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ABSTRACT

Relational databases have limited support for data collaboration,
where teams collaboratively curate and analyze large datasets. In-
spired by software version control systems like git, we propose (a)
a dataset version control system, giving users the ability to create,
branch, merge, difference and search large, divergent collections of
datasets, and (b) a platform, DATAHUB, that gives users the ability
to perform collaborative data analysis building on this version con-
trol system. We outline the challenges in providing dataset version
control at scale.

1. INTRODUCTION

The rise of the Internet, smart phones, and wireless sensors has
produced a huge diversity of datasets about all aspects of our lives,
from our social interactions to our vital signs and medical records
to events and happenings across the globe. There has also been
a proliferation of large datasets thanks to the open data initiatives
adopted by numerous governments and organizations, and increas-
ing effectiveness of scientific instruments at collecting data like ge-
nomic data, astronomical data, etc. These datasets are quite varied
in nature, ranging from small to very large, from structured (tabu-
lar) to unstructured, and from largely complete to noisy and incom-
plete; further, the datasets typically evolve over time, often at very
rapid rates. Increasingly, researchers and “data science” teams want
to collect, analyze, and collaborate on these datasets, to extract ac-
tionable insights or to distill scientific knowledge from it. Such col-
laborative data analysis is often ad hoc, featuring significant back-
and-forth among the members of the team, and also trial-and-error
to identify the right analysis tools, programs, and parameters. Such
collaborative analysis fundamentally requires the ability to keep
track of, and reason about, the datasets being used. In essence,
what is needed is a system to track dataset versions over time: the
operations performed on these datasets by multiple individuals; the
new datasets that originate as a result; and other external data prod-
ucts that depend on these datasets. At the same time, to reduce the
barrier for entry, there is a need for a distributed hosted platform
that simplifies and facilitates the collaborative analysis process by
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providing reliable “always on” access to different versions of data.
Current data management systems are inadequate at supporting

these types of collaborative environments. Relational databases
work well when data conforms to a schema, but often these datasets
consist of a mix of relational and less structured (or differently
structured) data. Furthermore, relational systems (as we describe
below) lack support for version management. Using version control
systems, such as git, for large datasets is also known to have sev-
eral shortcomings [24]. This leads to teams resorting storing data
in file systems, often using highly ad hoc and manual version man-
agement and sharing techniques. It is not uncommon to see direc-
tories containing thousands of files with names like datal-vI.csv,
datal-v2.csv, datal-vi-after-applying-program-XYZ.txt, etc., pos-
sibly distributed and duplicated across multiple cloud storage plat-
forms. Thus, while there is a wealth of tools for “doing” data sci-
ence, no previous tools have explicitly addressed the problem of
dataset versioning, especially when many users are analyzing, col-
laborating, modifying, and sharing datasets.

To fill this gap, we propose two tightly-integrated systems. First,
Dataset Version Control System (DSVC), is a system for multi-
version dataset management. DSVC'’s goal is to provide a common
substrate to enable data scientists to capture their modifications,
minimize storage costs, use a declarative language to reason about
versions, identify differences between versions, and share datasets
with other scientists. Second, DATAHUB, is a hosted platform built
on top of DSVC, that not only supports richer interaction capabili-
ties, but also provides novel tools for data cleaning, data search and
integration, and data visualization tools. Here we draw an anal-
ogy to the popular source code version control solutions, git and
github—DSVC is similar to git but supports a significantly richer
query language and scales to larger and more structured datasets,
whereas DATAHUB is analogous to github, but also provides more
complete features for working with structured data.

To illustrate the need for DSVC, we briefly describe results of
an informal survey of how data collaboration works in a several
computational biology groups at MIT. We believe the example is
representative of many other data science teams in a variety of do-
mains. Key properties of these data collaborations are as follows:
e Teams of 20-30 students, postdocs, faculty, and researchers, share

approximately 100 TB of data via a networked file system.

e This storage costs about $800 / TB / year, for maintenance costs
from alocal storage provider for unlimited read/write access (the
same storage on Amazon S3 would cost about $400 / TB / year,
excluding access costs.) This amounts to nearly $100K/year,
which is a substantial cost for an academic research group.

