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ABSTRACT
We develop and evaluate an approach for generating Personalized
Service Level Agreements (PSLAs) that separate cloud users from
the details of compute resources behind a cloud database manage-
ment service. PSLAs retain the possibility to trade-off performance
for cost and do so in a manner specific to the user’s database.

1. INTRODUCTION
Over the past several years, cloud service providers have been

offering an increasingly large selection of data management ser-
vices. Relational Database Service (RDS) and Elastic MapReduce
(EMR); Google For example, Amazon Web Services (AWS) [4] in-
clude the offers BigQuery [7]; and SQL Server is available through
the Windows Azure SQL Database [31]. Accessing a database
management system (DBMS) as a cloud service opens the oppor-
tunity to re-think the contract between users and the DBMS, es-
pecially in the context of data scientists with different skill levels
(from data enthusiasts to statisticians) who need to manage and an-
alyze their data. Too many services, however, remain too close
to the traditional mode of operating a DBMS. In particular, users
are expected to select how many instances of the service they wish
to purchase and the size of those instances (their CPU and mem-
ory resources) [31, 4]. This approach requires users to have the
expertise to determine the resource configuration they should use,
including advanced notions such as the use of Spot instances [4],
which limits how many users can cost-effectively leverage a cloud
DBMS service to manage and analyze their data.

This problem is not only hard for data scientists, but even for
those who are database experts. Although there exist bench-
marks [18] that measure the performance on different cloud ser-
vices, it is difficult to extrapolate from those benchmarks to the
performance for the analysis of a specific database.

More recently, some database services have started to change the
mode of interaction with users. Google BigQuery [7], for exam-
ple, does not have any notion of service instances. Users execute
queries and are charged by the gigabyte of data processed. This
interface, however, is not ideal either. It does not offer options to
trade-off price and performance (only a choice between “on de-
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mand” and “reserved” querying). Furthermore, users have no way
to predict the performance and, for the case of “on demand” query-
ing, the ultimate cost of an analysis.

There has also been research into new SLAs with cloud services.
Recent work, however, either requires that users have a pre-defined
workload [17, 23] or precise query time constraints [30, 32] with
sometimes surprising behaviors such as the rejection of queries un-
less they can execute within the SLA threshold [32].

We argue that none of these existing approaches is satisfactory.
Cloud services should have a different interface and, fortunately,
they have the opportunity to provide it. Instead of showing users
the available resources they can lease, or asking users for specific
performance requirements for a specific workload, cloud services
should show users what is possible with their data and let them pick
among those options. The options should come with performance
guarantees to avoid unexpected behavior. At the same time, they
should retain the ability to refine a user’s price-performance options
over time.

To achieve the above goals, we propose the notion of a Person-
alized Service Level Agreement (PSLA). The key idea of the PSLA
is for a user to specify the schema of her data and basic statistics
(e.g., base table cardinalities) and for the cloud service to show
what types of queries the user can run and the performance of these
queries with different levels of service, each with a defined cost.
The performance is captured with a maximum query runtime while
queries are represented with templates. Figure 1 shows an exam-
ple PSLA that our service generates (we describe the experimental
setup in Section 4). The example shows a PSLA with four tiers
generated for the Myria shared-nothing DBMS service [13, 1]. The
database to analyze is a 10GB instance of the Star Schema Bench-
mark [21]. The PSLA makes cost and performance trade-offs obvi-
ous: If a user needs to execute just a few simple selection queries,
Tier 1 likely suffices. These queries will run in under 10sec at that
tier. Tier 2 significantly improves the runtimes of the most complex
join queries compared with Tier 1. Their runtimes go from below
600sec to below 300sec. Tier 3 provides only limited performance
improvement compared with Tier 2. Finally, Tier 4 enables queries
with small joins to become interactive with runtimes below 10sec.
Figure 2 shows a three-tier PSLA for the same dataset but for a
single-node SQL Server instance running on Amazon EC2 [5].

In prior work [22], we presented a high-level vision for PSLAs.
In this paper, we present the PSLAManager, a new system for the
generation and management of PSLAs. More specifically, we make
the following contributions:

• In Section 2, we define a model for PSLAs and metrics to as-
sess PSLA quality. These metrics include performance error
(how accurately the displayed time-thresholds match the ac-
tual query times), complexity (a measure of the PSLA size),



Figure 1: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the Star Schema Benchmark on the shared-nothing
Myria DBMS service. These four tiers correspond to 4-node, 6-node, 8-node, and 16-node Myria deployments.

Figure 2: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the Star Schema Benchmark on a single-node
Amazon EC2 instance with SQL Server. The three tiers correspond to a small, medium, and large EC2 instance.

and query capabilities (the types of queries described in the
PSLA).
• In Section 3, we develop a method to automatically generate

a PSLA for a cloud service and user database. The challenge
is to generate PSLAs with low performance error and low
complexity at the same time while preserving a given set of
query capabilities.
• In Section 4, we show experimentally, using both Ama-

zon EC2 [5] and our Myria parallel data management ser-
vice [13], that our approach can generate PSLAs with low
errors and low complexity.

In Section 5, we discuss future work including the challenges and
possible approaches to extending PSLAs to include performance
guarantees and physical tuning features.

The PSLAManager generates a PSLA for a given database and
cloud service. This system can thus be layered on top of an exist-
ing cloud data management service such as Amazon RDS, Amazon
Elastic MapReduce, or equivalent. In this paper, we assume such
a cloud-specific deployment that gives the PSLAManager access
to the cloud service internals including the query optimizer (which
we use to collect features of query plans for runtime predictions).
However, since the PSLAManager takes as input only the user’s
database schema and statistics, it could also be a middleware ser-
vice that spans multiple clouds and facilitates the comparison of
each service’s price-performance trade-offs through the common
PSLA abstraction. The two PSLAs shown in Figures 1 and 2, for
example, facilitate the comparison of the Amazon EC2 with SQL

Server service and the Myria service given the user’s database.

2. PSLA MODEL
We first define a Personalized Service Level Agreement (PSLA)

more precisely together with quality metrics for PSLAs.
We start by defining the notion of a query template. The term

“query template” has traditionally been used to refer to parameter-
ized queries. Rajaraman et al. [26] used the term query template to
designate parameterized queries that differ in their selection pred-
icates. Agarwal et al. [2], on the other hand, refer to queries with
different projected attributes. We generalize the notion of a query
template to select-project-join (SPJ) queries that differ in the pro-
jected attributes, relations used in joins (the joined tables are also
parameters in our templates), and selection predicates.

Definition 2.1. Query Template: A query template M for a
database D is a triple M = (F, S,W ) that compactly represents
several possible SPJ queries over D: F represents the maximum
number of tables in the FROM clause. S represents the maximum
number of projected attributes in the SELECT clause. W repre-
sents the maximum overall query selectivity (as a percent value),
based on the predicate in the WHERE clause. Joins are implic-
itly represented by PK/FK constraints. No cartesian products are
allowed.

For example, the template (4, 12, 10%), represents all queries
that join up to four tables, project up to 12 attributes, and select up
to 10% of the base data in the four tables.



