Database Optimization for the Cloud:
Where Costs, Partial Results, and Consumer Choice Meet

Willis Lang, Rimma V. Nehme, lan Rae
Microsoft Gray Systems Lab

{wilang, rimman, ianrae}@microsoft.com

ABSTRACT

Database services in the cloud (DBaaS) allow users to convert the
fixed costs of deploying and maintaining a database system to vari-
able costs that are incurred in a pay-as-you-go manner. Considerable
research focus has been given to the cost of the elasticity (of perfor-
mance) and reliability of a DBaaS. This is because in the cloud, users
are able to modulate these characteristics of a DBaaS by paying
more or less to the provider. However, the one invariant has always
been that the user will receive a complete and correct result. In this
paper we consider another possibility; that users may be willing to
accept different quality results from a DBaaS that aren’t complete
and correct if the price is right. Recently, there has been research
classifying “partial results” produced using incomplete input (due
to failures) while processing a query. These classifications provide a
broad and general way to understand a partial result using semantic
guarantees that can be made about the result. In this paper, we
consider a database system in the cloud that allows users to control
the cost of a query by defining the sorts of partial results that are
acceptable.

1. INTRODUCTION

Many major cloud providers have begun selling Databases-as-
a-Service (DBaaS), where customers pay for access to database
systems hosted and managed by the provider. These DBaaS of-
ferings are attractive to customers for two reasons. First, due to
economies of scale, the hardware and energy costs incurred by users
are likely to be much lower when they are paying for a share of a
service rather than running everything themselves. Second, the costs
incurred in a well-designed DBaaS will be proportional to the actual
usage (a “pay-per-use” model). In this paper, we consider DBaaS as
a “utility service,” where the cloud provider can meter the DBaaS
services (compute and storage) and charge customers for their exact
usage, similar to how we pay for utilities like water and gas.

Users of DBaaS systems have taken advantage of this flexibility
to build sophisticated parallel database infrastructures. In particular,
many customers using Microsoft SQL Azure partition their data
across thousands (or even tens of thousands) of independent SQL
Azure instances, and they combine data across partitions by sending

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2015.
7th Biennial Conference on Innovative Data Systems Research (CIDR ‘15)
January 4-7, 2015, Asilomar, California, USA.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

“fan-out” queries across all of these instances. Unfortunately, when
executing queries, the default behavior for DBaaS systems like SQL
Azure is to be “all or nothing.”

This means that the system either returns a complete, correct
result, or, in the case of failure, it returns no result whatsoever. This
approach is certainly reasonable—after all, one can hardly criticize
a data processing system for correctness—but it has some negative
aspects. For instance, if a failure occurs, the user may still be
charged the expense of processing a portion of the query since these
SQL Azure instances are billed separately, despite getting no real
value from the answer.

Previous work addressed this issue by creating a set of semantics
for “partial results” [10]. Under this model, when the DBaaS system
encounters a failure, the system returns whatever results it has com-
puted thus far, using the partial results semantics to provide certain
guarantees about the quality of the result. Consequently, users who
are able to make use of an answer that is partially correct can get
at least some return on their investment for running the query, even
if a perfect result is not attainable. While this work is effective in
improving the system’s response to failures, it raises an interesting
question: would a user who is willing to accept a partial result in
the face of failure also be willing to accept a partial result even if no
failure has occurred?

Although this may seem strange, it makes a certain amount of
economic sense. In order to provide a perfect result, the DBaaS
system must contact all servers holding partitions of the base data,
and the user must pay for the processing time spent on every server.
If a user is willing to accept a partial result, the DBaaS system
can eliminate some partitions by never contacting the individual
database instance or by terminating execution for a partition early,
translating directly into cost savings for the user. We assert that, just
as previous work explored the idea that some users would accept
an approximate aggregate [1,6], partial result sets are sufficient for
some users, and furthermore, these users are being overcharged by
traditional DBaaS offerings.