e When a new researcher wants to work with data, he or she may
make a private copy of the data, or may read it from a shared



folder. Researchers have no way of knowing which other re-

searcher’s programs refer to their shared data folders.

e There are significant but unknown amounts of duplication of
data. Simple file-level duplicate detection is insufficient since
there is often some modification or extension in duplicates.

e Space (or cost) constraints lead to frequent requests from the
PI-in-charge to others to reduce storage. This leads to removal
of intermediate versions and data products, and causes stress
as researchers don’t know who is using their data or whether a
particular dataset is essential for reproducibility of some exper-
iment. If the dataset could be deterministically re-generated, or
if it were possible to track when a dataset had last been used
by whom, researchers would be more comfortable with deleting
these datasets.

e Researchers would prefer a transparent mechanism to access
data and write versions in order to be backward compatible with
pre-existing scripts (which are coded using a file-level API.)

e Researchers do not make heavy use of metadata management
tools (like relational databases, wikis, etc) due to perceived cost
of adding and maintenance of that metadata. There have been
several failed wiki attempts.

This scenario makes it clear that an effective dataset version man-

agement system could substantially reduce costs by eliminating

redundant storage, help users find and manage relevant data and
the relationships between data items, and help them share and ex-
change both datasets and derived products and collaboratively ana-
lyze them. Similar dataset versioning scenarios arise in many sub-
communities. For example, consider a group of sociologists wran-

gling and cleaning datasets from the web, ecologists integrating a

set of biodiversity studies with varying measurement techniques, a

city that wants to publish transit ridership data for mash-ups, or a

team of medical data analysts and doctors that need to clean and

annotate ECG data for building models on seizures.

While there has been some work on dataset versioning, e.g., [2,
18, 14, 20, 19, 16, 17], this work has been focused on managing
and querying a linear chain of versions, such as would arise when
a single user is modifying their own data. In contrast, in the ap-
plications above, different users often branch off from a common
version, and frequently need to merge their branches back together
to perform consolidated analysis or publish a new version of a data
set. Furthermore, a common task involves comparing different ver-
sions of data sets, e.g., to study the relative effectiveness of two
algorithms, treatments, analyses, etc.

Our proposed DSVC system aims at providing such rich ver-
sion management functionality, for both structured or unstructured
datasets. Building DSVC requires addressing many novel research
challenges, most of which have not been addressed in prior work.
e DSVC needs to be able to handle large datasets (100s of MBs

to 100s of GBs), a large number of files per dataset, and a large
number of versions. Existing version control systems (VCS) do
not scale along either dimension (Table 1), because (somewhat
surprisingly given their popularity) they employ fairly rudimen-
tary techniques underneath [24]. To handle the scale that we en-
vision, we need to develop novel and highly efficient algorithms
for identifying and estimating differences between versions, for
choosing storage layouts in a workload-aware fashion, for de-
ciding which versions to store fully and which in a compressed
form, and for answering different types of queries.

e The basic querying and retrieval functionality supported by ex-
isting VCS is inadequate for the purposes of scientists or data
analysts, who would like to declaratively query specific versions
of datasets (using say SQL), explore and query provenance in-
formation across datasets (e.g., using a provenance query lan-

Method Load Time | Data Size | Read One Version
Unencoded 5745s 16.0 GB 192.0s
Compressed | 2,340.4 s 2.01 GB 18.63 s