We can now define a Personalized Service Level Agreement:

Definition 2.2. Personalized Service Level Agreement: A PSLA
for a cloud provider C and user database D is a set of
PSLA tiers for the user to choose from, i.e., PSLA(C,D) =
{R1, R2, . . . , Rk}, where each tier, Ri is defined as:

Ri = (pi, di,
{
(thi1, {Mi11,Mi12, . . . ,Mi1qa}),
(thi2, {Mi21,Mi22, . . . ,Mi2qb}),
. . . ,

(thir, {Mir1,Mir2, . . . ,Mirqc})
}
)

Each tier has a fixed hourly price, pi, and no two tiers have the
same price. Each tier also has a set of query templates Mi11

through Mirqc clustered into r groups. Each of these templates
is unique within each tier. Each template group, j, is associated
with a time thresholds thij . Finally, di is the penalty that the cloud
agrees to pay the user if a query fails to complete within its corre-
sponding time threshold thij .

Figures 1 and 2 show two example PSLAs for the Star Schema
Benchmark [21] dataset. One PSLA is for the Myria shared-
nothing cloud service [13] while the other is for the Amazon EC2
service with SQL Server [5] (we describe the experimental setup
in Section 4). The figures shows screenshots of the PSLAs as they
are shown in our PSLAManager system. To display each template
M = (F, S,W ), we convert it into a more easily readable SQL-
like format as shown in the figures.

Given a PSLA for a specific cloud service, the user will select a
service tier Ri and will be charged the corresponding price per time
unit pi. The user can then execute queries that follow the templates
shown and is guaranteed that all queries complete within the spec-
ified time-thresholds (or the cloud provider incurs a penalty di).
Query runtimes across tiers either decrease or stay approximately
constant depending on whether the selected configurations (or tiers)
improve performance. If some queries take a similar amount of
time to process at two tiers of service Rj and Ri, j < i, the queries
are shown only for the cheaper tier, Rj : a query that can be ex-
pressed through a template from a lower tier, Rj , but has no rep-
resentative template in the selected tier, Ri, will execute with the
expected runtime shown for the lower tier Rj .

There are several challenges related to generating a PSLA: How
many tiers should a PSLA have? How many clusters and time-
thresholds should there be? How complex should the templates
get? To help guide the answers to these questions, we define three
metrics to assess the quality of a PSLA:

Definition 2.3. PSLA Complexity Metric: The complexity of a
PSLA is measured by the number of query templates that exist in
the PSLA for all tiers.

The intuition for the complexity metric is that, ultimately, the
size of the PSLA is determined by the number of query templates
shown to the user. The smaller the PSLA complexity, the easier it is
for the user to understand what is being offered. Hence, we prefer
PSLAs that have fewer templates and thus, a lower complexity.

Definition 2.4. PSLA Performance Error Metric: The PSLA per-
formance error is measured as the root mean squared error (RMSE)
between the estimated query runtimes for queries that can be ex-
pressed following the PSLA templates in a cluster and the time-
thresholds associated with the corresponding cluster. The RMSE
is first computed for each cluster. The PSLA error is the average
error across all clusters in all tiers.

The RMSE computation associates each query with the template
that has the lowest time threshold and that can serve to express the
query.

The intuition behind the above error metric is that we want the
time thresholds shown in PSLAs to be as close as possible to the ac-
tual query runtimes. Minimizing the RMSE means more compact
query template clusters, and a smaller difference between query
runtime estimates and the time-thresholds presented to the user in
the PSLA.

Given a query-template cluster containing queries with expected
runtimes {q1, . . . , qk}, and time-threshold th, the RMSE of the
cluster is given by the following equation. Notice that we use rel-
ative runtimes because queries can differ in runtimes by multiple
orders of magnitude.

RMSE({q1, . . . , qk}, th) =

√√√√ 1

k

k∑
i=1

(
qi − th

th

)2

Because the set of all possible queries that can be expressed fol-
lowing a template is large, in our system, we measure the RMSE
using only the queries in the workload that our approach generates.

Definition 2.5. PSLA Capability Coverage: The class of queries
represented by the query templates: e.g., selection queries, selec-
tion queries with aggregation, full conjunctive queries, conjunctive
queries with projection (SPJ queries), conjunctive queries with ag-
gregation, union of conjunctive queries, queries with negations.

For this last metric, higher capability coverage is better since
it provides users with performance guarantees for more complex
queries over their data.

Problem Statement: Given a database D and a cloud DBMS C,
the problem is how to generate a PSLA comprising a set of PSLA
tiers R that have low complexity, low performance error, and high
capability coverage. The challenge is that complexity, performance
and capability coverage are at odds with each other. For instance,
the higher we extend the capability coverage for the queries, the
higher the PSLA complexity becomes and the likelihood of per-
formance error increases as well. Additionally, these PSLAs must
be generated for a new database each time, or any time the current
database is updated. Hence, PSLA generation should be fast.

3. PSLA GENERATION
We present our approach for generating a PSLA given a database

D and a cloud service C. We keep the set of query capabilities
fixed and equal to the set of SPJ queries. However, there is no fun-
damental limitation that prevents extending the approach to more
complex query shapes. Figure 3 shows the overall workflow of the
PSLA generation process. We present each step in turn.

We focus on databases D that follow a star schema: a fact table
f and a set of dimension tables {d1, . . . , dk}. Queries join the fact
table with one or more dimension tables. Star schemas are common
in traditional OLAP systems. They are also common in modern
analytic applications: A recent paper [2], which analyzed queries
at Facebook, found that the most common type of join queries were
joins between a single large fact table and smaller dimension tables.
It is possible to extend our algorithms to other database schemas,
as long as the PK/FK constraints are declared, so that the system
can infer the possible joins.

3.1 Tier Definition
The first question that arises when generating a PSLA is what

should constitute a service tier? Our approach is to continue to
tie service tiers to resource configurations because, ultimately, re-
sources are limited and must be shared across users. For example,
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Figure 3: PSLA generation process.

for Amazon EC2, three natural service tiers correspond to a small,
medium, and large instance of that service. For Amazon Elastic
MapReduce, possible service tiers are different-size clusters (e.g.,
cluster of size 2, 3, 4, . . ., 20). We leave it to the cloud provider to
set possible resource configurations. Importantly, the cloud can de-
fine a large number of possible configurations. The PSLAManager
filters-out uninteresting configurations during the PSLA generation
process as we describe in Section 3.4. For example, in the case of
a shared-nothing cluster, the provider can specify that each cluster
size from 1 to 20 is a possible configuration. Our PSLAManager
will pick a subset of these configurations to show as service tiers.

The mapping from service tiers to resources is invisible to users.
In recent work, it has been shown that cloud providers can often
choose different concrete resource configurations to achieve the
same application-level performance [16]. The cloud can leverage
that flexibility and can also dynamically adjust the resource alloca-
tion as we discuss in Section 5. For now, we define each service
tier to map onto a specific resource configuration.

3.2 Workload Generation
The first step of PSLA generation is the production of a work-

load of queries based on the user’s database. Recall that, in our
approach, we do not assume that the user already has a workload.
Instead, we only require that the user provides as input a schema
and basic statistics on their data. The PSLAManager generates the
PSLA from this schema and statistics.