Accordingly, the goal of this work is to enable DBaaS systems to
proactively adjust the processing power (and the associated cost) nec-
essary to execute a query, using requirements on result quality given
by users in terms of partial result semantics. Optimization for perfor-
mance in distributed database systems using economic approaches
has been studied, but has either not considered partial results [19]
or the system changes to enable such trade-offs [13]. Furthermore,
our proposal is more general than prior work in sampling-based
approximate querying systems [1,6] as (1) we propose operating
over the entire SQL surface, and (2) our optimizations are much
more generalized (e.g., we may completely ignore certain partitions
of the input midway through query execution while fully computing
the results on others.) We propose accomplishing this by integrating

Quality

Mechanisms Cost
Retr

>/
| Drop RN
> 7

No-op

(@)

RPRO Runtime Partial
Mechanisms Result Optimizer

Executor (RPRO)
Tuning knobs
___No-op | Partial Result

Quality

Budget

Traditional Optimizer

Real-time

data access failures

(b)

Figure 1: (a) Three mechanisms to trade-off cost and quality.
(b) A database system in the cloud that includes a new “Run-
time Partial Result Optimizer” as well as our executor mecha-
nisms.

a Runtime Partial Result Optimizer (RPRO) into the DBaaS query
processor. The responsibility of the RPRO is to modify the behav-
ior of query pipelines and operators during execution to control
execution cost and result quality.

In order to manage this balance, the partial result optimizer uti-
lizes three novel mechanisms (see Figure 1a): retry, drop, and no-op.
Retry repeats work to improve result quality, drop eliminates some
tuples to save cost, and no-op passes tuples through without process-
ing them in order to preserve result quality. By determining when to
invoke these mechanisms, the RPRO can have a significant impact
on the execution of a query and dramatically change both the quality
and the cost of a result.

Of course, care must be taken when attempting to quantify the
level of result quality that the user would find acceptable. For
example, suppose a user indicates to the system that they are willing
to accept a result set that is potentially missing some tuples. One
possible strategy a data processing system could use to answer this
user is to simply do nothing (i.e., drop all of the input data) and
always return an empty result set. Such a system would be both very
fast and very cheap, but it’s easy to see that its users would not be
very happy!

This shows that we must have some way of balancing the user’s
value of a correct result against the cost incurred to produce the
result. To address this, we rely on the user to provide a penalty
function that relates the various result quality levels, allowing users
to express a preference for the type of partial result they received.
We use this penalty model to formulate an optimization problem
that minimizes execution cost and quality penalties, subject to a
total cost budget specified by the user, which the RPRO attempts to
optimize as query execution progresses (see Figure 1b).

This paper provides the following main contributions:

e A new cloud querying paradigm where users can opt to pay
less for a partial result.

e Methods for enhancing physical operators in the DBaaS sys-
tem to improve quality or save cost at runtime.

e A description of various optimization problems involving cost,
quality preferences, and budget.

The rest of the paper is organized as follows. We discuss our
assumptions about the DBaaS system and briefly describe partial
result semantics in Section 2. We describe our mechanisms and
various potential optimization problems in Section 3. Finally, we
present related work in Section 4, and we conclude in Section 5.

2. PRELIMINARIES

In this section we provide the necessary background and defi-
nitions required for the remainder of this paper. In particular, we
discuss the assumptions we make about DBaa$S system that our work
operates in, a brief overview of semantics for partial results, and a
description of our cost model.

2.1 System

We can take any modern parallel database system (Microsoft
SQL Server PDW, HP Vertica, IBM DB2, Pivotal GPDB, etc.) and
install it across a cluster of virtual machines in the cloud to form the
foundations of a DBaaS. Users of these systems then pay-as-they-go,
incurring charges based on the amount of storage and computational
resources they utilize. We assume that the DBaaS pricing model
is such that users are charged for their exact usage, rather than at a
coarser granularity (such as per hour or per day). This pricing model
is more precise than the typical DBaaS offering in the market today,
but we argue that the competition amongst DBaaS providers will
pressure them to provide more precise usage metering over time.

Most of these database systems are able to query over data stored
in data sources that are “external” to the cluster where the computa-
tion occurs. An example of such functionality would be the ability
for SQL Server PDW to query over remote Hadoop Distributed
File System (HDFS) data or query a “linked-server” database. In
this work, we assume that users are issuing queries over many such
external data sources and combining the results in some way. In
fact, in Azure, Microsoft currently has customers that have horizon-
tally sharded their tables across thousands to tens of thousands of
independent SQL Azure databases. Querying these external sources
typically incurs additional costs, as these databases are independent
and not locally stored with the parallel database cluster. Further-
more, these external, loosely coupled data sources may not always
be available due to failures, congestion, or maintenance.

2.2 Partial Results

Here, we briefly revisit the concepts of partial result semantics
and classification when processing over data sources that may fail,
which were described in our recent work [10]. These partial results
semantics are defined with respect to the “true result” which a
parallel database system would return if no failures have occurred.
These partial result semantics provide guarantees on two specific
aspects of a result set: cardinality of the set and correctness of the
values.

We describe the Cardinality of a result set using one of four
possible states:

Complete The result set is guaranteed to have exactly the same
number of tuples as the true result.