SVN 8,070.0 s 16.0 GB 29.2's

Git — - -

Table 1: SVN and Git Performance on Map Data

guage [9]), analyze differences between versions, and identify
version(s) that satisfy certain properties. Designing a unified
query language that supports these diverse classes of queries is
a major research challenge that we need to address; further, to
our knowledge, the last two types of queries have not been sys-
tematically studied in prior work.
e Existing VCS, primarily aimed at maintaining source code, view
data as uninterpretable collections of bytes. However, unlike
source code, most datasets exhibit structure that can be explic-
itly represented along with the data. DSVC needs to support
in situ declarative querying on such datasets, which is a ma-
jor challenge given that most datasets are not stored in their en-
tirety, i.e., some dataset versions may only be stored as modi-
fications from other versions of the same datasets. DSVC also
needs to support analysis, exploration, and provenance queries
across versions (e.g., finding when a record was last modified,
or determining the user who has inserted the largest number of
records). This requires tracking modifications and differences
between versions at the record level. At the same time, we need
to develop new techniques that can efficiently exploit the struc-
ture to reduce the space required to store versions.
Finally, existing VCS have limited support for trigger-like func-
tionality, or hooks, where actions are taken in response to changes
to the repository. To handle rapidly evolving or streaming data,
such functionality needs to be made a first-class citizen, to en-
able automated analysis, to keep derived data products up-to-
date, and to identify major changes in the data (e.g., a data
source changing the schema it uses to provide data). How to
specify triggers and how to efficiently execute a large number of
triggers written using the rich query language that we discussed
above are major research challenges that need to be addressed.
As noted above, we are building DATAHUB, a hosted version con-
trol system built around DSVC. DATAHUB provides a range of
additional functionality aimed at facilitating and simplifying data
analysis built upon a multi-versioning infrastructure, including ac-
cess control for groups and individuals, support for annotating ver-
sions with text and structured metadata, and support for data clean-
ing, version search, integration, differencing, and visualization tools.
In the rest of this paper, we focus on the version management
features in DSVC, in particular on the versioning API and query
language (§3), and the challenges associated with building efficient
implementations of these interfaces within DATAHUB (§4).

2. PRIOR WORK

There has been a long line of source code version control sys-
tems, from CVS to SVN to git. These systems, however, are de-
signed to deal with modest-sized files and do not scale well to large
numbers of large files. To show this, we measured the time to load
a collection of 16 versions of a 1 GB road network database into
git and svn and the time to read a single version (we ran svnad-
min pack and git repack after after loading all data to compress
it). With 8 GB of RAM, git ran out of memory (it compares all
versions against each other in an inefficient manner that uses very
large amounts of RAM for large files), and svn was very slow to
encode differences, taking about 20x longer than the time to load
and copy an uncompressed raw file. In addition, as discussed in
the previous section, these systems provide rudimentary querying



or analytics capabilities. We ran the experiment on an Intel Xeon
quad-core (Intel E7310), with 8GB of RAM and a single 7200RPM
SATA drive running Ubuntu Lucid.

Most data science systems, including analytic packages like SAS,
Excel, R, Matlab, Mahout, Scikit [22], and Pandas [21]; workflow
tools like Pegasus [4], Chimera [6], and VisTrails [1]; and collabo-
ration tools like Fusion tables [12], Orchestra [8], and CQMS [10,
7] lack dataset versioning management capabilities. We envision
DSVC could serve as the backend data management layer for many
of these systems.

There are also several recent startups and projects on providing
basic dataset management infrastructure for data science applica-
tions, including CKAN (ckan.org), Domo (domo.org), Enterprise
Data Hub (cloudera.com/enterprise), Domino (dominoup.com),
Amazon Zocalo and Dat Data (dat-data.com). The emergence of
these systems shows that the capabilities that we aim to provide
are sorely needed by practitioners; at the same time, to our knowl-
edge, none of these tools provide the rich versioning and querying
functionality we describe in this paper.

Versioning has been studied recently in the context of specific
types of data like graphs [11] and arrays [17]: these papers identify
preliminary techniques for differencing these dataset types and per-
forming queries over the versions. We plan to build on that work,
focusing on more general structured datasets, and on developing
compact methods for encoding and querying the differences be-
tween datasets. Besides this prior work there has been relatively
little work on versioning in database literature. One exception is
Buneman et al. [2], which proposed a linear versioning system for
collections of hierarchical documents, comparing delta-chain and
periodic materialization approaches. It was not, however, a full-
fledged version control system representing an arbitrary graph of
versions; instead focusing on algorithms for compactly encoding
a linear chain of versions. Temporal databases [18, 14, 20, 19,
16] and Oracle’s “Flashback™ feature, provide, in effect, the abil-
ity to traverse and query a linear chain of versions, but lack sup-
port for branching versions or derived data products. Additionally,
some scientific workflow systems and provenance systems provide
the ability to manage and traverse arbitrary derivation (provenance)
graphs [3], but lack version control features.

3. PROPOSED DESIGN AND INTERFACES

In this section, we present a high level overview of the various
components of DSVC and DATAHUB, the interfaces they expose,
and applications built on top or as part of them.