The goal of the PSLA is to show a distribution of query runtimes
on the user data. Hence, fundamentally, we want to generate valid
queries on the user schema and estimate their runtime for different
resource configurations. The key question is, what queries should
be included in this process? If we generate too many queries, PSLA
generation will become slow and the PSLAs may become complex.
If we generate too few queries, they will not sufficiently illustrate
performance trade-offs.

From experience working with different cloud DBMS services,
we find [22] that, as can be expected, some of the key perfor-
mance differences revolve around join processing. Therefore, our
approach is to focus on generating queries that illustrate various
possible joins based on the user’s data. To avoid generating all
possible permutations of tables, we apply the following heuristic:
For each pattern of table joins, we generate the query that will pro-
cess the largest amount of data. Hence, our algorithm starts from
considering each table in isolation. It then considers the fact table
joined with the largest dimension table. Next, it generates queries
that join the fact table with the two largest dimension tables, and
so on until all tables have been joined. The goal is to generate one
of the expensive queries among equivalent queries to compute time
thresholds that the cloud can more easily guarantee.

Of course, users typically need to look at subsets of the data.
Changing the query selectivity can significantly impact the size and
thus performance of the joins. To show these trade-offs, we add to
each of the above queries selection predicates that retain different
orders of magnitude of data such as 0.1%, 1%, 10%, and 100%. To
ensure that the predicates change the scales of the join operations,
we apply them on the primary key of the fact table.

Finally, since many systems are column-stores, we generate
queries that project varying numbers of attributes.

Algorithm 1 Query generation algorithm
1: Input: D
2: Q← {}, L← {}
3: // Step 1: Generate combinations of tables for the FROM clause
4: for each ti ∈ D do
5: T q ← {ti}
6: L← L ∪ T q

7: // For the fact table add combinations of dimensions tables
8: if ti is the fact table, i.e. ti = f then
9: Sort {d1, . . . , dk} desc. on size(di), 1 ≤ i ≤ k
10: for each j, 1 ≤ j ≤ k do
11: Dq ← take the first j tables from D
12: T q ← T q ∪Dq

13: L← L ∪ T q

14: // Step 2: Add the projections and selections
15: for each T q ∈ L do
16: Sort A(T q) desc. on size(Aj(T

q)), 1 ≤ j ≤ |A(T q)|
17: for each k, 1 ≤ k ≤ |A(T q)| do
18: // Project the k largest attributes
19: Aq ← take the first k attributes from A(T q)
20: // Add a desired selectivity from a pre-defined set
21: for each eq ∈ ETq do
22: Q← Q ∪ {T q, Aq, eq}

return Q

Algorithm 1 shows the pseudocode for the query generation step.
The input is the database D =

{
{f} ∪ {d1, . . . , dk}

}
, each table

ti ∈ D has a set of attributes A(ti). Function pk(ti) returns the
set of primary key attributes for ti. The fact table f has a for-
eign key for each dimension table, that references the dimension
table’s primary key. The algorithm generates the set of represen-
tative queries Q given the database D. The result set Q consists
of triples, (T q, Aq, eq), where T q is the set of tables in the FROM
clause, Aq is the set of projected attributes in the SELECT clause,
and eq is the desired selectivity value, which translates into a pred-
icate on the PK of the fact table in the WHERE clause (or predicate
on the PK of a dimension table if there is no fact table in the FROM
clause). The algorithm keeps a list L with all representative sets of
tables T q . Initially every standalone table ti ∈ D is inserted as a
singleton set into L (lines 4-6), then the fact table is expanded (line
8), when we generate the joins.

3.3 Query Time Prediction
Given the generated workload, a key building block for our

PSLA approach is the ability to estimate query runtimes. Here,
we build on extensive prior work [11, 10, 3] and adopt a method
based on machine learning: Given a query, we use the cloud ser-
vice’s query optimizer to collect query plan features including the
estimated query result size and total query plan cost among other
features. We build a model offline using a separate star schema
dataset. We use that model to predict the runtime of each query in
the generated workload given its feature vector and a resource con-
figuration. With this approach, to generate a PSLA, users only need
to provide the schema of their database and basic statistics such as
the cardinality of each input relation.

3.4 Tier Selection
Once our system generates a workload and estimates query run-

times for each resource configuration defined by the cloud provider,
our approach is to select a small number of these resource config-
urations to show as service tiers. Figure 4 illustrates the approach
using real query runtime distributions obtained for the 10GB SSB
dataset and the Myria service. The figure shows the query runtime
distributions (plotted as a histogram with buckets of size 20 sec) for
four cluster sizes (4, 6, 8, and 16 nodes). As the figure shows, and
as expected, the query runtime distribution shifts to the left with
larger Myria clusters. The goal is to narrow down which service



Bucket size EMD(1,2) EMD(2,3) EMD(3,4) EMD(2,4)
5 17.53 8.70 12.00 20.70

10 17.43 7.07 13.74 20.81
20 20.58 7.83 9.91 17.75

Figure 4: Distribution of query times across the four initially con-
sidered configurations of Myria. The PSLAManager automatically
identifies the tiers with the most different query runtime distribu-
tions by computing the Earth Mover’s Distance (EMD) between
tiers. EMD(i,j) is the EMD between service tiers i and j.

tiers to show to the user.
Because the goal of the PSLA is to show users different points

in the space of price-performance trade-offs, the PSLAManager
selects the configurations that differ the most in the distributions
of estimated query runtimes for the given workload. To compute
these distances, we use the Earth Mover’s Distance [28], since this
method effectively compares entire data distributions; in our case,
the distribution of query runtimes.

The tier selection algorithm proceeds as follows: Given
a sequence of increasingly costly resource configurations:
c1, c2, . . . , ck, we compute the distances EMD(ci, ci+1)∀i ∈
[1, k). We then recursively select the smallest distance in the list
and remove the more expensive configuration ci+1, and recom-
pute the distance between the new neighbors EMD(ci, ci+2), if
ci+2 exists. We terminate once we have a desired number k′ < k
of tiers. Figure 4 shows the EMD values for different histogram
granularities for the Myria example. Assuming a distribution cap-
tured with a fine-grained histogram with buckets of size 5sec or
10sec, and assuming the goal is to show only two tiers, the algo-
rithm first eliminates the third configuration because EMD(2,3) is
the smallest EMD value. It then re-computes EMD(2,4). At this
point, EMD(1,2) is smaller than EMD(2,4). As a result, the second
configuration is discarded. The final two tiers selected are tier 1 and
4. They correspond to the 4-node and 16-node configurations (we
further discuss this figure in Section 4). Observe that the granular-
ity with which the query time distributions are captured can affect
the choice of service tiers. In this example, if we use buckets of
size 20sec, the final two tiers selected are Tiers 1 and 2.

3.5 Workload Compression into Clusters
Our workload-generation approach reduces the set of all possible

queries down to a set of representative queries, Q. This set may
still easily range in the hundreds of queries as in the case of the
SSB schema, for which our approach produces 896 queries.

