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ABSTRACT 
Commodity general-purpose CPUs remain the predominant 
computing platform for servers. However, these CPUs 
continuously evolve, incorporating increasingly specialized 
primitives to keep up with the evolving need of critical workloads. 
Specialization includes support for floating-point and vectors, 
compression, encryption, and synchronization and threading. 
These CPUs now have sufficient specialized support that the term 
general-purpose can often be misleading. Recent announcements 
such as a server product with an FPGA integrated with a CPU 
make the possibilities even more intriguing.   

This paper discusses the evolution of specialization in commodity 
general-purpose CPUs, trade-offs from an industrial perspective, 
and the opportunities for software going forward.  

1. INTRODUCTION 
In 1965, Gordon Moore predicted that the number of transistors 
on a chip would double roughly every year [1]. Moore 
subsequently revised the prediction in 1975 to the number 
approximately doubling every two years, a prediction known as 
Moore’s Law. David House subsequently observed that the 
increased transistor counts and faster transistors would translate to 
microprocessor performance doubling every 18 months. 

In 1974, Robert Dennard and others described the traditional 
MOSFET scaling rules governing improvements in transistor 
density, switching speed, and power dissipation [2]. They 
observed that even though transistors became smaller, their power 
density remained constant. As a result, these transistors could 
switch faster while using less power.  

While Moore’s law provided the transistor counts, Dennard 
scaling provided a simple model to make these transistors 
effective. The two provided a roadmap for the semiconductor 
industry. In recent years, Dennard scaling has become less 
influential because the addition of innovative methods (involving 
material and structure innovation) have allowed for a continued 
density scaling (e.g., e-SiGe and strained Si for 90  nm and 65 nm, 
high-k metal-gates for 32nm and 45nm, and tri-gate for 22 nm and 
14 nm). 

 

Figure 1 Intel Process Scaling Trends 

Figure 1 shows the scaling trend for Intel going back four 
decades. Scaling feature size every generation results in smaller 
transistors and thus higher performance, lower power, and lower 
cost per transistor. These performance and scaling trends have 
enabled the commodity general-purpose CPU1 to run a broad 
range of workloads efficiently and with high performance. These 
trends have fuelled growth in software size, features and 
functionality, and programmer abstractions [3]. These have led to 
improved programmability and manageability of large software 
and in turn have enabled innovation in software development and 
usage. 

Increasingly, the industry faces technical challenges to sustain the 
historic rates of performance and power improvements. This has 
led to growing concerns around software’s ability to continue to 
innovate if the CPUs cannot sustain software-transparent 
performance growth rates. This has spurred a debate on the future 
of the CPU and a growing interest in specialized custom hardware 
solutions, such as custom processors, offload engines, and 
accelerators tailored to specific problem domains [4]. The 
argument for these tailored solutions includes better performance 
and efficiency as compared to the CPU. 

However, over the years, these CPUs have already been 
incorporating specialized hardware capabilities in response to the 
changing software landscape. These specializations allow the 
CPU to provide significant domain-specific performance gains 
while remaining general-purpose. As such, the dichotomy 
between general-purpose and specialized is misleading. 

 

                                                                 

1 Referred to as general-purpose because of their ability to run a 
wide range of workloads. 
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This paper discusses the evolution of specialized hardware 
support in the commodity general-purpose CPU. Section 2 
discusses recent CPU technology trends that continue to enable 
improved power and performance. These represent the 
continuation of software-transparent improvements. Section 3 
goes into examples of domain-specific hardware specializations in 
the CPU. Software can make use of these capabilities to improve 
performance.  

The commodity CPU benefits from an economy of scale, a rich 
software eco-system, wide availability, and inherent adaptability. 
This has contributed to numerous specializations going 
mainstream and broadly used beyond their original domains. 
Section 4 discusses the practical considerations when deciding to 
use a custom hardware solution as compared to one using a CPU.  

The growth of cloud services and the data center have accelerated 
software development cycles. This provides an opportunity to re-
think critical aspects of software architectures. For example, 
specialized CPU capabilities such as virtualization support can 
help split the control and data planes of the network 
infrastructure. The resulting specialized software stack running on 
a general-purpose CPUs increases the infrastructure’s flexibility 
and adaptability. We discuss such an example in Section 5.1.  