Incomplete The result set may have fewer tuples than the true
result set.

{_::_:rj Cardinality guarantees
[I:I Complete
i Phantoms
5 1
H | !'Incomplete
0 ik

Indeterminate

.D\g
o

Data correctness guarantees
Credible data

(values are correct)

LENEREN_ |
Partition 1 Partition 1

Figure 2: An example of partial result classification when input
is Incomplete.

| Non-credible data
(values may be wrong)

Phantom The result set may have more tuples than the true result
set. These extra tuples may be produced by non-monotone
operators or predicates over Non-credible values (see below).

Indeterminate The result set may have fewer tuples or more tuples
than the true result set (i.e., both Incomplete and Phantom).

We describe the correctness (or Credibility) of values in a result
set using one of two possible states:

Credible The value was directly read from persistent storage or it
was computed from a Complete set of Credible values.

Non-credible The value was computed from a partial result. In
other words, a value computed from a non-credible value or
computed from a result set whose cardinality was not Com-
plete.

As we show in Figure 2, the framework for the partial result
analysis and classification of tuple sets relies on studying the way
operators transform and propagate the classification of their input
data to their output tuple sets. We can change the precision of our
classification by changing the granularity at which we classify data
(e.g., classifying tightly bounded regions of a result set). In the
figure, at the “partition level” of analysis, we can classify different
horizontal partitions of a tuple set with different Cardinality and
Credibility semantics.

2.3 Query Processing Cost Model

Parallel database systems typically model the cost of query pro-
cessing using metrics such as data pages read and written, CPU-time
spent processing, and working memory consumed. In our discus-
sion of a cloud-based data warehouse, we consider only a simplified
query cost model using the CPU-time spent by the parallel database
system running in the cloud and the amount of table data retrieved
from the cloud-based storage (shown in Figure 3). This cost model
also represents the dollar cost to the user of running their query. As
we will see later, our optimization objective function will be the
minimization of a function that relies on this cost model:

cost(query) = cost(plan) + cost(data retrieved) (1)

Here the term cost(plan) can basically be thought of as a traditional
query optimization cost function. Since we consider only the CPU
time spent, this can be calculated by summing the CPU time per
tuple processed across all of the operators of the query plan.

The second major component of our cost model is the cost of data
retrieved from storage (the egress cost): cost(data retrieved). The

(i) CPU time
processing

Cloud-based parallel -
database system
(i) Data I/O

A | (bytes

Datain the cloud -‘ -&
(e.g., AzureDB) L | scanned)

Figure 3: The query cost model consists of (i) the CPU time
spent processing the query, and (ii) the amount of table data
retrieved from the cloud-based storage.

amount of table data retrieved from the cloud storage subsystem
may be the volume of all of the relations involved in the query if the
storage system is a basic distributed file system (e.g., Azure blob
store, Amazon S3, HDFS). In certain cases, the data may be filtered
at the source to reduce this egress cost (e.g., if the data sources
are themselves independent databases). Finally, we also consider
relations horizontally partitioned across multiple data sources such
that we may selectively scan partitions of the relations.

3. RUNTIME OPTIMIZATION OF PARTIAL
RESULTS IN THE CLOUD

When we think of traditional query plan optimization, we gener-
ally think of join order enumeration, plan shape, physical operator
choices, etc. [8]. One approach to improving the utility of DBaaS
systems is to add partial results optimization into this set; if we were
to introduce our new optimization constraints and objectives into
these optimization phases, there would undoubtedly be instances
where the optimizer would choose a different plan. However, to
increase modularity and minimize the complexity of the changes
to the database system, we leave this as future work. Instead, our
discussions will focus on a new database component that we call
the Runtime Partial Result Optimizer (RPRO).

Using the models we described in Section 2, the RPRO continu-
ously optimizes a partial results optimization problem during query
processing, similar to dynamic re-optimization [9]. At runtime, the
optimizer modifies the behavior of query pipelines and operators
to accommodate failures, the accumulating cost of processing, and
the partial result classification of the query. In order to accomplish
this, the RPRO has three new executor mechanisms at its disposal
(see Figure 1), which we will introduce more fully in Section 3.2.
However, before we delve into our descriptions of the system, we
will first define our problem through the inputs and outputs to the
new optimizer (shown in Figure 4).

Given the following inputs:

e W — A SQL query (or a workload of multiple queries).

e D — An input dataset.

e B — Optional: The maximum cost budgeted for the query
based on the cost model for processing the query (Section 2.3).

e P — Optional: A partial result penalty model as we will
describe in Section 3.4.