It would be overwhelming to show the entire list of queries from
the generated workload to the user. This would yield PSLAs with
low error but high complexity as defined in Section 2. Instead, our
approach is to compress the representative workload. The com-
pression should reduce the PSLA complexity, which is measured

Figure 5: Clustering techniques illustration. Each X corresponds to
a query. (a) Threshold-based clustering (b) Density-based cluster-
ing.

by the number of query templates, while keeping the performance
error low. These two optimization goals are subject to the constraint
that the compression should preserve capability coverage from the
original workload: For example, if the original workload includes a
query that joins two specific tables, the final query templates should
allow the expression of such a query.

Our workload compression approach has three components as
shown in Figure 3. The first component is query clustering. We
start with the cheapest tier and use a clustering technique to group
queries based on their runtimes in that tier. We consider two dif-
ferent types of clustering algorithms: threshold-based and density-
based. Figure 5 illustrates these two methods.

For threshold-based clustering, we pre-define a set of thresholds
and partition queries using these thresholds. The PSLAs shown
in Figure 1 and Figure 2 result form this type of clustering. We
use two approaches to set the thresholds: (i) we vary the thresh-
olds in fixed steps of 10, 100, 300, 500, and 1000 seconds, which
we call INTERVAL10, INTERVAL100, INTERVAL300, INTER-
VAL500, and INTERVAL1000, respectively; and (ii) we vary the
thresholds following different logarithmic scales. One of the scales
is based on powers of 10, which we call LOG10. The other one
is based on human-oriented time thresholds of 10sec, 1min, 5min,
10min, 30min, and 1hour, which we call LOGHUMAN. These in-
tervals are represented by the dashed horizontal lines as seen in
Figure 5(a). The benefit of this approach is that the same time-
thresholds can serve for all tiers, making them more comparable.
However, the drawback is that it imposes cluster boundaries with-
out considering the distribution of the query runtimes.

For density-based clustering, we discover clusters of queries
within a span of a given amount of seconds. We explore varying
the parameter (ε) of the DBSCAN algorithm, in order to discover
clusters of queries within a span of 10, 100, 300, 500, and 1000
seconds, which we call DBSCAN10, DBSCAN100, DBSCAN300,
DBSCAN500, and DBSCAN1000, respectively. Specifically, we
begin with a small ε value that produces small clusters throughout
a tier. We iterate and slowly increment this value until clusters of
the specified size are found. We evaluate and discuss these different
clustering algorithms in Section 4.

An example of clusters using the threshold-based and density-
based approaches are shown in Figure 5 (a) and (b), respectively.
As the figure shows, the choice of the interval [0 − 10sec] breaks
an obvious cluster of queries into two. On the other hand, in the
[1 − 5min] interval, DBSCAN, given the density parameters used,
creates two different singleton clusters for two queries inside this



interval, which could arguably be combined into one cluster.
For each tier, the generated clusters determine the time-

thresholds, thi, that will be shown in the resulting PSLA for the
corresponding tier.

3.6 Template Extraction
Once we cluster queries, we compute the smallest set of tem-

plates that suffice to express all queries in each cluster. We do so
by computing the skyline of queries in each cluster that dominate
others in terms of query capabilities.

Since the queries that our approach generates vary in the tables
they join, the attributes they project, and their overall selectivity, we
define the dominance relationship (w) between two queries qi =
(Ti, Ai, ei) and qj = (Tj , Aj , ej) as follows:

qi w qj ⇐⇒ Ti w Tj ∧Ai w Aj ∧ ei ⊇ ej

which can be read as qi dominates qj iff the set of tables of qi (Ti)
dominates the set of tables of qj (Tj), the set of attributes of qi (Ai)
dominates the set of attributes of qj (Aj), and the selectivity of qi
(ei), dominates the selectivity of qj (ej). We say that the set of
tables Ti dominates Tj iff the number of tables in Ti is larger than
in Tj . Similarly, a set of attributes Ai dominates another set Aj iff
the number of attributes in Ai is larger than in Aj . For selectivities,
we simply check whether ei is greater than ej .

We call each query on the skyline a root query. Given a cluster,
for each root query q, we generate a template M = (F, S,W ),
where F is the number of tables in q’s FROM clause, S is the num-
ber of attribute in q’s SELECT clause, and W is the percent value
of q’ selectivity. For single-table queries, we keep the table name in
the template (no table dominance). We do this to help distinguish
between the facts table and a dimension table.

Tables 1 and 2 in Section 4 show the reduction in the number of
queries shown in PSLAs thanks to the query clustering and tem-
plate extraction steps.

3.7 Cross-Tier Compression
Once we generate the PSLA for one tier, we move to the next,

more expensive tier. We observe that some queries have similar
runtimes across tiers.

As we indicated in Section 2, by choosing one tier, a user gets
the level of service of all lower tiers, plus improvements. Hence, if
some queries do not improve in performance across tiers, the corre-
sponding templates should only be shown in the cheapest tier. Re-
call that we measure PSLA complexity by counting the total num-
ber of query templates. Hence showing fewer templates improves
that quality metric.

Hence, to reduce the complexity of PSLAs, we drop queries from
the more expensive tier if their runtimes do not improve compared
with the previous, cheaper tier. We call this process cross-tier com-
pression. More precisely, query qj is removed from a tier Rj if
there exists a query qi in tier Ri with i < j such that qi w qj and
qj’s runtime in Rj falls within the runtime of qi’s cluster in Ri.
We check for dominance instead of finding the exact same query
because that query could have previously been removed from the
cheaper tier. Tables 1 and 2 in Section 4 show the benefit of this
step in terms of reducing the PSLA complexity.

We run the clustering algorithm for the new tier only after the
cross-tier compression step.

We also experimented with merging entire clusters between tiers.
This approach first computes the query clusters separately for each
tier. It then removes clusters from more expensive tiers by merging
them with similar clusters in less expensive tiers. A cluster from
a more expensive tier is merged only when all of its containing

queries are dominated by queries in the corresponding cluster in
the less expensive tier. This approach, however, resulted in a much
smaller opportunity for cross-tier compression than the per-query
method and we abandoned it.

4. EVALUATION
We implement the PSLAManager in C# and run it on a 64-bit

Windows 7 machine with 8GB of RAM and an Intel i7 3.40GHz
CPU. We use the WEKA [12] implementation of the M5Rules [24]
technique for query runtime predictions.

We evaluate the PSLAManager approach using two cloud data
management services: Amazon EC2 [5] running an instance of
SQL Server and our own Myria service [1], which is a shared-
nothing parallel data management system running in our private
cluster. For Amazon, we use the following EC2 instances as ser-
vice tiers: Small (64-bit, 1 ECU, 1.7 GB Memory, Low Network),
Medium (64-bit, 2 ECU, 3.75 GB Memory, Moderate Network),
and Large (64-bit, 4 ECU, 7.5 GB Memory, Moderate Network).
We use the SQL Server Express Edition 2012 provided by each
of the machines through an Amazon Machine Image (AMI). For
Myria, we use deployments of up to 16 Myria worker processes
(a.k.a., nodes) spread across 16 physical machines (Ubuntu 13.04
with 4 disks, 64 GB of RAM and 4 Intel(R) Xeon(R) 2.00 GHz
processors). We evaluate the PSLA generation technique across 4
different configurations (4, 6, 8, and 16 nodes) for Myria.