In spite of the flexibility of general-purpose CPUs, key 
specialized tasks exist where fixed-function engines with limited 
flexibility provide compelling gains while freeing the CPU to 
process other more complex tasks.  We discuss this in Section 5.2 

On the other hand, customized logic such as FPGAs and ASICs 
can help accelerate the hardware development cycle. Their tighter 
integration with the CPU raises interesting possibilities. However, 
much work remains as to how easily and widely software can 
benefit from these capabilities and their impact on software 
efficiency and cost. We discuss this in Section 5.3. 

As new usages and services evolve, so does the software 
developed to provide them. Early implementations may be limited 
in performance but specialized techniques develop to improve it. 
Experimentation for hardware acceleration may occur using fixed-
function hardware or configurable logic such as FPGAs. As these 
techniques become widely applicable, they find their way into 
commodity CPUs. This integration lowers the bar for their 
adoption by making such solutions ubiquitous and cost-effective 
and improves their efficiency and performance. However, to aid 
software development and experimentation, the programming 
interfaces must abstract the hardware mechanisms from the 
programmer. This enables a spectrum for hardware acceleration 
options. We discuss this in Section 5.4. 

While the paper uses examples from the Intel processor families, 
the observations apply to other general-purpose CPUs as well. 

2. CPU TECHNOLOGY TRENDS 
Process and microarchitecture optimizations continue to provide 
commodity CPUs with steady improvement in performance and 
efficiency every generation. 

Figure 2 plots the leakage and transistor performance curves for 
various Intel process nodes. Every generation provides a range of 
transistor designs to balance leakage and performance. This helps 
pick the right transistors for the appropriate segment. Transistor 
designs strive to push these curves down and to the right [5]. 
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Figure 2 Transistor Performance vs. Leakage 

The 65 nm transistor had a much smaller range. The goal at the 
time was to make the transistor as fast as it could be. Recent 
generations have significantly expanded the range. One can pick 
transistor designs optimized for low leakage circuits or high-
performance circuits or a combination along the curve. This type 
of specialization allows the CPU to scale appropriately for the 
given market segment. For example, a product targeted at the 
highest frequency may pick the top end of the curve to emphasize 
performance. 

1x

2x
Server

Laptop

Mobile 

45 nm 32 nm 22 nm 14 nm
 

Figure 3 Performance Trends 

Figure 3 shows performance scaling over different transistor 
generations for three key market segments and Figure 4 shows the 
reduction in active power for the same. Both figures show a 
steady improvement over the generations for both performance 
improvements and active power reductions. 
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Figure 4 Active Power Trends 

Figure 5 plots the performance-per-watt improvements. One can 
see from this graph that the performance-per-watt has consistently 
improved over the generations, whether the optimization point 
picked power, performance, or some intermediate point. Process 
technology has provided a 1.6x improvement in performance-per-
watt every generation. The most recent process (14 nm) provides a 
2x improvement. This is due to multiple factors including 
advances in transistor technology (with improved low voltage 
performance and lower leakage), improved area scaling, a co-
optimized approach between process and design, and numerous 
microarchitecture optimizations to improve active power [5]. 
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Figure 5 Performance per Watt Trends 

In addition to process improvements, microarchitecture 
enhancements play an important role in improved performance 
and efficiency. These enhancements transparently improve the 
performance of existing software with no need for software 
changes. A common measure of such an improvement is the 
instruction per cycle (IPC) metric for a single thread application. 
Increasing IPC requires hardware to expose and exploit 
instruction-level parallelism in the application and/or to reduce 
the latency of critical instructions. Methods to improve 
performance include improved out-of-order execution, better 
branch prediction, larger instruction windows, increased memory 
level parallelism, faster and higher bandwidth cache and memory 
systems, and improvements in paging and TLB, among others. 
Some optimizations target characteristics of workloads from 

specific segments. CPUs continually incorporate numerous 
techniques to improve performance [6]. The focus however 
remains on increasing efficiency at every operating point. Figure 6 
plots the cumulative growth in single thread IPC for the Core™ 
family over the past decade for a broad mixture of workloads. 

 

Figure 6 Cumulative Single Thread IPC Growth 

Area scaling and power improvements have enabled integration of 
multiple such CPUs onto a single package, thus providing a 
means to scale throughput in a power efficient manner. Figure 7 
plots the maximum single socket thread counts for Intel’s highest 
volume server products.  Additionally, these products can be 
linked together into multi-processor systems to build even larger 
scalable systems. 

Even with the advent of multi-core processors and the focus on 
throughput improvements, single thread performance remains 
critical. For example, CPUs with high throughput but reduced 
single thread performance could result in the system not meeting 
latency targets [7]. 