3.1 High Level Design

The high level architecture of DATAHUB and DSVC is depicted
in Figure 1. The core of DSVC is the DSVCP: the dataset ver-
sion control processor, which processes and manages versions. The
DSVCP exposes the versioning API (described in §3.3) for client
applications to use. At a high level, the versioning API is similar to
the git API, but comes with additional functionality. The version
query processor (VQP) is tightly integrated with the DSV CP, and
exposes VQL (described in §3.5) as an interface to client applica-
tions. In short, VQL is an enhanced version of SQL that allows
users and applications to query multiple versions at once.

DATAHUB is a layer on top of VQP and DSVCP, and consists
of everything within the dashed lines. DATAHUB is a hosted plat-
form, designed to be run as a server that many clients use to store
their data; there will both be a public DATAHUB site, as well as
potentially many private DATAHUBS run by organizations. DATA-
HUB provides the versioning API and the VQL to applications. In
addition to these two interfaces, DATAHUB also provides a variety
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Figure 1: DataHub Components and Architecture.

of basic functionality aimed at reducing the burden to data analyt-
ics, including data ingest and integrate (also shown in the diagram).

In addition to the interfaces and data manipulation functional-
ity, DATAHUB includes fine-grained access control features to al-
low datasets to be declared public/private and read-only/writeable
by different sets of users. We plan to adopt standard techniques for
role-based access control [5]. In addition, we will provide language
bindings to make possible to access DATAHUB datasets from pop-
ular languages, including Javascript, enabling the sharing of web
pages that directly access and manipulate persistent data.

We have implemented an early prototype of this system that
uses PostgreSQL as the backend, creating a separate database for
each user and providing basic per-user access control. It exposes a
Thrift-based [23] API that wraps queries and query results in Thrift
objects (Thrift is a cross platform data marshaling layer designed to
compactly exchange data in a platform-independent manner). This
makes it possible to invoke DATAHUB queries and retrieve results
from any of the 20+ languages supported by Thrift. We have also
built a simple object-relational mapping layer for Python and Java,
allowing programmers to access DATAHUB datasets as though they
are persistent objects in these languages. Our prototype includes
some initial versioning features, described below. Subsequently,
we plan to replace this simple backend with our custom storage
layer that supports efficient versioning, provenance tracking, visu-
alization, and other features, with the goal of keeping a constantly
running prototype up and running (our current simple prototype is
running at http://datahub.csail.mit.edu).

3.2 DSVC Data Model

We now describe the underlying data model that DSVC espouses.
At a high level, DSVC uses a flexible “schema-later” data represen-
tation, that allows data to be represented in all forms, from textual
blobs, to key-value pairs, to fully structured records. (The reason
for this is that we expect users to store carefully curated structured
data as well raw data in various stages of cleaning and integration.)

The main abstraction that DSVC uses is that of a fable containing
records. We adopt a simple model where every record in a table has
a key, and an arbitrary number of typed, named attributes associated
with it; we use the word schema to loosely refer to the attributes
associated with a record. We expect that there will be large groups
of records with identical schemas in a table, with a fully curated
table having the same schema for every record. For completely
unstructured data, a single key can be used to refer to an entire file.
While there are many other models for data that relax relational
“schema-first” requirements, we chose this model because it offers
a flexible approach for storing a wide range of data at different
levels of structure, allowing both unstructured and fully structured
data to co-exist. We do not intend this choice to be limiting or
controversial; other “semi-structured” representations, e.g., XML



or JSON, would suffice as well.

The second abstraction that DSVC uses is that of a dataset. A
dataset consists of a set of tables, along with any correlation / con-
nection structure between them (e.g., foreign key constraints).