To build the machine learning model to predict query runtimes,
we first generate a synthetic dataset using the Parallel Data Gener-
ation Framework tool [25]. We use this tool to generate a 10GB
dataset that follows a star schema. We call it the PDGF dataset. It
includes one fact table and five dimensions tables of different de-
grees and cardinalities. The PDGF dataset contains a total of 61
attributes. For our testing dataset, we use a 10GB database gen-
erated from the TPC-H Star Schema Benchmark (SSB) [21] with
one fact table, four dimension tables and a total of 58 attributes.
We choose this dataset size because multiple Hadoop measurement
papers report 10GB as a median input dataset analyzed by users
today [27].

Since Myria is running in our private cloud, to price the service,
we use the prices of the same cluster sizes for the Amazon EMR
service [6]. For Amazon, we use prices from single-node Amazon
EC2 instances that come with SQL Server installed.

4.1 Concrete PSLAs
We start by looking at the concrete PSLAs that the PSLAMan-

ager generates for the SSB dataset and the Amazon and Myria
cloud services. Figures 1 and 2 show these PSLAs. The PSLAs use
the LOGHUMAN threshold-based clustering method (Section 3.5).
We use real query runtimes when generating these PSLAs. We dis-
cuss query time prediction errors and their impact on PSLAs in
Sections 4.6 and 4.7, where we also show the PSLAs produced
when using predicted times (see Figures 9 and 10).

As Figure 1 shows, the PSLA generated for Myria has a low
complexity. Each tier has only between 3 and 13 templates grouped
into four clusters or less. The PSLA has a total of 32 templates.
These few templates represent all SPJ queries for this database
(without self joins). The PSLA also has a low average RMSE of
0.20. Most of the error stems from the query distribution in the
cheapest tier under threshold 600: All workload queries in that tier
and cluster have runtimes below 371sec.

Each service tier corresponds to one of the four Myria cluster
configurations, but users need not worry about these resource con-
figurations. The price and performance trade-offs are clear: If the
user plans to run a few simple selection queries, then Tier 1 suf-



fices. These queries will already run in under 10sec at that tier. If
the user plans to perform small joins (joining few tables or small
subsets of tables), Tier 4 can run such queries at interactive speed,
below 10sec. In contrast, if the user will mostly run complex join
queries on the entire dataset, then Tier 2 is most cost effective.

Interestingly, the figure also shows that some tiers are more use-
ful than others. For example, we can see that Tier 3 improves per-
formance only marginally compared with Tier 2. In Section 4.3,
we show that the PSLAManager will drop that tier first if requested
to generate a 3-tier PSLA.

Figure 2 shows the three-tier PSLA generated for the SSB dataset
and the three single-node Amazon instances. This PSLA has more
clusters (time thresholds) than the Myria PSLA due to the wider
spread in query runtime distributions: 10, 300, 600, 1800, and
3600. Each tier ultimately has between 6 and 17 templates, which
is higher than in the Myria PSLA. The total number of templates,
however, is interestingly the same. The error for this PSLA is
slightly higher with an RMSE of 0.22. Similarly to the Myria
PSLA, most of the error comes from the cheapest tier, where more
queries happen to fall toward the bottom of the clusters.

Interestingly, the PSLAs not only make the price-performance
trade-offs clear for different resource configurations of the same
cloud service, they also make cloud services easier to compare. In
this example, the PSLAs clearly show that the Myria service is sig-
nificantly more cost-effective than the single-node Amazon service
for this specific workload and database instance.

Next, we evaluate the different components of the PSLA-
generation process individually. We first evaluate the different steps
using real query runtimes. We generate the query workload using
the algorithm from Section 3.2. For Amazon, we execute all queries
from the SSB dataset three times and use the median runtimes to
represent the real runtimes. For Myria, we execute all queries for
the same dataset only once. In this case, the runtimes have little
variance as we run each query on a dedicated cluster and a cold
cache. In Section 4.6, we study the query time variance and query
time predictions. We examine the impact of using predicted times
on the generated PSLAs compared to real runtimes in Section 4.7.

4.2 Workload Generation
Our workload-generation algorithm systematically enumerates

specific combinations of SPJ queries and, for each combination,
outputs one representative query. With this approach, the work-
load remains small: e.g., we generate only 896 queries for the
SSB benchmark. However, this approach assumes that the selected
query represents the runtime for other similar queries.

We evaluate the quality of the representative queries that our
generator selects by randomly generating 100 queries on the SSB
benchmark and associating them with the workload query that is its
representative. The representative query should be more expensive
to process. We execute the random queries on the Medium EC2
instance and find that he PSLAManager has either a faster runtime
or a similar runtime (within 20%) for 90% of the queries. We show
these results in Figure 6. This shows that the generated queries are
indeed a good representative of the expected upper-bound on the
runtime for the user query. The remaining 10% of queries show
a limitation of our approach and the need for the cloud to have
techniques in place to counteract unexpected query runtimes as we
discuss in Section 5.

4.3 Tier Selection
Given a workload of queries with associated query runtimes, the

next step of PSLA generation is tier selection. To select tiers, the
PSLAManager takes the distribution of query runtimes for all tiers

Figure 6: Runtimes of queries in the generated workload Q com-
pared with 100 random queries on the medium Amazon instance.

and computes the earth mover’s distance (EMD) between them. It
then eliminates the tiers with the most similar EMD values.

We evaluate this approach for both services. In our experiments,
the Myria service has four configurations that correspond to clus-
ters of sizes 4, 6, 8, and 16. To capture the query time distributions,
we partition the runtimes into buckets of size 5, 10, or 20. We then
compute the earth mover’s distance between all consecutive pairs
of tiers. Figure 4 shows the runtime distribution with bucket size
20 and the EMD values for all three bucket sizes.

Using EMD identifies that the 6-node and 8-node configurations
(Tiers 2 and 3) have the most similar query runtime distributions.
If one tier should be removed, our algorithm removes the 8-node
configuration (Tier 3). This choice is consistent with the PSLAs
shown in Figure 1, where Tier 3 shows only a marginal improve-
ment in query runtimes compared with Tier 2.

Once the PSLAManager removes that configuration, the algo-
rithm recomputes the EMD between Tier 2 and 4. Here, for bucket
sizes 5 or 10, the algorithm removes Tier 2 (6-node configuration) if
a second tier should be removed because EMD(2,4) > EMD(1,2).
If bucket sizes are coarser-grained at 20 seconds, Tier 4 (the 16-
node configuration) gets dropped instead. Using smaller-size buck-
ets better approximates the distributions and more accurately se-
lects the tiers to remove.

We similarly compute the EMD for the Amazon query run-
time distributions using buckets of size 10. We find that
EMD(Small,Medium) = 169.10 while EMD(Medium,Large) =
23.67. EMD computations with buckets of size 5 yield similar val-
ues: 168.27 and 23.75. Our algorithm removes the most expensive
tier if we limit the PSLA to only two tiers. This choice is, again,
consistent with the small performance gains shown for Tier 3 in
Figure 2 compared with Tier 2.

4.4 Workload Clustering and Template Ex-
traction

Once a set of k tiers has been selected, the next step of PSLA
generation is workload compression: transforming the distribution
of query times into a set of query templates with associated query
time thresholds.