 

Figure 7 Thread Count Growth (Volume Server Segment) 

3. SPECIALIZED GENERALIZATION 
While the CPU continues to benefit from process and 
microarchitecture advances, it must keep pace with evolving 
usages. CPUs increasingly incorporate numerous software-visible 



hardware specializations to provide domain specific 
improvements. These specializations provide composable 
capabilities to software but typically do not implement solutions. 
Software uses these hardware primitives to implement solutions. 

This section explores examples of such specialization. These 
examples have had a major impact on domain-specific software 
development. 

3.1 Floating-Point Arithmetic 
Support for floating-point operations is an early example of a 
commodity general-purpose CPU incorporating specialized 
functionality.  Floating-point is a format to represent real numbers 
in a finite number of bits with varying precision. Specialized 
hardware for floating-point operations was initially a domain of 
expensive supercomputers such as the Control Data® 6600 (1964, 
cost of around $7 million at the time) and Cray 1 Computer 
System® (1976, cost between $5 million and $8 million at the 
time). 

On the other hand, commodity CPUs of the time relied on 
software emulation for floating-point operations. Customers 
requiring high-performance floating-point used a dedicated 
floating-point unit (FPU) co-processor. For example, in 1980 Intel 
introduced its first FPU coprocessor, the 8087, for the 8086, 
Intel’s general-purpose CPU at the time [8]. The 8087 provided 
32-bit, 64-bit, and 80-bit precision.  Even with the co-processor, 
there was desire to make it as general purpose as possible. From 
Palmer’s 1980 paper, “The 8087 is intended to be general purpose 
and satisfy a very wide range of needs for mathematical 
computation…”. The co-processor significantly improved 
performance of floating-point applications but at increased power 
consumption and platform cost.  

In 1985, the IEEE Standard for Floating-Point Arithmetic (IEEE 
754) provided a standardized method to perform floating-point 
computation thus enabling portability of floating-point 
computations across different machines. In 1989, the Intel486™ 
CPU integrated the floating-point unit into its design (the 
extensions since referred to as x87). This made fast floating-point 
operations broadly available without the need to purchase a co-
processor. It also simplified the programming interface as the 
programmer could now assume a floating-point “co-processor” 
was present. The incorporation of floating-point support also 
simplified algorithms originally expressed in fixed-point 
arithmetic. The shared address space made the conversions 
between different types easier. 

The floating-point domain itself has expanded; today, floating-
point is virtually everywhere from computing the physics for 
games on handheld devices to forming the basis for advanced 
science in high-performance computing (HPC). Almost all 
languages recognize the number format and runtime systems 
handle floating-point exceptions.  

3.2 SIMD Extensions 
Support for Single Instruction Multiple Data (SIMD) operations is 
another example of the commodity general-purpose CPU adding 
specialized hardware support for domain-specific applications. 
SIMD represents a class of computation where multiple 
processing engines perform the same operation on multiple data 
elements simultaneously. Similar to floating-point operations, 
SIMD operations used to be the domain of highly specialized 
vector supercomputers (e.g., Control Data STAR 100, Cray 1 

Computer System, and the Connection Machine® Model CM-1 
from Thinking Machines Corporation).  

Over time, the CPU increased in performance, thanks to Moore’s 
law and Denard scaling. In 1997, SIMD processing was 
introduced to commodity CPUs with the inclusion of MMX™ 
technology extensions to a model of the Pentium® processor. The 
MMX extensions enabled the calculation of 8 bytes or 4 words in 
parallel using 64-bit registers that supported vector integer 
operations. These enabled improvements in multimedia and 
communications workloads, in addition to improving graphics 
realism and full-screen, full-motion video. 

As CPUs became more powerful, software running on them 
increased in complexity. The Streaming SIMD Extensions (SSE) 
in 1999 expanded the SIMD capabilities in the architecture to 
include 128-bit wide architectural registers and packed single-
precision calculations. To take advantage of this new architectural 
capability, implementations introduced dedicated hardware to 
support SSE such that performance gains could be capitalized on.  
These extensions also addressed some of the MMX limitations by 
supporting the floating-point data type. This enabled mixed 
integer and floating-point SIMD. In 2001, the SSE2 extensions 
added support for 8-bit, 16-bit, and 32-bit integer vectors in 
addition to double-precision data types. These extensions also 
provided programmers greater control to access and cache data. 
Since streaming data types do not always have cache locality, the 
extensions also provided software direct control over cacheability 
to minimize cache pollution, as well as support for software-
directed prefetching of data. With the increasing sophistication of 
the SSE extensions, they supplanted x87 for most floating-point 
operations (except 80-bit extended precision) and MMX for 
media applications. 