The versioning information is maintained at the level of datasets
in the form of a version graph. Version graph is a directed acyclic
graph where the nodes correspond to the datasets and the edges
capture relationships between versions as well as the provenance
information that records user-provided and automatically inferred
annotations for derivation relationships between data. A directed
edge from node u to node v indicates that either v is a new version
of u, or v is a new branch that is created as a copy of v and will
evolve separately (so long as it is not merged back in), or v is a de-
rived data product obtained by applying an operation to u. When-
ever a version of a dataset is created in DATAHUB, users or applica-
tions may additionally supply provenance metadata that indicates
the relationship between two versions. This metadata is designed
allow queries over the relationship between versions, and includes
both fine-grained and coarse-grained provenance data. Different
applications may store different provenance data, but examples in-
clude (i) the name of the program that generated the new version,
(ii) the commit id of the program in a code version control system
like git (if available), (iii) the identifiers of any other datasets that
may have been used to create the new version. In addition, we may
store the list of records in the original version that contributed to a
changed record in the new version if that information is available
and compactly representable.

3.3 Versioning API

DSVC provides a versioning API similar to what version control

systems like git provide, including the following commands:

e create: create a new dataset

e branch: create a new version of a dataset; future updates to this
branch will not be reflected in the original dataset.

e merge: merge two or more branches of the dataset

e commit: make local (uncommitted) changes to the dataset per-
manent. Can be used in a fine-grained (transactional) way or
to merge batches updates. In particular, like git, many private
transactions can be run by a user, and can be pushed as a batch.

e rollback: revoke changes to the dataset

e checkout: create a local copy of branch that is either a full copy,

a lazily retrieved copy, or a sampled partial copy (see §3.4).

In addition to the commands above, the versioning API, like git,
allows users to specify hooks. Similar to triggers, hooks are used
to run scripts before, during, and after commits to code. For ex-
ample (adapted from githooks.com), checking commit messages
for spelling errors, enforcing coding standards, letting people know
of a new commit, or moving code to production. In our case, we
expect hooks to encompass all the typical use-cases, such as en-
forcing standards or continuous integration, along with additional
cases, such as notifying applications to run off the newest copy
dataset (e.g., a dashboard plotting aggregate statistics), or tracking
data products derived from the dataset (e.g., via aggregation or fil-
tering). In these cases, hooks may be used to rerun the application
or update the derived data products respectively. hooks could also
be used in lieu of triggers to detect and correct errors.

This basic API can be used by end users and DATAHUB compo-
nents such as data cleaning and integration tools. For example, a
user who uploads genomic data from a spreadsheet and then does
cleaning and integration with other datasets would first create the
new dataset, propagate and commit raw data to it, and then perform
several branching steps as cleaning and integration are completed.

3.4 Checking Out, Branching, and Merging

Distributed version control systems enable users to easily cre-
ate and retrieve copies of a dataset. A user can branch (or fork)
a dataset to make isolated changes that may be merged back into
another version at a later time.

Users of DATAHUB can interact with datasets in two ways: ei-
ther by directly issuing queries to DATAHUB servers (“transac-
tional mode”), or by checking out local copies of datasets which
they manipulate and commit changes to (“local mode”). Transac-
tional mode works just as in a traditional relational system: con-
current transactions are isolated from each other using locking, and
the system provides a guarantee of serial equivalence.

Local mode requires more complicated machinery to deal with
conflicting updates, since two users may both modify the same ver-
sion of the same records in their local dataset. We allow the users
control over how much of the dataset to copy out at once, and how
much to fetch as needed "lazily", so as to make working with large
datasets substantially more efficient in local mode.

In addition to checking out local versions of a dataset, DATA-
HUB will enable users to checkout a sampled version of a dataset.
With a sampled dataset, users will perform updates on the local
sampled copy and when the user merges the sampled copy back
to the repository, DATAHUB will apply the modifications to the
entire dataset and notify the user of any constraint violations or
merge conflicts. We plan to limit certain operations when working
on a sample to ensure that a user is aware of the missing records.
An example of a limited operation is preventing updates to specific
rows; instead we require updates based on predicates so that DATA-
HUB can apply the update to the entire dataset.

