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ABSTRACT
There is a fundamental discrepancy between the targeted and actual
users of current analytics frameworks. Most systems are designed
for the challenges of the Googles and Facebooks of the world—
processing petabytes of data distributed across large cloud deploy-
ments consisting of thousands of cheap commodity machines. Yet,
the vast majority of users analyze relatively small datasets of up
to several terabytes in size, perform primarily compute-intensive
operations, and operate clusters ranging from only a few to a few
dozen nodes. Targeting these users fundamentally changes the way
we should build analytics systems.

This paper describes our vision for the design of TUPLEWARE,
a new system specifically aimed at complex analytics on small
clusters. TUPLEWARE’s architecture brings together ideas from the
database and compiler communities to create a powerful end-to-end
solution for data analysis that compiles workflows of user-defined
functions into distributed programs. Our preliminary results show
performance improvements of up to three orders of magnitude over
alternative systems.

1. INTRODUCTION
Current analytics frameworks (e.g., Hadoop [1], Spark [43]) are

designed to process massive datasets distributed across huge clusters.
These assumptions represent the problems faced by giant Internet
companies but neglect the needs of the typical user. Instead, we
argue that typical users analyze datasets that are not that big, perform
analytics tasks that are becoming increasingly complex, and utilize
clusters that are much smaller than the infrastructures targeted by
existing systems.

(1) “Big” Data: The ubiquity of big data is greatly exaggerated.
For the vast majority of users, physical data size is rarely the is-
sue. The typical Cloudera customer, for instance, seldom analyzes
datasets that exceed a few terabytes in size [16], and even compa-
nies as large as Facebook, Microsoft, and Yahoo! frequently run
analytics jobs on datasets smaller than 100GB [38]. Additionally,
sampling techniques that further reduce the size of the input dataset
are extremely common, since they help to improve performance and
avoid model overfitting.
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(2) Big Analytics: Complex tasks, ranging from machine learning
(ML) to advanced statistics, have come to define the modern ana-
lytics landscape. As users constantly strive to extract more value
than ever from their data, algorithms are becoming increasingly
compute-intensive, and the actual processing becomes the true prob-
lem. These tasks are most naturally expressed as workflows of
user-defined functions (UDFs), which can contain arbitrary logic.
Furthermore, any effort that requires users to be bound to a single
programming environment is unlikely to achieve widespread adop-
tion. We therefore need a language-agnostic solution that will allow
users to stay within their preferred computing environments where
they are most productive while also optimizing specifically around
the features of UDFs.

(3) Small Clusters: Most frameworks are built around the major
bottlenecks of large cloud deployments, in which optimizing for
data movement (e.g., disk I/O, network transfers) is the primary
focus. Yet, the vast majority of users typically operate smaller,
more powerful clusters ranging in size from a few to a few dozen
nodes [30] that are easier to maintain with readily available vendor
support [24]. These clusters generally have abundant amounts of
RAM, making it feasible to keep even large datasets entirely in
memory with just a few machines, and individual nodes often con-
tain high-end multi-core processors with advanced features (e.g.,
SSE/AVX, DDIO). Furthermore, recent advances in networking
technologies have started to change the game for distributed data
processing by providing bandwidth on the same order of magnitude
as the memory bus. For instance, InfiniBand FDR 4× bandwidth is
roughly equivalent to DDR3-1066 (see Figure 1), suggesting that
a single memory channel can be fully saturated by data transferred
over the network.

One possible solution to these three observations is to adapt recent
work on high-speed DBMSs for traditional OLAP workloads [45,
26, 20]. While these systems excel at simple calculations, they have
two significant weaknesses when dealing with the next generation
of analytics workloads. Foremost, from a usability perspective,
SQL is exceptionally cumbersome for expressing many classes
of problems, such as ML algorithms. Second, many of the well-
known optimizations for relational queries no longer suffice for
more complex analytics workflows.

Another approach involves building upon the previously men-
tioned, more flexible MapReduce-style analytics frameworks that
specifically treat UDFs as first-class citizens. However, these sys-
tems still regard UDFs as black boxes, and thus they have difficulty
leveraging the characteristics of UDFs to optimize workflows at a
low level.

Since neither of these alternatives seems adequate, we believe
that the most promising avenue for improving the performance of
complex analytics tasks involves extending existing code generation



0	  
5	  
10	  
15	  
20	  
25	  
30	  
35	  
40	  

1x
	  

4x
	  

12
x	   1x
	  

4x
	  

12
x	   1x
	  

4x
	  

12
x	   1x
	  

4x
	  

12
x	   1x
	  

4x
	  

12
x	   1x
	  

4x
	  

12
x	  

80
0	  

10
66
	  

13
33
	  

16
00
	  

18
66
	  

21
33
	  

SDR	   DDR	   QDR	   FDR-‐10	   FDR	   EDR	   DDR3	  

InfiniBand	   Memory	  

G
B/
s	  

Figure 1: InfiniBand vs Memory Bandwidth

techniques for traditional SQL workloads [28] to this new domain.
In order to explore this idea, we are developing TUPLEWARE, a high-
performance distributed analytics system that compiles workflows of
UDFs directly to compact, self-contained distributed programs. Our
approach marries ideas from the DBMS and compiler communities
to take full advantage of the underlying hardware.