The instruction set architectures remain fluid to match the needs 
of applications, so it is not atypical for every CPU generation to 
add new instruction capabilities. The SSE3 extensions in 2004 
provided additional instructions for format conversion, and 
supported unaligned address loads while the SSSE3 extensions in 
2006 accelerated operations on packed integers. The SSE4.1 and 
SSE4.2 extensions in 2007 and 2008 provided further 
enhancements to improve compiler vectorization, support for 
packed double word computation and for string and text 
processing.  

In 2010, the Intel® Advanced Vector Extensions (AVX) widened 
the vector registers to 256 bits and introduced the first set of 
instructions to utilize these registers, focused on floating point. 
Implementations could take advantage of this widening to 
instantly double the floating-point operations (FLOP) provided by 
the CPU with the same number of functional units as previously 
implemented. In 2012, the Intel AVX2 extensions widened the 
integer data type to 256 bits. This made wide SIMD available to a 
broader set of applications utilizing wide integer vector 
computation and full-width element compute. The addition of 
FMA and vector gather operations targeted high-performance 
computing, audio and video processing, and games. The domain 
for SIMD itself is also expanding. For example, recent work 
utilizes 256-bit SIMD instructions (AVX2) to vectorize database 
column scans, with both range and complex predicates [9]. 

SIMD widths continue to grow. For example, the Intel® Xeon® 
Phi™ processor supports a 512-bit wide vector register, and these 
wider widths will be available in future mainstream Xeon servers. 



Figure 8 plots the peak memory bytes per clock that can be loaded 
via the L1 cache and single-precision floating-point operations 
(FLOPs) per clock over the years for a single CPU. The FLOPs 
have steadily increased and have driven changes through the rest 
of the microarchitecture to ensure that the compute capability is 
matched by the ability to feed data into the compute elements. 
Increased core count on the die would result in a corresponding 
increased in FLOPs for the die. The improvements are expected to 
keep pace with growing software demands with future processors. 

 

Figure 8 Growth in FLOPs per CPU core 

The wide spread availability of wide-vector SIMD support in the 
commodity CPU lowers the barrier to entry for software. This 
enables extensive software infrastructure and libraries, and creates 
the framework for innovation in algorithms and usages.  

3.3 Parallelism 
In a paper in 1971, Schorr explored the design principles for a 
high-performance mainframe system capable of executing large 
scientific applications [10]. He identified three approaches to 
improve performance. The first involved extending the look-ahead 
capabilities on a single instruction counter using hardware-
controlled parallelism (now known as instruction-level 
parallelism). The second involved using vector or array 
processing (now known as data-level parallelism). The third 
involved multiple instruction counters (now known as thread-
level parallelism).  

Parallelism for a while was the domain of high-end super-
computers. We have discussed how commodity CPUs already 
incorporate elements of instruction-level parallelism (See Section 
2) and data-level parallelism (See Section 3.2). These CPUs also 
incorporated specialized support for thread-level parallelism. 
Starting with the 80286 in 1982, software running on Intel’s CPU 
could perform mutually exclusive access to shared resources using 
a LOCK prefix on a set of read-modify-write instructions. This 
prefix ensures the read and write phases of the instruction execute 
atomically. Even though the compare and swap operation had 
been in mainframe systems since the 1970s (starting with the IBM 
System/370™), it made its way into the commodity CPU in 1989 
starting with Intel486 (with the mnemonic CMPXCHG).  
Subsequently in 1993, the Pentium family introduced an 8-byte 
version of the instruction. This enabled newer lock-free data 

structure construction. Today, the compare and swap primitive is 
the most popular synchronization primitive to implement lock-
based and lock-free algorithms and exists in some form in nearly 
all general-purpose CPUs. 

Similarly, the CPU added inter-thread communication primitives 
such as MONITOR/MWAIT to improve the coordination of 
multiple threads. 

The early 2000s saw an inflection point where multi-threading 
went mainstream with commodity general-purpose CPUs. This led 
to an increase in software eco-system investment and runtime 
frameworks and thread-safe libraries. As a result, software 
increased the use of synchronization primitives and the CPU 
adapted by improving the performance of these primitives. For 
example, Figure 9 plots the latency to perform a cached lock 
operation for the Core™ processor family over the years.  