We wish to execute W with potential data source access failures,
and produce the following outputs:
e R — A partial result tuple set.
e [— A partial result classification.
e (' —The cost of producing R and L (i.e., price to the user).

With these inputs and outputs, with the possibility of failures and
receiving partial results, there are numerous constraints that can

Inputs Runtime Partial Result Optimizer Outputs

All three:

Cost, Penalty, Budget Partial result - R

Two of:
Cost, Penalty, Budget

Classification - L

One of:
Cost, Penalty, Budget

il

Real-time data source access failures

Figure 4: Given the inputs and potential data access failures,
the runtime partial result optimizer will produce three outputs.

be applied and objectives to minimize during query optimization
and processing. In this paper, we consider three of these objec-
tives/constraints that will become components of our optimization
problem:

Cost Cost of the query as defined in Section 2.3. — cost(query)

Penalty User-defined partial result penalties that we will define in
Section 3.4. — penalty (root)

Budget The maximum cost that a query can accrue before query
termination. — B (see optional input above)

Our discussion in Section 3.5 (organized according to the diagram
in Figure 4) will highlight the pitfalls when we ignore any one of
these components and thus show the importance of incorporating
all three components during query optimization and processing.

3.1 Assumptions

First, our parallel data warehouse in the cloud has the architecture
described in Section 2.1, and we use the concrete scenario of a
traditional parallel database system like Microsoft SQL Server PDW
running in Azure virtual machines against SQL Azure. Furthermore,
the base table data is horizontally sharded across many (thousands or
more) loosely coupled, independent data sources (like Azure Blob
store or SQL Azure databases). Finally, we optimize and process
left-deep query plans where the leaf operators connect to and scan
the data sources.

For our failure model, we assume that failures occur only while
accessing the base data sources and not in the database system
virtual machines. These failures can occur at any time. Our cost
model for running queries in the cloud is defined in Section 2.3. We
assume that the dollar cost that we pass onto the customer is solely
defined by this cost model (compute and egress).

We will introduce a new partial result penalty model below to
accompany the cost model for optimization. The partial result
penalty cost model guides optimization, but is not directly translated
to dollar cost to the user and does not represent cost incurred by the
cloud provider.

3.2 New Mechanisms for the Query Executor

In this paper, we introduce three new mechanisms: retry, drop,
and no-op. With these mechanisms, the RPRO can react to data ac-
cess failures as well as intentionally reduce the amount of processing
work to control costs.

Retry mechanism: The retry mechanism provides the ability of
restarting an operator pipeline. Recall from our assumptions in

table
[- |

ash
~

o

[
Rel’n bar |

L part 2 !l

Rel’n foo Rel’n bar

Figure 5: Pipeline A triggers the drop mechanism for partition
2 and doesn’t build the corresponding hash table entries. In this
case, pipeline B’s drop mechanism is subsequently triggered so
partition 2 is not read.

Section 3.1 that our query plans are all left-deep plans with leaf
operators scanning data from SQL Azure data sources. If the retry
mechanism is invoked, perhaps (but not necessarily) due to a data
access failure at the leaf of the pipeline, then the results at the root
of the pipeline (a blocking operator or the top of the plan tree)
will be discarded and the entire pipeline will start from scratch.
Furthermore, in the case of horizontally partitioned input data, the
retry mechanism can target specific partitions of the input to be
retried, allowing us to temper the cost of retrying a pipeline. This
mechanism allows us to produce results with better partial result
classifications, but at higher cost.

Drop mechanism: The drop mechanism provides the ability of
a pipeline to ignore tuples that it receives at the leaf operator from
the data source and “drop them on the floor.” In particular, with
partition-level classification of partial results (see Section 2.2), the
drop mechanism allows us to ignore all of the tuples of a particular
partition (see Figure 5). This figure also shows that if the mecha-
nism is invoked during the execution of an operator pipeline, it can
cause a cascade onto the subsequent pipelines that have yet to be
executed, since those operators will not receive the dropped partition
in their input. This mechanism allows us to reduce the dollar cost
of processing a query, but may also reduce the quality of the final
partial result classification.

No-op mechanism: The no-op mechanism provides a dual-like
ability to the drop mechanism in that a pipeline can now choose
to ignore filter predicates (SELECT operators) when processing
tuples. Similar to the drop mechanism above, this mechanism can
be triggered at the partition level whereby we choose to allow all of
the tuples of a particular partition to pass the predicate.