In this section, we study the behavior of the 12 different cluster-
ing techniques described in Section 3.5 with respect to the PSLA
complexity (number of query templates) and performance error
(measured as the average RMSE of the relative query times to clus-
ter threshold times) metrics. Recall from Section 2 that in order to
calculate the error for the PSLA as a whole, we first calculate the
RMSE for each individual cluster. Then, we take the average of
all these RMSEs across all clusters in all tiers. Again, we use real



Figure 7: PSLA performance error (average RMSE) against com-
plexity (# root queries) on Myria considering all four tiers.

query runtimes in this section. Additionally, we disable cross-tier
compression. We defer the evaluation of that step to Section 4.5.

Figure 7 and Table 1 show the results for Myria for all four ser-
vice tiers. As the figure shows, small fine-grained clusters (INTER-
VAL10 and DBSCAN10) give the lowest error on runtime (average
RMSE of 0.03 or less), but yield a high complexity based on the
number of clusters (92 or more) and templates (233 or more). On
the other hand, coarse-grained clusters generate few clusters and
templates (only 4 for both INTERVAL1000 and DBSCAN1000)
but lead to higher RMSEs (0.93 for INTERVAL1000 and 0.77 for
DBSCAN1000). With both methods, interval sizes must thus be
tuned to yield a good trade-off. For example, INTERVAL100 yields
a small number of clusters and templates (10 clusters and 23 tem-
plates) with still achieving a good RMSE value of 0.31. DBSCAN
can similarly produce PSLAs with few clusters and templates and
a low RMSE, as seen with DBSCAN100. In contrast, LOG10 and
LOGHUMAN produce good results similar to the tuned INTER-
VAL100 and DBSCAN300 configurations, though with somewhat
worse RMSE values, but with no tuning required.

Figure 8 and Table 2 show the results for Amazon. We observe
similar trends as for Myria. In general, most of the clustering al-
gorithms for the Amazon service have higher complexity but lower
RMSE values than the same algorithms for Myria primarily be-
cause the query runtimes are more widely spread with the Amazon
service. Importantly, the optimal settings for the INTERVAL and
DBSCAN methods are different for this service. The best choices
are INTERVAL300 or INTERVAL500 and DBSCAN500 or DB-
SCAN1000. In contrast, LOG10 and LOGHUMAN still yield a
good trade-off between complexity (only 35 and 42 templates re-
spectively) and performance error (0.52 and 0.40 respectively).

The key finding is thus that all these clustering techniques have
potential to produce clusters with a good performance error and
a low complexity. INTERVAL-based and DBSCAN-based tech-
niques require tuning. The LOG-based methods yield somewhat
worse RMSE metrics but do not require tuning, which makes them
somewhat preferable. Additionally, root queries and the associated
query templates effectively compress the workload in all but the
finest clusters. For example, for the LOG10 clustering methods,
the 896 queries are captured with only 35-37 root queries with both
services, which correspond to only 4% of the original workload.

4.5 Benefits of Cross-tier Compression
During workload compression, once a tier is compressed into a

Figure 8: PSLA performance error (average RMSE) against com-
plexity (# root queries) on Amazon considering all three tiers.

set of clusters and templates, the PSLAManager moves on to the
next tier. Before clustering the data at that tier, it drops the queries
whose runtimes do not improve, i.e., all queries that fall in the same
cluster as in the cheaper tier. In this section, we examine the impact
of this cross-tier compression step. Tables 1 and 2 show the result
for all 12 clustering methods.

In the case of Myria, we find that cross-tier compression can
reduce the number of query templates by up to 75%, as seen for
INTERVAL1000. In general, most of the merging occurs from Tier
2 to Tier 1 and from Tier 3 to Tier 1, which confirms the tier se-
lection results, where EMD values cause Tier 3 to be dropped first,
followed by Tier 2.

In the three-tier Amazon configuration, we find that cross-tier
compression can reduce the number of queries by up to 32%. All
of the merging occurs between the medium and large tiers only
and nothing is merged between the medium and small tiers. This
confirms the fact that queries between large and medium tiers have
similar runtimes, as computed by the EMD metric in Section 4.3.

As the PSLAManager drops queries whose runtime does not im-
prove, the clusters that are created for the higher tiers also have
lower RMSE values as shown in Tables 1. and 2

Cross-tier compression is thus an effective tool to reduce PSLA
complexity and possibly also PSLA error.

4.6 Query Time Predictions
We now consider the problem of query runtime predictions. We

study the implications of errors in query runtime estimates on the
generated PSLAs in the next section (Section 4.7).

Accurate query time prediction is a known and difficult problem.
This step is not a contribution of this paper. However, we need to
evaluate how errors in query time predictions affect the generated
PSLA.

Based on prior work [11], we build a machine-learning model
(M5Rules) that uses query features from the query optimizer to
predict the runtime for each query in our generated workload. We
learn the model on the synthetic database generated using the Paral-
lel Data Generation Framework tool [25], which we call the PDGF
dataset. We then test the learned model on the SSB benchmark
database. Both are 10GB in size. We build separate models for
Amazon and for Myria.

In the case of Amazon, we learn a model based on features ex-
tracted from the SQL Server query optimizer. We use the following
features: estimated number of rows in query result, estimated total



Technique Intra-cluster compression only Intra-cluster and cross-tier compression
# of clusters # of query roots RMSE # of clusters # of query roots RMSE

INTERVAL1000 4 4 0.93 1 1 0.90
INTERVAL500 4 4 0.88 1 1 0.82
INTERVAL300 5 7 0.70 3 5 0.33
INTERVAL100 10 23 0.31 10 21 0.10
INTERVAL10 92 233 0.03 90 221 0.01
LOG10 11 37 0.64 9 33 0.46
LOGHUMAN 13 47 0.47 9 32 0.20
DBSCAN10 511 686 0.004 448 605 0.002
DBSCAN100 34 60 0.12 24 50 0.08
DBSCAN300 6 11 0.59 5 10 0.41
DBSCAN500 4 4 0.77 2 2 0.38
DBSCAN1000 4 4 0.77 2 2 0.38

Table 1: Effect of workload compression on Myria. Initial workload comprises 3584 queries (896 queries in 4 tiers).

Technique Intra-cluster compression only Intra-cluster and cross-tier compression
# of clusters # of query roots RMSE # of clusters # of query roots RMSE

INTERVAL1000 7 13 0.39 7 12 0.19
INTERVAL500 12 31 0.21 12 29 0.09
INTERVAL300 19 54 0.31 18 49 0.06
INTERVAL100 53 146 0.03 53 135 0.01
INTERVAL10 310 593 0.008 307 579 0.003
LOG10 11 35 0.52 10 34 0.41
LOGHUMAN 13 42 0.40 10 32 0.22
DBSCAN10 824 1016 0.003 748 941 0.001
DBSCAN100 340 514 0.008 266 429 0.003
DBSCAN300 120 209 0.03 87 142 0.02
DBSCAN500 43 78 0.09 35 64 0.06
DBSCAN1000 13 26 0.29 12 26 0.19

Table 2: Effect of workload compression on Amazon. Initial workload comprises of 2688 queries (896 queries in 3 tiers).