The past decade has seen an unprecedented software movement to 
incorporate multi-threading and parallelism. However, 
coordinating and synchronizing threads remains a significant 
challenge. Recently, CPUs added specialized support to simplify 
synchronization. For example, the Intel® Transactional 
Synchronization Extensions (Intel TSX) provides support for 
transactional execution to simplify the development of multi-
threaded software. These extensions allow software to identify 
critical sections. Hardware attempts to execute these 
transactionally without acquiring the lock protecting the critical 
section. If the hardware succeeds, then the execution completes 
without the threads acquiring a lock, thus exposing concurrency 
and removing serialization. Recent work has explored how 
database implementations can benefit from such capability to 
improve performance [11, 12]. Such capabilities provide new 
opportunities for software innovation, especially in areas such as 
in-memory databases with different cost metrics than traditional 
disk-optimized databases. In traditional databases, disk access 
used to dominate latency. However, the advent of low latency 
disks and low cost memory have enabled a growth in in-memory 
databases where access to memory dominates. Similarly, Yoo et 
al. apply the extensions to improve performance of high-
performance computing applications [13]. 

 

Figure 9 Reduction in Latency of Lock Instructions 



Specialized support for multi-threading in commodity general-
purpose CPUs have led them to become the compute engine of 
choice in servers. These CPUs can satisfy the functionality and 
performance demands of the wide range and variety of workloads 
in data centers and the cloud. These CPUs lowered the bar for 
specialized parallel programming by making the hardware 
capabilities widely available.  

3.4 Virtualization 
Virtualization is another example where the commodity general-
purpose CPU has incorporated capability that was once specific to 
specialized high-end server and mainframe systems (e.g., the IBM 
VM/370 announced in 1972). 

In a non-virtualized system, a single operating system controls the 
platform resources. With a virtualized system, a new layer of 
software, called the Virtual Machine Monitor (VMM), allows 
multiple operating systems to share the same hardware resources. 
The VMM arbitrates software accesses from multiple operating 
systems (called guests) running on the hardware system (called 
host).  

However, implementing the VMM required specialized and 
complex software systems. The commodity CPUs added hardware 
support for processor virtualization thus enabling simplifications 
of virtual machine monitor software. The resulting VMMs can 
support a wider range of legacy and future operating systems 
while maintaining high performance. 

Virtualization support has also followed an evolutionary 
trajectory. Once again, we use the Intel example here. In 2005, the 
Intel processors introduced Intel® Virtualization Technology 
(Intel® VT) to enable x86 instruction set virtualization. This 
allowed guest software to run unmodified on the CPU. Memory 
access virtualization was subsequently added to allow guest 
software direct access to paging hardware (EPT extensions). 
Following this, VT-d enabled virtualization of memory accesses 
by I/O (DMA) allowing guest software direct access to I/O 
devices that access memory. Then in 2013, interrupt virtualization 
was introduced to allow guest software to access the legacy 
interrupt architecture directly. 

CPU specialization progressively reduced the need for 
involvement by a VMM layer by either allowing guest software 
direct access to legacy hardware or by giving guest software CPU-
maintained shadows of that hardware. Virtualization improves 
system utilization, manageability, and reliability. In addition, it 
also enables workload isolation, workload consolidation, and 
migration. These benefits have led to widespread use of 
virtualized platforms in data centers. 

As virtualization has increased in its usage, there has been a focus 
to reduce the overhead of running software when virtualized. 
Figure 10 plots the latency in cycles for a round trip VT transition 
since first introduction and shows the significant progression that 
has been made in reducing this overhead. 

Evolutionary extensions continue with support for cache quality-
of-service to allow cache partitioning. Recent extensions such as 
VMFUNC allow hyper-calls without requiring a VMEXIT.  

Virtualization support significantly reduced the barrier to entry for 
software virtualization. The widespread availability of the general-
purpose CPU with virtualization support has led to alternate 
usages beyond classic virtualization thus enabling innovative 
software architectures. For example, to reduce operating systems 
kernel overheads, researchers have been recently investigating 

decoupling the control and data plane and using virtualization 
hardware to implement protection. 