A reason that one may want to trigger the no-op mechanism is if
the predicate is going to be evaluated over Non-credible values (see
Section 2.2). In this case, if we apply the predicate, the resulting
partial result level immediately becomes Indeterminate (as we show
in Figure 6), since we cannot be sure that the tuples which passed the
predicate should have been produced and vice versa. On the other
hand, if we trigger the no-op mechanism, then we will have allowed
all of the tuples through and we will have only the possibility of
Phantom tuples, since we know that we will not have introduced
any erroneously missing tuples by filtering them out. In other words,
it prevents us from mistakenly removing tuples from the result.

N orm al EXEC UtiO N cardinality guarantees

1) 1)
II_ I II_ I Complete

(0] (0] | |

Phantoms

o+ o L

I | I | | _! Incomplete

a F==

() () |r|_ _il Indeterminate
Invoking No-op —=—-
| I | | I | Data correctness guarantees

Credible data
(values are correct)

o o
. s .

01 O

(a) (b)

Figure 6: No-op (a) minimize quality loss; (b) preserve quality.

Non-credible data
(values may be wrong)

This mechanism allows us to potentially produce results with better
partial result classifications, but possibly at a higher cost since there
is no data reduction from the predicate.

3.3 Control and Triggering Mechanisms

The mechanisms described above must be controlled by some part
of the execution engine. Certain parallel database systems like SQL
Server PDW execute queries in a discrete series of operations [17]
dispatched serially by a centralized “Engine” process. We propose
that the RPRO is implemented within such centralized Engine pro-
cesses, since it is already tasked with coordinating the execution of
operations across all of the cluster’s compute nodes. The RPRO has
the ability to trigger the mechanisms at the appropriate pipelines
(for the retry and drop mechanisms) and the SELECT operators (for
the no-op mechanism). As we described above, the drop mechanism
may cause cascading drop mechanisms across many pipelines, also
ensured by the RPRO.

During pipeline processing, as the RPRO monitors the execution
across the cluster, there are many instances in which the RPRO
may trigger one of our mechanisms. The refry mechanism may
be triggered (i) for the currently executing pipeline if a failure has
been detected when reading data or (ii) for prior pipelines, if the
output from the current pipeline will be of unacceptably poor quality
(defined by a penalty model like that described in Section 3.4). In
both of these cases, the cost of retrying a pipeline is taken into
account by the objective function of our optimizer.

The drop and no-op mechanisms may be triggered after any oper-
ator in the pipeline produces a tuple. When the cost of processing
creeps too high, the drop mechanism may be triggered to reduce
further processing cost. Alternatively, if the projected quality of the
output of the operator is low, then the no-op mechanism may be
triggered to avoid Indeterminate results.

Essentially, the RPRO must be continuously re-evaluating its
objective function by updating its estimated cost with the actual
amount of data read and processed, as well as the resulting quality
loss if (a) failures have occurred or (b) any drop/no-op has been
triggered. When the RPRO is calculating cost, it uses traditional
cardinality estimates of the tuples yet to be processed as well as the
number of tuples processed at runtime. This allows the RPRO to

Partial Result
ABC

Partition 1 Phantom penalty for each of the tuples in this partition.

Incomplete penalty for the size of the incompleteness
bound (IB), non-credible penalty for every non-credible
value (column B) returned in this partition.

Partition 2

Phantom penalty for each tuple returned, incomplete
penalty for the 1B, non-credible penalty for every non-
credible value (column B) returned in this partition.

Partition 3

indeterminate incomplete phantom

Figure 7: Assessing penalties to a partial result returned. Each
partition of the result may be penalized differently.

make a priori decisions about how to process a given partition, since
it can compare the expected cost of normal processing against the
expected effect of invoking one of the partial results mechanisms.
Although this serves as a reasonable baseline, there are many open
questions as to how the RPRO predicts the impact of future failures
on the quality of the results. In this paper, we assume the naive
optimizer that assumes that no additional failures beyond those that
have been observed will occur. For example, if a retry is triggered,
it is assumed that the retry will succeed, and the RPRO will not
encounter further failures. We leave incorporating the likelihood of
failures into the model (i.e., a predictive optimizer) for future work.

3.4 Partial Result Penalty Model

Since certain partial result classifications may be more useful and
acceptable to a user than others, we rely on the user to guide the
RPRO through a partial result penalty model. The partial result
penalty model allows the user to specify their preference for particu-
lar partial result classifications by imposing varying penalties on the
RPRO’s objective function depending on which partial result clas-
sifications it returns. Consequently, in our complete optimization
problem formulation, the optimizer will attempt to return “better”
partial results (as defined by the penalty function) so long as the cost
for doing so does not exceed the penalty.

