about machine
learning. Communications of the ACM, 55(10):78, 2012.

[4] B. Settles. Active learning literature survey. Computer Sciences
Technical Report 1648, University of Wisconsin–Madison, 2009.