 

Figure 10 Latency Reduction of VT-x Transitions 

3.5 Cryptography 
Cryptography is an example of a usage model that has seen an 
explosion in the past decade due to the rise of e-commerce and the 
increase in privacy concerns around data communications. Today, 
many mainstream websites utilize the https protocol to encrypt all 
of their web traffic (e.g., Google web searches, Facebook, etc.). 
The CPU, in response, has incorporated specialized hardware 
support to improve the performance of cryptography algorithms. 
In general, this is a good example of the phenomenon that leads to 
specialized extensions being integrated into the CPU. As 
algorithms/usages become pervasive and take a greater percentage 
of cycles on the CPU, adding dedicated support for such 
algorithms can provide significant performance and efficiency 
improvements. 

Cryptographic algorithms are fundamental to the security of 
modern platforms and communication channels. Numerous 
security algorithms exist. In 2001, the US National Institute of 
Standards and Technology established the Advanced Encryption 
Standard (AES). As cryptographic algorithms became widely 
used, the CPU incorporated hardware support to accelerate such 
functions. For example, in 2010 the CPUs added instructions to 
implement some of the complex and performance intensive steps 
of the AES algorithm in hardware2. These instructions provided 
significant speedups over completely software approaches [14].  

The focus since has been to continue to improve solutions for 
consumers through faster encryption/decryption and key 
operations. Lowering the cost of implementations makes these 
solutions more widely available.  

Figure 11 plots the performance improvements of various 
specialized cryptography algorithms normalized to the initial 
hardware support in 2010. 

                                                                 

2 Standardization is helpful. Similar to the IEEE Floating-Point 
standards, the AES standard provides a portable definition for 
hardware to optimize. 



 

Figure 11 Impact of Cryptography Support 

AES-GCM is a version using the Galois Counter Mode (GCM) of 
operation implemented with the AES instruction extensions. 
RSA-2048 is a version of the RSA algorithm using a 2048-bit key 
implemented with the RORX instruction specifically added to 
allow non-destructive fast rotates by a constant. SHA-256 is a 
secure hash algorithm. The algorithm takes as input a 512-bit data 
block and a 256-bit state vector. It outputs a modified vector. The 
implementation uses the AVX2 SIMD extensions and the RORX 
instruction. SHA-256-MB is a version of the SHA algorithm 
using multiple independent data buffers and implemented with the 
AVX2 SIMD extensions. 

As can be seen from the figure, the throughput of these 
cryptographic operations has been steadily improving over the 
years thus lowering the bar for their usage. Intel has not been 
alone in adding cryptographic operations; for example, the 
ARMv8-architecture adds a cryptographic extension as an 
optional feature [15].  

Other instructions in this realm have become important. In 
response to the need for more ephemeral keys, the CPU 
introduced a direct access to a digital random number generator 
instruction (RDRAND). Previously entropy on commodity 
systems was incredibly difficult to obtain. OS libraries used 
hashes of pages of memory or timing of inter-arrivals of network 
packages to approximate true randomness. Real entropy sources 
were available as stand-alone boxes or add-in cards such as SSL 
accelerators.  

4. PRACTICAL CONSIDERATIONS 
The increasing technical challenges faced by the industry to 
sustain the historic rates of performance improvements have 
raised questions about software’s ability to continue to innovate if 
the CPU is unable to provide such growth. This has spurred a 
debate on the future of the general-purpose CPU and an increased 
interest in custom hardware solutions, such as accelerators, 
appliances, and offload engines, tailored to specific domains. 

While custom domain-specific hardware solutions improve 
efficiency and performance for the problem at hand, deciding 

whether to adopt a custom hardware solution or one based on a 
general-purpose CPU depends on numerous factors. 

Development cost: The cost for a custom hardware solution 
includes both hardware and software development. Typically, 
custom hardware solutions have low volumes as they are targeting 
a given problem domain. Thus, the hardware development cost 
needs to be amortized over a small volume. In addition, 
depending on the solution definition, developers may need to 
write new customized software stacks. The value proposition 
needs to be significant for the development cost to be justified. 

Problem domain applicability: A question to ask is whether the 
custom solution addresses a broad problem domain or just one of 
many with each requiring its own custom solution. For example, a 
data center that runs a broad range of workloads may not see a 
benefit from only accelerating a small fraction of those workloads, 
especially if the opportunity cost of that solution impacts the 
performance for the remaining set of workloads.  

Adaptability with changing requirements: Workloads 
continuously evolve and their requirements rapidly change. This 
is especially true in the new software landscape of cloud services 
and data centers. A key attribute is whether the custom hardware 
solution can keep up with changing workload requirements. As 
Barroso et al. state in discussing implications for a data center 
[16]  – “…there is substantial risk that by the time a hardware 
solution is implemented, it is no longer a good fit even for the 
problem area for which it was designed.”  