To inform the RPRO’s decision-making, we extend the partial
results model of [10] with an Incompleteness bound. When Incom-
plete data is read from a data source (due to a failure or due to a drop
invocation), we assume that we know how many tuples we should
have read from that source and this provides a maximum bound on
how Incomplete we are. We can propagate this bound up the query
plan through all unary operators (as well as binary operators like
UNION ALL). In the case of a join, the Incompleteness bound is
re-calculated by the size of the Cartesian product. For every oper-
ator, we have the number of input rows (processed and estimated
remaining) and the Incompleteness bound on this input.

In Figure 7, we illustrate how partial result penalties can be
assessed onto a partial result returned. We first consider partition
1 that is classified Phantom with all of its values labelled Credible.
Partition 1 will be assessed the user-defined Phantom penalty for
every tuple in the partition since any one of them could be an
erroneously present tuple.

Partition 2 is Incomplete and has a column that is Non-credible.
This partition will have a nonzero Incompleteness bound and the
user-defined Incomplete penalty will be assessed against the size of
the bound. Furthermore, for every tuple returned, one of the values
is Non-credible and so the user-defined Non-credible penalty will

Cost Penalty Budget Strategy

X Never read anything, always return Incomplete.
X Never return a partial result; retry if failures occur.
X Execute until query complete or budget exhausted; return whatever results available at that time.
X X Trade off penalty and cost based on estimated cardinalities.
X X Never read anything, always return Incomplete.
X X Use only retry until query complete or budget exhausted; return whatever results available at that time.
X X X Trade off penalty and cost based on estimated cardinalities and remaining budget.

Table 1: Strategies for different formulations of the optimization problem.

be assessed for each of these Non-credible values.

Partition 3 is Indeterminate with a Non-credible column. The
penalty due to partition 3 is the sum of the Phantom penalty, the
Incomplete penalty on the Incompleteness bound, and the Non-
credible penalty on all of the suspect values returned. Intuitively,
since partition 3 has the poorest semantic guarantees, in incurs the
most penalties for the optimizer to take into account.

Finally, if an optimizer is to be able to make decisions based on
both the traditional Cost of the execution and the Penalty of the
partial result, then the penalty model must be normalized to the Cost.
One way we can achieve this is if the penalty model is calculated as
a function of the cost of the plan (see cost(plan) in Section 2.3.) For
instance, Phantom partitions that are produced are already charged a
cost based on computation and data egress, but with a user-specified
penalty (i.e., a multiplier) for the Phantom classification, we will
also impose an additional multiple on the compute and egress cost.
Incomplete partitions are trickier, but if we calculate the Penalty
based on a user-provided Incomplete-multiple on the Incompleteness
bound, then we can still determine the penalty for such a partition.
Similarly, we can calculate a penalty for Non-credible values within
partitions.

3.5 Optimization Problem Formulations

Earlier, in Figure 4, we showed how runtime partial result op-
timization may be performed over an optimization space. In this
section, we present different formulations for the optimization prob-
lem using three components: Cost, Penalty, and Budget. The strat-
egy taken by the RPRO changes significantly depending on which
of these components are used, and consequently we discuss each
formulation in turn (see Table 1 for a summary).

3.5.1 Only Cost, Only Penalty, or Only Budget

The simplest formulations for the RPRO include only one com-
ponent, either only cost, only penalty, or only budget.

Optimizing for Cost only. This formulation simply consists of
the minimization of the cost model described in Section 2.3 with no
constraints. Since there is no instruction from the user as to what
type of partial results are better than others, an empty Incomplete
result is just as good as a Complete one. Therefore, the logical
optimization for our optimizer is to scan nothing from the data
sources (i.e., trigger the drop mechanism,) resulting in a cost of
Zero.

Optimizing for Penalty only. A naive alternative to the Cost-
only formulation is to minimize the penalty on the plan. Here the
opposite problem occurs. Without anything to temper the cost of
computation, in the event of a data access failure, the optimizer may
continuously trigger the retry mechanism in an attempt to produce a
Complete and Credible partial result. This may result in extreme (or
infinite) cost, and the query may never complete.

Only subject to Budget. To combat any possibility of infinite

cost, the RPRO may be instructed to adhere to a budget constraint
on the cost of processing the query without minimizing either total
cost or penalty. In this case, as long as sufficient budget remains,
the optimizer will not invoke any of the partial result mechanisms,
since the formulation does not distinguish between partial results
and complete results. However, once the budget is exhausted, if
the query is not yet complete, the optimizer will trigger drop across
all partitions in all remaining (active) pipelines, returning whatever
result is available. This means that the results produced may be
useless, since the point of budget exhaustion is likely to be arbitrary.

