
SQL for NoSQL Databases: Déjà Vu

Christoph Bussler
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065

Christoph.Bussler@oracle.com

1. INTRODUCTION
Most NoSQL databases are extremely painful for their users when
querying data: in order to retrieve data, users must write a
program in their favorite programming language and execute it
(rinse and repeat for every query). Most NoSQL databases expose
only a limited programming language interface, but usually not a
declarative query language like SQL.

Existing relational database technology experience tells us that
declarative database query languages are beneficial for different
reasons, including application independence from access path
considerations and decades of sophisticated query optimization
technologies [2]. In context of most NoSQL databases, however,
users are forced to implement complex query algorithms
manually themselves using low-level programming language
interfaces that provide only limited data access functionality.

There is an ongoing debate on the usefulness and the technical
feasibility of a SQL query interface for NoSQL databases. The
debate can be kept short: SQL in context of NoSQL databases is
of course technically possible and unquestionable useful: a total
no-brainer.

An argument can be made that SQL is actually going to be an
important success factor (‘kingmaker’) for NoSQL databases [1].
At the end of the day it is important to be able to query data
easily, reliably, accurately and declaratively.

2. THE KNOWN BIT:
SQL FOR NF2 RELATIONS
Going back far enough in database history reveals that SQL was
proposed on NF2 relations [3]. This fundamentally means that
querying hierarchical data sets (or “documents”) is possible with
the corresponding SQL syntax and execution semantics. Clearly,
SQL is not restricted to a single-valued relational model.

The key elements of SQL and operators for NF2 relations are:

 Queries inside projections for composite values. For
example, ‘select a, (select * from b limit 5) from c’
selects columns ‘a’ and ‘b’ in relation ‘c’, whereby ‘b’
is a composite data type and only the first 5 elements of
‘b’ are selected for each row.

 ‘nest’ and ‘unnest’ operators in order to ‘flatten’ or
‘unflatten’ NF2 relations. For example, ‘select a, b from
unnest c on b’ creates a row for each element in ‘b’ with
the value of ‘a’ corresponding to ‘b’ before the unnest
invocation (Cartesian product of ‘a’ of a row and every
element in ‘b’ of the same row).

3. THE TRICKY BIT:
DOCUMENT-SPECIFIC SCHEMA
The early efforts of defining SQL on NF2 relations assumed a
fixed and defined schema, which is usually not supported in
Document NoSQL databases. In Document NoSQL databases
each document has its own schema and as a consequence there
might be a heterogeneous document set in a database (in the
extreme case each document has a different schema). A query
across schema varying documents encounters schema differences
that it has to be able to deal with (not only in projection, but also
selection, grouping, etc.) in a well-defined semantics.

For example, querying against a missing property that is used in a
query’s join criteria must be well-defined. Is a missing property
interpreted as NULL? Or does its absence mean that there is no
join possible for this document? Arrays or subdocuments can be
used as join criteria as well and this requires well-defined
comparison operations on complex types.

The same property can be of different type in different
documents. If used as a join or selection criteria, type casting as
well as the query behavior must be well-defined when types are
incompatible and cannot be cast to each other.

4. THE WAY FORWARD: JUST DO IT
Implementing an extended SQL for NoSQL databases is possible
and is extremely useful (e.g. [4]). This requires extensions to SQL
like those proposed in context of NF2 relations without assuming
a global schema. This is not against the nature of SQL at all and
outlines a clear path forward for databases to provide a
declarative query language implementation for NoSQL data.
Users can then actually query NoSQL data easily and without
having to write programs against low-level database interfaces.

5. REFERENCES
[1] http://realprogrammer.wordpress.com/2014/03/04/sqltheking

makerofnosqldatabases/

[2] Mohan, C.: History Repeats Itself: Sensible and NonsenSQL
Aspects of the NoSQL Hoopla. In: Proceedings of
EDBT/ICDT '13, March 18–22, 2013, Genoa, Italy.

[3] https://www.google.com/search?q=sql+nf2

[4] https://docs.oracle.com/database/121/ADXDB/json.htm#AD
XDB6246

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works,
provided that you attribute the original work to the author(s) and CIDR
2015.

7th Biennial Conference on Innovative Data Systems Research (CIDR
’15) January 4-7, 2015, Asilomar, California, USA.