Commodity general-purpose CPUs incorporate specialized 
primitives once the techniques the primitives improve gain wider 
acceptance and applicability or the power and die area cost to 
implement is low. The large volume of the commodity CPU 
amortizes the incremental cost to implement specialized hardware 
capabilities due to the economy of scale. Further, the general-
purpose CPU enjoys a rich software eco-system consisting of 
numerous operating systems, runtimes, frameworks, libraries, and 
tools. It also broadens the user base by making the capabilities 
available ubiquitously to the general customer base without 
requiring special investments to be made. 

As the general-purpose CPU has evolved, so has the software 
landscape. In such a fast moving landscape, building special 
purpose hardware solutions for specific problems comes with its 
own costs and challenges. In an effort to justify the investment 
cost in such tailored solutions, significant work goes into making 
them more general-purpose3.  

5. OPPORTUNITIES AHEAD 
Increased integration of platform components coupled with CPU 
specialization provide unique opportunities for software going 
forward. This may include optimized domain-specific software 
taking advantage of the CPU’s capabilities, software offloading 
key algorithms and functions to configurable and fixed-function 
accelerators, or software taking advantage of specialized support 
in the CPU. The software requirements influence each point in 
this spectrum (shown in Figure 12) [17]. 

The computing landscape has seen a significant change with an 
increasing movement of software and services to the cloud and 

                                                                 

3 The ongoing work in GP-GPUs is a similar example with an 
effort to make a graphics processor look more like a general-
purpose processor. 



large data centers providing the compute horsepower behind these 
services. This has accelerated the software development cycle and  
creates an opportunity to revisit historical design choices. Section 
5.1 discusses one example where the performance efficiency and 
specialization of the CPU helps redefine the architecture of 
network and storage services to enable flexibility and adaptability. 
This is an example where hardware enables software to define the 
system architecture in a manner that is flexible and scalable, yet 
provides high performance. 

In spite of the flexibility of CPUs, key specialized tasks exist 
where fixed-function engines with limited flexibility provide 
compelling gains while freeing the CPU to process other more 
complex tasks. We discuss this in Section 5.2 

While the CPU provides flexibility for software and fast software 
development cycles, customized logic using FPGAs and ASICs 
provide an opportunity for faster hardware development cycles 
where customers can tailor hardware solutions for specific 
workloads. We discuss this in Section 5.3.  

Section 5.4 explores the continuing role of software to guide CPU 
specializations and the role software abstractions play in bridging 
the disparities in acceleration support. 

5.1 Revisiting Software Architectures  
The infrastructure behind the cloud services and enterprise data 
centers highlights the tension between custom hardware vs. 
generalized solutions. This is an example where the general-
purpose CPU enables flexibility and thus allows adaptation as 
workloads and services evolve. 

The growth in devices has placed significant pressure on 
infrastructure, including computing, networks, and storage. Such 
infrastructure must be capable of deploying new services quickly 
and efficiently. However, the installed custom hardware often 
directly implements policies and algorithms. This makes it 
difficult for the hardware to keep up with the evolution of 
services. This adds to capital and operational expenditures and 
slows deployment. 

This has led to the push for inter-operable solutions and standards 
for software-defined networks and storage. These efforts decouple 
the actual network and storage hardware from their functions 
through abstraction and virtualization. For example, certain 
hardware-based network appliances can be replaced by software-
based functions running in virtual machines on general-purpose 
CPU-based commodity servers. This is possible because the 
performance of the general-purpose CPU has reached levels 
where software can implement most of the custom hardware 

functions in a flexible manner. This enables significantly 
improved adaptability as software innovates with newer usage 
models. The virtualization support in the general-purpose CPU 
plays a key role (See Section 3.4). Standardization also helps. The 
PCI-SIG Single Root I/O Virtualization and Sharing (SR-IOV) 
specification defines a standard method to implement natively 
shared devices to provide fast I/O without involving the VMM. It 
does so by providing independent memory space, interrupts, and 
DMA streams for the various virtual machines. These efforts 
improve user-level IO for communication. 

Such examples where specialized capability in the CPUs enable 
new and improved ways to restructure the solution have the 
potential for significant benefit as they address the fundamental 
problem at the software architecture level. 