3.5.2 Cost/Penalty, Cost/Budget, or Penalty/Budget

Due to the downsides of the one-component formulations, here
we consider formulations with two components.

Optimizing for Cost & Penalty. The main pitfall to optimizing
solely for Cost, was that there was no counterweight to incurring no
cost and producing an empty tuple set. In this formulation, the RPRO
will not attempt to improve a partial result classification if the penalty
for doing so is less than the estimated cost of retrying. However, as
there is no budget constraint, the overall cost of the query may be
quite high if the number of retries is large, and consequently this
formulation may result in expensive partial results.

Optimizing for Cost & Budget. Including the budget constraint
to the cost model allows the user to specify the maximum acceptable
cost for producing the result. As with the Cost-only formulation,
without the penalty component in the objective function, the opti-
mizer will always find it preferable to return a low-cost, Incomplete
(empty) result set.

Optimizing for Penalty & Budget. To round out the two-component

formulations, we consider the formulation that minimizes the partial
result penalty while adhering to a cost budget. While this objective
function does not have the unbounded cost and poor partial result
classification limitations of the previous functions, it has the prob-
lem that the RPRO will always retry pipelines up until the budget is
met. Without the cost component, the optimizer has no concern of
how much it will cost to retry the pipeline, and as a result, it is likely
that the optimizer with this formulation will exhaust its budget in a
manner similar to the Budget-only formulation.

3.5.3 Cost, Penalty, and Budget

The main optimization problem that we propose to use for the
Runtime Partial Result Optimizer is one that includes all three com-
ponents: cost, penalty, and budget.

min{cost(query) + penalty(plan) | cost(query) < B} (2)

In our prior discussion, we listed a number of (undesirable) strate-
gies that the system may take when optimizing for a problem with
fewer components. We saw that, without all three components, the
logical strategies resulted in unbounded cost or poor quality results.
Here, we have put all three components together, ensuring that a

Runtime Partial Result Optimizer tasked with this objective function
simultaneously optimizes for better quality results (by minimizing
penalty) while simultaneously minimizing cost and remaining below
a specified budget limit.

With this three-component formulation, we force the RPRO to
balance the cost of processing the query against the quality of the
partial result classification with a maximum cost bound for the query.
In this paper, we don’t consider hard constraints on the quality of
the partial result or a soft cap on the cost bound. Both of these
alternatives introduce very interesting possibilities, but we leave
such problem formulations as future work.

3.6 Implications and Open Questions

The failure-tolerant nature of the system, coupled with the budget-
based compute constraint means that our proposed system behaves
very differently from traditional and approximate query systems.
Consider the fact that different partitions of the input data (and out-
put result) may receive dramatically skewed amounts of processing
“effort” (i.e., computational resources.) For a single query, it may
be possible for the system to fully process some input partitions
without any failures and then encounter a failure on some problem-
atic partition and retry without success until the budget is exhausted.
Furthermore, with the drop and no-op mechanisms, different parti-
tions of an input relation may not even be processed by the same
execution plan due to failures and the decisions of the Runtime
Partial Result Optimizer. Finally, there may be circumstances where,
even though no access failures occurred while reading the base rela-
tions for the query, in the end, the RPRO may still cause the system
to return a partial result due to the user’s penalty model and the
resulting lower cost for the query.

There are many open questions requiring further exploration:

o If the query is parallelizable over its input data, do we process
all of the input partitions simultaneously or do we process
them serially? If we estimate the possibility of failures and
the prospect of running out of budget, then there is a potential
difference in the runtime partial result optimization under
concurrent processing versus serially processing partitions.

The policy with which we allocate the query budget is also
flexible. We may process the query such that the Cost is drawn
from the budget pool in a straight-forward manner until the
entire pool is exhausted. On the other hand, another way to
manage the budget is to divide it “vertically” amongst the
partitions in some fashion so that no partition can “starve”
another partition from compute resources due to failures and
continuous retries. Conversely, we can divide the budget
“horizontally” across different pipelines of left-deep query
plans so each relation in the query gets a fair share of the
budget for retries. These options lend themselves to the notion
of “local” optimization vs “global” optimization.

e How does the RPRO scale when it needs to control large-
scale data processing across large clusters that run concurrent
queries? Given that the RPRO will need to gather runtime
information from all of the system nodes as it performs op-
timizations on a per-query basis, this will be a significant
bottleneck. One way of load balancing this optimization work
across the cluster is to assign a different cluster node the
RPRO responsibilities (and pipeline dispatching duties) for
every query. Other means of sharing these RPRO duties may
include communication strategies where the RPRO node re-
ceives runtime information from the cluster in a tree-topology
fashion.

