
Poor Usability in Data Processing

Adam Marcus
Locu/GoDaddy

marcua@marcua.net

1. INTRODUCTION
The databases community works hard on the scale, perfor-

mance, and correctness of the storage and query processing
systems that our users depend on. Researchers are there-
fore frustrated to see less principled, and often incorrect
2010s implementations of concepts that were introduced in
the 1970s. The lens of usability can help us understand how
certain systems see adoption, regardless of the soundness of
their implementation. Usability deficiencies in best-of-class
systems can explain the success of systems with poor trans-
actional semantics or unideal query languages, and even the
use of spreadsheets for large-scale data management.

2. FROM DISCOVERY TO DEPLOYMENT
In a world where small teams can read about, prototype,

and deploy reasonable open source data processing systems
in a few hours, it’s not uncommon for important system defi-
ciencies to slip through the cracks. Here are some questions
developers ask themselves as they explore a new system that
might explain how a usable, approachable system might be
adopted in place of a more ideal one.
Understanding the README. Is there a single docu-
ment a developer can look at that contains the problem, so-
lution, copy/pasteable examples, steps to deployment, and
how to interact with the community? That’s tablestakes on
github, but not for research contributions.
A 15-minute sniff test. Can the developer walk through
parts of the codebase and get a development system up and
running in 15 minutes? Nothing beats seeing a system solve
your problem, especially with some low-effort prototyping.
Multi-environment deployment. Deploying a system in
development, staging, and production is the next common
painful experience on the path to adoption.
Edge cases that stress deployments. Once deployed, a
bunch of issues pop up that teach you which performance,
scale, and correctness guarantees you wish your deployed
system had provided.

The research community often focuses on the deployment-
stressing edge cases that pop up in the last phase. This last
phase provides lots of interesting research nuggets in areas
like performance, transactional semantics, and coordination
tradeoffs, but it’s the last thing a developer is thinking of

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ’15)
January 4-7, 2015, Asilomar, California, USA.
CIDR 2015

when they think of adopting your system. The first three
phases might be less intellectually stimulating to the re-
search community, but usability failures in the first three
phases can explain much of the reason why good systems
aren’t adopted over ones that focused on the first three
phases of the developer experience.

3. USABILITY CHALLENGES
Here are a few meaningful usability challenges that devel-

opers run into in adopting various systems and APIs.
Transactional APIs. Failure cases dictate that RDBMS
transactions must be wrapped in retry loops and multiple
try/catch statements. We need APIs to help developers
avoid thinking about this1.
Transactions across systems. Developers savvy enough
to use database transactions run into new issues when they
use systems like messaging queues that aren’t aware of the
transactional semantics of the database. We need to make
it easier to usably manage transactions across systems.
Schema awareness. Data lives outside the database: on
the wire for communication, on disk for logging, and in mem-
ory for caching. These layers should be aware of the same
schema and migration logic for versioned serializations.
Logging. It’s common to see logs in multiple text files
across YYYY/MM/DD/HH folder trees that developers glob
together to do log analysis. We need better APIs for collect-
ing, retrieving, and loading the data into analytics systems.
External dependencies. Getting up and running often
requires depending on other systems for storage, messaging,
coordination, logging, transactions, and analysis. These de-
pendencies complicate the 15-minute adoption sniff test, and
would ideally be stubbed out for prototyping and testing.
Multinode deployments. If you develop a system that
can effectively scale to multiple nodes, make it easy for a
developer to see this happen in practice. Providing tools
to show off your new approach to sharding and failures will
make it easier for developers to appreciate them.
Small-scale data cleaning, understanding, and man-
agement. Products like Trifacta and Tableau make it eas-
ier to prepare data and answer questions about it, but we’re
nowhere near a world where data cleaning and exploration
tools are accessible, affordable, and deployable at the small
scale. The open source world has a long way to go before
that’s the case.

1Evan Jones gave a great talk on this topic at New England
Database Day 2014.


	Introduction
	From discovery to deployment
	Usability challenges