IO, estimated total CPU, average row size for query output, esti-
mated total cost. We also add the following features as we found
them to improve query time estimates: the number of tables joined
in the query, the total size of the input tables, and the selectivity of
the predicate that we apply to the fact table.

To build the model, we first use our workload generator to gen-
erate 1223 queries for the PDGF database. We then use the SQL
Server query optimizer to extract the features for these queries. We
finally execute each of these queries on each of the three Amazon
configurations (small, medium, and large). We execute each query
one time.

In the case of the Amazon cloud, a complicating factor for accu-
rate query time prediction is simply the high variance in query run-
times in this service. To estimate how much query times vary across
executions, we run all queries from the SSB benchmark three times
on each of the three configurations in Amazon. For each query,
we compute the (max(time)−min(time))

max(time)
over the three runs. Table 3

shows the average result for all queries. As the table shows, query
runtimes can easily vary on average by 15% (small instance) and
even 48% (large instance).

This high variance in query times de-emphasizes the need for
an accurate query time predictor and emphasizes the need for the
cloud service to handle potentially large differences between pre-
dicted and actual query times as we discuss further in Section 5.

We now evaluate the quality of the query time predictions. Given
the large differences in query times across executions, we evaluate
the model on each run separately. We also evaluate the predictions
on the median runtime across the three executions (separately com-
puted for each query). Table 4 shows the results. We plot both the
correlation coefficient and the relative absolute error of the model.
The correlation coefficient is high for all runs, ranging from 0.864

Configuration Average Runtime Variation
Small 0.149
Medium 0.181
Large 0.481

Table 3: Average variation in query runtimes across three ex-
ecutions of all SSB queries for each of the three Amazon in-
stances. We compute the runtime variation for each query as
max(time)−min(time)

max(time)
across three executions of the query.

to 0.999. The relative absolute error represents how much the pre-
dictions improve compared to simply predicting the average. In
this case, the lower the percentage, the better. This error ranges
from 4% to 24%, with the medium-size instance having the largest
prediction errors.

These results show that, for simple queries and without indexes,
a simple model can yield good query time predictions. Accurate
query time predictions are difficult and, in the cloud, are further
complicated by large variations in query times across executions.

We next evaluate query time predictions for the Myria service.
Here, the problem is simpler because we measure the runtimes in
an isolated setting, where there are no other processes competing
for resources on the cluster. Additionally, we measure all query
times on a cold cache.

To build the model, we execute each query from the PDGF
database once. To test the model, we execute each query from the
SSB database once as well. In the case of the Myria service, we
partition the fact table across workers and replicate all dimensions
tables. As a result, all joins become local joins that get pushed to
the PostgreSQL instances, which Myria uses as per-node storage.
For the feature vector, we use the same set of features as for Ama-
zon plus the estimated query cost from the PostgreSQL optimizer.



Correlation Coefficient Relative Absolute Error
Small

Run 1 0.999 4.09%
Run 2 0.999 7.19%
Run 3 0.980 15.27%

Median 0.955 20.13%
Medium

Run 1 0.864 24.28%
Run 2 0.874 23.87%
Run 3 0.882 24.63%

Median 0.868 24.16%
Large

Trial 1 0.933 14.90%
Trial 2 0.928 13.65%
Trial 3 0.932 16.14%

Median 0.953 24.14%

Table 4: Error on predicted runtimes for each of three runs on Ama-
zon and for the median runtime across the runs.

Correlation Relative Absolute Error
4 Workers 0.909 24.05%
6 Workers 0.921 21.79%
8 Workers 0.951 17.24%
16 Workers 0.951 17.24%

Table 5: Error on predicted runtimes for the Myria service.

Table 5 shows the results. Interestingly, while the correlation coef-
ficients are high, the relative absolute errors are no better than for
Amazon. They range between 17% and 24%. These results could
likely be significantly improved. For example, our current model
does not take into account possible skew in workload across work-
ers.

4.7 Effect of Query Time Prediction Inaccu-
racies

Finally, we generate the full PSLAs (all tiers) for both Amazon
and Myria using the predicted query times instead of the real run-
times. Figures 9 and 10 show the result.

For Myria, the PSLA using predicted times has fewer templates
than the PSLA with real runtimes (Figure 1). A closer look at the
templates from Figure 9 shows that the query runtimes appear to
be underestimated in many cases: Several templates appear with
lower time thresholds.

Since query runtimes are underestimated, more merging from
the more expensive tiers to the cheaper tiers also occur, resulting in
a PSLA with lower complexity. In fact, between these two PSLAs,
the number of query templates drops from 32 down to 14.

We observe a similar trend for Amazon with several templates
appearing with lower time thresholds and more cross-tier compres-
sion in the PSLA based on predicted runtimes. Additionally, for
Amazon, the PSLA generally shows more grouping in the query
times. Complexity decreases from 32 templates down to 11 be-
tween the PSLA that uses real runtimes and the one with predicted
runtimes.

Given these results, it is worthwhile to consider the trade-offs be-
tween overestimating and underestimating the runtimes for a par-
ticular service. If runtimes are slightly overestimated, there are no
surprises for the user in terms of queries not meeting their dead-
lines. On the other hand, this might hurt the cloud provider since
the PSLA will portray runtimes that are slower than what the ser-
vice can actually deliver. In contrast, underestimated query times
might disappoint the user if queries end up being slower than what
the PSLA indicated. We further discuss guaranteeing query times
in Section 5.

4.8 PSLA Generation Time

The PSLAManager can generate the concrete PSLAs shown in
Figures 9 and 10 in a short amount of time. For Myria, it takes ap-
proximately 27sec to generate a PSLA for the SSB dataset. In the
Amazon case, it takes an even short amount of time. Only approx-
imately 12sec.

Table 6 shows the runtime for each step involved in generating
the PSLA for the Myria service. The most expensive step in the
PSLA generation is the cross-tier compression step, which takes
approximately 19.7sec for the Myria PSLA, or approximately 73%
of the total PSLA generation time. Predicting runtimes takes ap-
proximately 2sec per tier. In this example, we consider only four
tiers. For some services, we could consider many more tiers. For
example, all clusters of size 1 through 20, in which case query time
prediction could become a significant overhead. We observe, how-
ever, that this step is easy to parallelize, which would keep the run-
time at 2sec if we simply process all tiers in parallel and lower for
an even higher degree of parallelism. For tier selection, it takes less
than 2msec to compute each EMD distance using bucket sizes of
either 10sec or 5sec. The runtime of this step depends on the total
number of buckets, which is small in this scenario. Finally, clus-
tering and template extraction is fast when using a threshold-based
method such as LOGHUMAN. It only takes 100msec for the most
expensive Tier 1. Tier 1 is most expensive because subsequent tiers
benefit from cross-tier compression before clustering. Query gen-
eration also takes a negligible amount of time compared to the other
steps. Only 2msec in total.

We see a similar trend in the Amazon case. Table 7, shows the
runtimes for each step in the PSLA process. Query generation takes
approximately the same amount of time as in the Myria case, as
expected. For predictions, it takes less than 1sec to predict the
runtimes for each tier. Amazon is faster since it uses fewer fea-
tures to predict the runtimes per query compared with Myria. On
the other hand, it takes slightly longer to compute the EMDs for
Amazon since the distributions of runtimes per tier are much more
widely spread, leading to histograms with larger numbers of buck-
ets. Again, the most expensive step is the cross-tier compression.
Although it is faster than for the Myria PSLA due to the smaller
number of tiers, this step takes approximately 7.5sec or 62% of the
PSLA generation time.