4. RELATED WORK

The related work covers many different areas of database research
such as partial answers [4], online aggregation [6, 14], dynamic
re-optimization for performance [9], multi-objective query optimiza-
tion [20], and cost optimization in the cloud [11, 12, 16]. Other
types of “partial” querying and result quality that we may consider
include (in)consistent querying [2], optimization and querying over
sampled data [1,5,7, 18], uncertain querying [3], and probabilistic
querying [15].

The high-level differentiator of our work and the contribution of
this paper is the combination of the cloud pay-as-you-go paradigm
with the return of partial results that may not be the same as those
produced by a traditional on-premise database system. As we de-
scribed in Section 3.6, there are many open opportunities for further
exploration and we believe that the various areas of the state-of-the-
art are complementary to our proposed system.

S. CONCLUSION

In this paper, we described a new problem of optimization in the
cloud to better serve users that are willing to receive results with
weaker quality guarantees in exchange for a lower cost. We propose
that a DBaaS can provide this feature through the use of a new Run-
time Partial Result Optimizer that utilizes three novel mechanisms
for modifying the execution of pipelines and operators to manage
the balance between cost and quality. This paper represents an ini-
tial discussion of this idea, but we have only touched the surface
of a rich area for future work. We expect that deeper research is
needed across many facets of this type of system, including issues
such as alternative notions of result quality and partiality, traditional
(compile-time) query plan optimization, more sophisticated failure
models, more sophisticated and nuanced penalty modeling, and
local vs. global optimization policies.

6. REFERENCES

[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden,
and I. Stoica. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In EuroSys,
2013.

[2] M. Arenas, L. Bertossi, and J. Chomicki. Consistent Query
Answers in Inconsistent Databases. In PODS, 1999.

[3] O. Benjelloun, A. Das Sarma, A. Halevy, M. Theobald, and
J. Widom. Databases with Uncertainty and Lineage. VLDB
Journal, 2008.

[4] P. Bonnet and A. Tomasic. Partial Answers for Unavailable
Data Sources. INRIA Technical Report, 1997.

[5] P. B. Gibbons and Y. Matias. New Sampling-Based Summary
Statistics for Improving Approximate Query Answers. In
SIGMOD, 1998.

[6] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
Aggregation. In SIGMOD, 1997.

[7]1 Y. Hu, S. Sundara, and J. Srinivasan. Supporting
Time-constrained SQL Queries in Oracle. In VLDB, 2007.

[8] M. Jarke and J. Koch. Query optimization in database systems.
ACM Comput. Surv., 16(2), 1984.

[9] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans. In
SIGMOD, 1998.

[10] W. Lang, R. V. Nehme, E. Robinson, and J. F. Naughton.
Partial Results in Database Systems. In SIGMOD, 2014.

[11] W. Lang, S. Shankar, J. Patel, and A. Kalhan. Towards
multi-tenant performance slos. In ICDE, 2012.

[12] Z. Liu, H. Hacigumus, H. J. Moon, Y. Chi, and W.-P. Hsiung.
Pmax: Tenant placement in multitenant databases for profit
maximization. In EDBT, 2013.

[13] H. Mendelson and A. N. Saharia. Incomplete information
costs and database design. ACM Trans. Database Syst., 11(2),
1986.

[14] V. Raman and J. M. Hellerstein. Partial Results for Online
Query Processing. In SIGMOD, 2002.

[15] C.Ré and D. Suciu. Approximate Lineage for Probabilistic
Databases. In VLDB, 2008.

[16] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska,

H. Plattner, M. J. Franklin, and D. Jacobs. Rtp: Robust tenant
placement for elastic in-memory database clusters. In

SIGMOD, 2013.

[17] S. Shankar, R. Nehme, J. Aguilar-Saborit, A. Chung,

M. Elhemali, A. Halverson, E. Robinson, M. S. Subramanian,
D. DeWitt, and C. Galindo-Legaria. Query Optimization in
Microsoft SQL Server PDW. In SIGMOD, 2012.

[18] M. A. Soliman, L. F. Ilyas, and S. Ben-David. Supporting
Ranking Queries on Uncertain and Incomplete Data. VLDB
Journal, 2010.

[19] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah,
J. Sidell, C. Staelin, and A. Yu. Mariposa: A wide-area
distributed database system. VLDB Journal, 5(1), 1996.

[20] I. Trummer and C. Koch. Approximation Schemes for
Many-objective Query Optimization. In SIGMOD, 2014.