DSVC allows users to create a branch of a dataset either in local

or transactional mode. It is critical that branching is is a quick
process that minimizes the amount of data required for each branch.
Sec. 4 highlights the research challenges associated with creating
versions of large datasets in DSVC.
Research Challenges: The utility of creating multiple branches of
a dataset increases with the ability to merge divergent branches.
Otherwise, users end up with many variations of a dataset with an
unknown number of dependencies. In building DSVC we will ex-
plore how to define a conflict, how to easily detect conflicts be-
tween branches, how to merge non-conflicting divergent branches,
and how to guide a user through merging conflicting branches.
Traditional source control software define conflicts by concurrent
modifications to the same line. This is the semantic equivalent of
row-level conflicts for structured datasets. However, two branches
may alter disjoint attributes for overlapping rows. Therefore in this
scenario a user may choose to apply the modifications from both
branches as there would be no lost update. We will leverage exist-
ing research in disconnected databases, commutative and replicated
data structures, and operational transformations for detecting and
resolving conflicts in simultaneous/collaborative editing systems.
In building DATAHUB we plan to explore various definitions of
dataset branch conflicts, using deltas to detect conflicts, techniques
to summarise large differences between branches, and tools to aid
users in resolving conflicts that arise from a merge. Furthermore,
as the size of datasets and versions can be large, DATAHUB will
need to explore how much data and which versions to copy when a
dataset is checked out, either as a full or sampled checkout.

3.5 Versioning Query Language

In addition to the API, DSVC supports a powerful versioning
query language based on SQL, called VQL, that allows users to
operate on one or more versions at a time, returning results that
are either data items or pointers to versions. Conceptually, a VQL
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query could specify whether it should be executed only on the ta-
bles that contains all the fields specified in the query (the current
default), or on tables containing some but not all of the fields. We
describe our preliminary design for VQL via examples below.

Consider the chart in Figure 2, which displays four ways in which
VQL can be used. The square in the lower left corner is the most
straightforward way to use VQL: standard SQL queries that will be
executed on the master version (by default). Since the query may
contain one or more predicates, this way the query input involves
“data”, and the output is once again “data”. On the other hand, the
square in the upper left corner allows us to specify which version
or versions we would like the standard SQL queries to be executed.
For instance, VQL supports the query

SELECT * FROM R(v124), R(v135)

WHERE R(v124).id = R(v135).id
where v124, v135 are version numbers. Once again, the query
specifies “data”, but also specifies one or more “versions”.

The squares in the right hand side are a bit different: in this case,
the result is one or more version numbers. Here, we add to SQL
two new keywords: VNUM and VERSIONS, which can be used
in the following manner:

SELECT VNUM FROM VERSIONS(R)

WHERE EXISTS (SELECT * FROM R(VNUM)

WHERE name = ‘Hector’)
This query selects all versions where a tuple with name Hector ex-
ists. The attribute VNUM refers to a version number, while VER-
SIONS(R) refers to a special single-column table containing all the
version numbers of R. The example above is a VQL query that fits
in the right bottom corner of the chart, while a VQL query that
provides a version as input and asks for similar versions (based on
user-specified predicates) would fit into the right top corner.

SELECT VNUM FROM VERSIONS(R)

WHERE 10 > DIFF_RECS(R, VNUM, 10)
where DIFF _RECS is a special function that returns the number
of records that are different across the two versions. VQL will
support several such functions that operate on versions (e.g., DIS-
TANCE(R, 10, 20) will return the derivation distance between the
versions 10 and 20 of R (the result is -1 if 20 is not a descendant of
10 in the version graph).)

Naturally, there are examples that span multiple regions in the
quadrant as well: as an example, the following query selects the
contents of a relation S from the first time when a large number of
records were added between two versions of another relation R in
the same dataset.

SELECT * FROM S(SELECT MIN(VR1.VNUM) FROM
VERSIONS(R) VR1, VERSIONS(R) VR2

WHERE DISTANCE(R,VR1.VNUM,VR2.VNUM)=1
AND DIFF_RECS(R,VR1.VNUM,VR2.VNUM)>100)

Research Challenges: The query above is somewhat unwieldy;
fleshing out VQL into a more complete, easy-to-use language is
one of the major research challenges we plan to address during our
work. In particular, we would like our eventual query language to
be able to support the following features, as well as those discussed
above, while still being usable:
e Once a collection of VNUMs is retrieved, performing operations
on the data contained in the corresponding versions is not easily
expressible via VQL as described. For example, users may want

T visible bit

T4
Version 0
e Master
Sam, $50, 1 — ;
Amol, $100, 1 + Mike, $150, 1
Deletes Amol
T2