5.2 Exploiting Offload Engines 
The general-purpose CPU runs a wide range of software 
effectively and with high performance. This enables software to 
implement complex functions while retaining flexibility. 
However, ubiquitous tasks, such as bulk compression and 
cryptographic algorithms, are well suited for offload to specialized 
fixed-function engines. For example, compressing data for 
transfer between multiple nodes in a distributed system would 
reduce disk and network bandwidth. Since compression is well 
understood and standardized, offloading this action to an engine 
would be more efficient and allow the CPU to execute complex 
tasks.  Similarly, offload of bulk encryption using standardized 
algorithms can also provide benefit. 

When using such engines, the APIs employed must hide the 
implementation details from the application software. Except for 
performance differences, the application should not know whether 
the called function is a software-only implementation or a fixed-
function accelerated implementation or one that uses specialized 
CPU support for acceleration. Specialized chipsets already 
provide such capabilities. 

5.3 Exploring Silicon Customization 
Custom solutions can be attractive to customers for whom the 
benefits outweigh any associated costs of customization. These 
often represent examples either where the ingredients of the 
custom solution are not yet broadly available or where the 
solution inherently benefits from a discrete engine. 

The general-purpose CPUs coupled with customized silicon and 
configurability allows customers to tailor their solutions for 
targeted workloads. For example, they may elect to run the 
compute-heavy and complex tasks to the CPU while using 
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customized silicon to perform specific functions. This customized 
silicon may be in the form of on-package configurable logic such 
as FPGAs. For example, Intel recently announced that certain 
future server chips will have an FPGA integrated on package. 

FPGAs have been around for a long time and remain popular due 
to their configurability. They have also found use in accelerating 
search engines [18]. However, integration onto the same package 
as the CPU raises interesting opportunities for co-optimization. 
What type of workloads would most benefit from such an 
integration? What bandwidth and latency characteristics would 
make such a model compelling?  Such configurability also 
provides an experimental platform for capabilities that may 
eventually find their way into the general-purpose CPU. While we 
use the FPGA example, one can do the same with custom ASICs 
integrated close to the CPU.  

5.4 Influencing Hardware Specialization 
Software plays a key role in determining the future of hardware. 
As new usages and services evolve, so does the software 
developed to provide them. Early implementations may be limited 
in performance but specialized techniques develop to improve it. 
Experimentation for hardware acceleration may occur using fixed 
function hardware or configurable logic such as FPGAs. The CPU 
instruction set evolves to match the needs of software. As 
algorithms reach a tipping point of ubiquity (e.g., floating-point, 
AES, SHA, RNG, Virtualization) the CPU adds instructions to 
support them. This integration improves their efficiency and 
performance.  

However, given the development cycle of mainstream processors, 
support for important emergent algorithms is not immediately 
available. To aid software development and experimentation, the 
programming interfaces must abstract the hardware mechanisms 
from the programmer. This enables a spectrum for hardware 
acceleration options as shown in Figure 12. 

Software development time is a precious resource. Languages and 
enhancements that enable developers to maximize their efficiency 
without having to worry about the underlying hardware mechanics 
provide a productivity win. The community has reacted by 
abstracting away the underlying hardware mechanism via run-time 
environments such as Java, OpenCL, etc.  

Simple mechanism to use accelerators such as the x87 floating-
point ISA allowed emulation of the floating-point mechanics with 
integer-only code. Today’s runtime environments have expanded 
to run SIMD code on the CPU, GPU or other vector processor. 
Further hardware enhancements to allow cache coherence and 
easy page-table sharing between CPU and GPU ease the software 
burden of moving computes to the optimal spot. We have also 
seen standards play an important role (IEEE Floating-Point, AES) 
and help provide consistency in expectations and behaviors. 

6. CONCLUDING REMARKS 
The challenge for the software industry remains how to continue 
the cycle of innovation and improved functionality and 
performance.  

In this paper, we discussed the evolution of specialized hardware 
support in the commodity general-purpose CPU. We are 
increasingly seeing the incorporation of fixed-function 
specialization into the CPU as it evolves with the market place. In 
addition, we are seeing the integration of more platform 
components with the CPU. This tight integration influences 

latency and bandwidth and opens up interesting possibilities for 
software  

We expect the commodity general-purpose CPU to continue to 
provide multidimensional capabilities ranging from improving 
performance efficiency to increased specialization and increased 
integration. The performance and specializations in the CPU 
enable new software architectures. Further, the new software 
usage models can guide the evolution of specialized hardware 
support, be it in the CPU or tightly integrated with it. These are 
exciting times for software with a wide range of options and 
capabilities from which to choose. 
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