5. DISCUSSION
There are several direct extensions to the initial PSLA genera-

tion approach presented in this paper. First, our approach currently
assumes no indexes. We posit that physical tuning should happen
once the user starts to query the data. The cloud can use existing
methods to recommend indexes. It can then re-compute PSLAs but,
this time, include the specific queries that the user is running and
assume different combination of indexes. This approach, however,
requires an extended model for query time prediction and makes
it more difficult to compare service tiers with different indexes be-
cause each index accelerates different queries.

Second, many variants of the PSLA approach are possible: We
could vary the structure of the query templates and the complexity
of the queries shown in the PSLAs. We could use different defini-
tions for PSLA complexity and error metrics. We could also refine
the PSLAs as the user starts to run concrete queries by observing
both the queries executed by the user and their performance. Other
extensions are also possible.

A third challenge raised by PSLAs relates to query time guar-
antees. With our PSLA approach, we argue that cloud services
should sell predictable query times in spite of errors in query time
estimates and resource sharing across users (a.k.a., tenants), which
can cause high variance in query execution times. To guarantee



Figure 9: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the Star Schema Benchmark and the shared-nothing
Myria DBMS service based on predicted runtimes.

Figure 10: Example Personalized Service Level Agreement (PSLA) for a 10GB instance of the Star Schema Benchmark and the single-node
Amazon SQL Server instance based on predicted runtimes.

query times, the cloud can use different methods. It can place each
tenant in its own set of virtual machines, which correspond to the
purchased resources. While this approach isolates tenants well, it
limits the flexibility of the cloud in terms of adjusting the resources
assigned to a query in case of query time mis-prediction for ex-
ample. The cloud can dynamically add VMs when necessary, but
doing so during query execution can be expensive as it requires mi-
grating state. The approach that seems most promising, and that we
are investigating, is to spread user queries evenly across many vir-
tual machines and use scheduling to ensure that each user gets on
average the amount of resources that he or she purchased, but gets
more resources when necessary to meet query time guarantees. The
cloud can further leverage algorithms for judicious tenant consoli-
dation [16] to minimize interference. The goal is to sell predictable
performance to users.

Beyond these fundamental extensions, additional questions re-
main: Can the cloud use the PSLAs to help users reason about the
cost of different queries? Can it help users to rewrite expensive
queries into cheaper, possibly somewhat different, ones? What else
should change about the interface between users and the DBMS
now that the latter is a cloud service?

6. RELATED WORK
In prior work [22], we introduced the vision for PSLAs. In this

paper, we develop the techniques to generate a PSLA automatically
from a given dataset and cloud DBMS.

Admission control frameworks [32, 30, 29] provide techniques
to reschedule or even reject queries that cannot meet SLA objec-
tives. They use system-wide fixed query performance thresholds.
Our work, in contrast, does not reject any queries and PSLAs in-
clude different thresholds for different groups of queries and tiers.

Some works present tenant placement optimizations given
SLAs [17, 20, 19]. Similarly, Bazaar [16] optimizes cloud re-
sources offering a so-called job-centric interface, where perfor-
mance and cost define the SLOs for user jobs or applications. In
our work, instead, we do not fix the SLA objective functions nor

the workload; we show representative query templates with their
associated price-performance possibilities (defined by the underly-
ing system resources) as a menu for the user to choose from.

The Elastisizer [14] can estimate the performance and cost of a
MapReduce workload in different cluster configurations. The ap-
proach, however, requires as input the profile from an earlier exe-
cution of the workload. PSLAs address the scenarios where neither
a prior execution nor even a workload are available.

The idea of representing multiple queries with a single template
is not new. The term “query template” is commonly used to refer to
parameterized queries differing in their selection predicates [26] or
in the projected attributes [2]. We generalize the notion of a query
template to include queries that differ in the projected attributes,
relations used in joins (the joined tables are also parameters in our
templates), and selection predicates.

The work in the literature closest to ours is by Chaudhuri et al. [9,
8], in the context of SQL workload compression. The goal of their
work is to compress workloads of queries to improve scalability of
tasks such as index selection, without compromising the quality of
such tasks’ results. In contrast, our goal is to cluster all possible
queries by runtimes and combine queries into templates guarantee-
ing coverage in terms of query capabilities. Thus, our optimization
goal and workload compression method are different.

Howe et al. [15] looked at the problem of generating sample
queries from user databases. Their work is complementary to
our workload generation as it infers possible joins between tables,
while we assume the presence of a schema with PK-FK constraints.

7. CONCLUSION
We develop an approach to generate Personalized Service Level

Agreements that show users a selection of service tiers with differ-
ent price-performance options to analyze their data using a cloud
service. We consider the PSLA an important direction for making
cloud DMBSs easier to use in a cost-effective manner.



Average Runtime (Milliseconds) Standard Deviation
Query Generation

1 Table 0.21 0.40
2 Tables 0.45 0.59
3 Tables 0.98 0.87
4 Tables 1.34 0.58
5 Tables 2.07 0.84

Predictions
Tier 1 1313.36 21.01
Tier 1 & 2 2562.98 29.68
Tier 1, 2 & 3 5894.43 69.10
Tier 1, 2, 3 & 4 7501.20 74.72

EMD 38 Buckets (10 sec) 1.5 .002
76 Buckets (5 sec) 0.4 .004

Log-Human Intra-Cluster Compression
Tier 1 102.51 2.68
Tier 2 11.77 0.14
Tier 3 0.006 .0003
Tier 4 1.73 0.02

Log-Human Cross-Tier Compression
Tier 2 to Tier 1 9665.69 69.92
Tier 3 to Tier 1 6733.89 99.00
Tier 4 to Tier 1 3386.46 62.57
Tier 3 to Tier 2 0.87 0.07
Tier 4 to Tier 2 0.91 0.14
Tier 4 to Tier 3 0.46 0.23

Table 6: PSLAManager runtime broken into its main components. The runtimes shown are for the Myria PSLA.

Runtime (Milliseconds) Standard Deviation
Query Generation

1 Table 0.23 0.44
2 Tables 0.53 0.53
3 Tables 0.71 0.59
4 Tables 1.37 1.10
5 Tables 1.97 0.94

Predictions
Tier 1 859.86 13.720
Tier 1 & 2 1834.76 20.032
Tier 1, 2 & 3 2990.18 34.288

EMD 315 Buckets (10 sec) 68.1 7.3
629 Buckets (5 sec) 527.5 23.2

Log-Human Intra-Cluster Compression
Tier 1 151.60 2.98
Tier 2 61.78 0.83
Tier 3 0.004 0.007

Log-Human Cross-Tier Compression
Tier 2 to Tier 1 3978.60 43.87
Tier 3 to Tier 1 3297.08 70.37
Tier 3 to Tier 2 277.76 4.52

Table 7: PSLAManager runtime broken into its main components. The runtimes shown are for the Amazon PSLA .
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