= Version 1 = Version 1.1
1 + Aditya, $80, 1 1 +Amol, $100, 0

Figure 3: Example of relational tables created to encode 4 ver-
sions, with deletion bits.

the ability to use a for clause, e.g., do X for all versions satis-
fying some property. For this, concepts from nested relational
databases [15] may be useful, but would need further investiga-
tion.

e Specifying and querying for a subgraph of versions is also not
easy using VQL described thus far; for this, we may want to use
a restricted subset of graph query languages or semi-structured
query languages.

e Users should be able to seamlessly query provenance metadata
about versions, as well as derived products (specified via hooks),
in addition to the versions, e.g., find all datasets that used a spe-
cific input tuple found to be erroneous later, or find datasets that
were generated by applying a specific cleaning program.

In addition to VQL, which is a SQL-like language, DSVC will

also support a collection of flexible operators for record splitting

and string manipulation, including regex functionality, similarity
search, and other operations to support the data cleaning engine, as
well as arbitrary user-defined functions.

4. STORAGE REPRESENTATIONS

In this section, we describe two possible ways to represent a ver-
sion graph: the version-first representation, where, for each ver-
sion, we (logically) store the collection of records that are a part of
that version, possibly in terms of deltas from a chain of parent ver-
sions. The second way of representing dataset versions is what we
call a record-first representation, where we (logically) store each
record, and for each record, we store the (compressed) list of ver-
sions that that record appears in.

4.1 Version-First Representation

The version-first representation is the most natural, because, as
in git-like systems, it makes it easy for users to “check out” all of
the records in a particular version.

Abstractly, we can think of encoding a branching history of ver-
sions in a storage graph, with one or more fully materialized ver-
sions, and a collection of deltas representing non-materialized ver-
sions. Retrieval queries can be answered by “walking” this storage
graph appropriately. Note that nodes in this storage graph may not
have a one-to-one correspondance with nodes in the version graph,
as we may want to add additional nodes to make retrieval more
efficient. We describe this idea in more detail below.

For relational datasets, it is relatively straightforward to emulate
this abstract model in SQL. Whenever the user performs a branch
command, we simply create a new table to represent changes made
to the database after this branch was created. This new table has
the same schema as the base table. In addition, each record is ex-
tended with a deleted bit that allows us to track whether the record
is active in a particular version. To read the data as a particular
version, a we can take the union of all of the ancestor tables of
a particular version, being careful to filter out records removed in
later versions. In addition, updates need to be encoded as deletes
and re-insertions. An example of this approach is shown in Fig-
ure 3. Here, there are two branches. At the head of the “Master”



branch, the table contains Sam, Amol, Mike. At the head of the
Version 1 branch (labeled “Version 1.1°), the table contains Sam,
Aditya because the Amol has been marked as deleted. It is pos-
sible to implement this scheme completely in SQL, in any existing
database using simply filters and union queries. Of course, the per-
formance may be suboptimal, as lots of UNIONs and small tables
can inhibit scan and index performance, so investigating schemes
that encode versions below the SQL interface will be important.
Additionally, non-relational datasets may be difficult to encode in
this representation, requiring other storage models.

In the rest of this section, we describe challenges in implement-
ing this version-first representation, in either the SQL-based or in-
side the database setting.

Challenge 1: Recording Deltas: Given two versions, how can we
record the delta between them compactly so that we can retrieve
one version using the other version and the delta? Note here that
the two versions may correspond to different tables and may have
different schemas. In the simple SQL implementation described
above, versions are created explicitly via INSERT/DELETE com-
mands. However, we also plan to support the creation of versions in
external tools as well. For differencing such arbitrary versions the
simplest approach would be to use a binary differencing algorithm,
such as "diff" or "bdiff". Such tools work by finding common sub-
strings in files. Unfortunately, they are memory intensive and can
be slow, requiring many seconds to compare large files.

We plan to investigate database-aware approaches that express
deltas in terms of the specific records that were inserted/deleted,
or in terms of portions of records that are modified. Finding such
differences efficiently, when the query or program that transformed

the two versions is unknown, is challenging. We will explore database-

log like structures to encode the modifications from one database
to another, coupled with search algorithms to efficiently find differ-
ences. Making such techniques work on large datasets (that exceed
the memory size) will require algorithms to quickly find physical
blocks that differ (e.g., using hash-trees [13]), and then searching
around the regions of difference to identify record-level deltas that
“explain” the physical differences that were identified.

A related challenge is also to be able to estimate the size of the
difference between two versions quickly. This is crucial for decid-
ing which versions to delta against each other as we discuss below.

Challenge 2: Version Graph Encoding: The problem of effi-
ciently encoding a graph of versions is also challenging. Just be-
cause two versions are adjacent in the version graph doesn’t mean
that they should be stored as differences against each other. For
example, for the version graph depicted in Figure 3, depending on
the exact changes made, the difference between T3 and T4 may be
smaller than the difference between T3 and T2.

There is also a trade-off between materializing a specific version
or just storing a delta from a past version, since following delta
chains may be expensive. We plan to employ optimization tech-
niques to find the optimal encoding of the version graph by con-
sidering all possible pairwise encodings. Further, we plan to con-
sider adding what we call Steiner datasets to optimize retrieval—
analogous to Steiner points, these “extra” datasets can be used to
reduce the retrieval costs as demonstrated in our work on historical
graph data management [11]. Effective heuristics will be needed
because this search space is very large.

4.2 Record-first Representation

In this section we describe the record-first representation, where
we encode data as a list of records, each annotated with the ver-
sions it belongs to. The advantage of this representation over the
version-first representation is that it makes it easy to find all ver-

sions that records with particular properties participate in, as we
can use an index to find satisfying records, and then retrieve their
versions. It also lends itself to storage representations that are clus-
tered by record properties, rather than being clustered according to
the containing version.

A simple example of a record-first representation is a temporal
database, which is essentially a linear chain of versions, where
each record is annotated with an interval that denotes the “versions”
it belongs to. For a branching array of versions, we would need to
explicitly encode the versions that contain a record using a (com-
pressed) bitmap — a temporal interval is essentially equivalent to a
run-length-encoding of such a bitmap.

From a querying perspective, certain types of queries are more
efficient to execute against such a representation. Consider the
query that asks for all versions that satisfy a certain property: this
can be executed efficiently by taking an OR of the bitmaps of all
satisfying records. Similarly if we want to execute a particular
query against a group of versions (e.g., an aggregate query), this
storage representation naturally enables sharing of computation.
On the other hand, a retrieval query (i.e., fetch a given version)
may end up doing redundant work since the union is likely to be
much larger than any specific version.

4.3 Storage vs. Efficiency

In describing the two representations above, we have alluded to
a fundamental tradeoff that permeates all aspects of dataset version
management: the tradeoff between efficiency and storage. Simply
put, since versions share a lot of information, we can store versions
very compactly, but retrieving and running queries on them may be-
come expensive. While the efficiency-versus-storage tradeoff cer-
tainly exists for databases without versioning as well, the tradeoff is
exacerbated here because many versions are similar to each other,
and storing them in a naive fashion could lead to severe issues with
efficiency or with storage, as described in the introduction.

Prioritizing Efficiency: While it is certainly possible to just use
one representation, for DSVC to be efficient at both API opera-
tions as well as VQL queries, both representations are needed. At
a high level, retrieving complete versions is much more efficient
in the version-first representation, while identifying versions that
have a certain property is much more efficient in the record-first
representation. On the other hand, retrieving versions that satisfy
some property may work best by combining representations: the
record-first to identify the appropriate versions, and the version-
first to retrieve the requisite versions. In addition to using multi-
ple representations, it is certainly possible to also use indexing and
caching of prior VQL query results to quickly identify or recreate
often-queried versions.

Prioritizing Storage: Periodic archival and cleaning up of ver-
sions is essential to reduce storage costs and keep storage within
the user-configurable budget. Deciding how to incrementally meet
the budget constraint by deleting or storing in a compressed form
(via deltas from existing versions) infrequently accessed versions
will be a challenge.

5. CONCLUSIONS

In this paper, we introduced two tightly-integrated systems: a
dataset version control system, and DATAHUB, drawing an analogy
with git and github. We outlined the many challenges in manag-
ing and querying large multi-version datasets that do not apply to
regular source-code version control, and proposed initial solutions.
We believe addressing these challenges is essential in supporting
large-scale collaborative data analytics.
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