We have designed TUPLEWARE to integrate with the LLVM [29]
compiler framework, which provides a number of unique advan-
tages over traditional systems. From a usability perspective, LLVM
makes the frontend completely language-agnostic, so users can write
programs in their favorite programming language. From an architec-
ture perspective, LLVM allows the system to introspect UDFs and
gather statistics useful for modeling expected execution behavior.
Therefore, UDFs are no longer black boxes, opening the door for a
completely new class of optimizations that consider UDF character-
istics in order to generate different code on a case-by-case basis. In
summary, we make the following contributions:

• We present TUPLEWARE, a high-performance distributed system
designed specifically for complex, compute-intensive analytics
tasks on small clusters.

• We propose a novel process for program synthesis that opens the
door for a new breed of code generation optimizations by con-
sidering properties about the data, computations, and underlying
hardware.

• We benchmarked TUPLEWARE and achieved speedups of up to
three orders of magnitude over other systems for several common
analytics tasks.

2. TUPLEWARE
The goal of TUPLEWARE is to specifically target complex analyt-

ics on more reasonable dataset sizes while taking full advantage of
the unique characteristics of smaller, more powerful clusters. Opti-
mizing for small clusters fundamentally changes the way we should
design analytics tools, since workloads are usually limited by the
computation rather than the data transfer. With the bottlenecks of
large cloud deployments gone, the last remaining bottleneck is the
CPU, and current systems cannot be easily adjusted to meet these
new challenges. For instance, recent attempts to adapt Hadoop for
InfiniBand produced rather disappointing results [31, 22].

We are therefore building TUPLEWARE from the ground up to
address the computation bottleneck. As previously mentioned, TU-
PLEWARE leverages LLVM to optimize workflows without borders
between UDFs, seamlessly integrating the computations with the
overarching control flow in order to synthesize the most efficient
code possible. As shown in Figure 2, TUPLEWARE consists of three
main parts: (1) Frontend, (2) Program Synthesis, and (3) Execution.
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Figure 2: TUPLEWARE’s Architecture

2.1 Frontend
Users want the ability to concisely express complex workflows in

their language of choice without having to consider low-level opti-
mizations or the intricacies of distributed execution. Similar to many
recent frameworks (e.g., Spark, Stratosphere [23], DryadLINQ [42]),
TUPLEWARE allows users to define complex workflows directly in-
side a host language by passing UDFs to API operators. However, by
basing our platform on LLVM, TUPLEWARE is language-agnostic
and can support any language with an LLVM compiler.

TUPLEWARE’s algebra is based on the strong foundation of func-
tional programming with monads. We define this algebra on a data
structure called a TupleSet comprised of a data relation and its asso-
ciated Context, which is a dictionary of key-value pairs that stores
the shared state. This abstraction allows for efficient parallel data
processing and attempts to: (1) strike a middle ground between the
expressiveness of MapReduce and optimizability of SQL; (2) na-
tively handle iterative workflows in order to optimize transparently
across iterations; and (3) provide flexible shared state primitives with
configurable synchronization patterns that can be directly accessed
from within the workflow.

Expressive & Optimizable: While popular, many have criti-
cized MapReduce [18] for rejecting the advantages (e.g., optimiz-
ability, usability) of high-level languages like SQL [3]. However,
SQL is unwieldy for expressing complex workflows, resulting in
convoluted queries that are difficult to understand and maintain.
Some recent frameworks (e.g., Spark, Stratosphere, DryadLINQ)
have started to bridge the gap between expressiveness and optimiz-
ability by supporting arbitrary UDF workflows, but they do not
consider how to optimize execution at a low level.

Iterations: Many algorithms are most naturally expressed iter-
atively, but neither MapReduce nor SQL effectively supports iter-
ation [30, 17]. Handling iterations via an external driver program
on the client is straightforward, but cross-iteration optimization be-
comes difficult. Both Spark and DryadLINQ take this approach,
submitting a completely independent job for each iteration. In con-
trast, a number of iterative extensions to MapReduce incorporate
native iteration (e.g., Stratosphere, HaLoop [11], Twister [19]), but
they either lack low-level optimization potential or do not scale well.

Shared State: Shared state is a key ingredient of many algo-
rithms, but several attempts to support distributed shared state within
a MapReduce-style framework severely restrict how and when pro-
grams can interact with global variables. For instance, the Iterative
Map-Reduce-Update [10] model supplies map and reduce functions



with read-only copies of state values that are recalculated during
the update phase after each iteration. However, this paradigm is de-
signed for iterative refinement algorithms and cannot model convex
optimization problems (e.g., neural networks, maximum likelihood
Gaussian mixtures). Furthermore, Iterative Map-Reduce-Update
precludes algorithms with different synchronization patterns (e.g.,
Hogwild! [36]). Spark also supports shared state via objects called
accumulators, which can be used only for simple count or sum ag-
gregations on a single key, and their values cannot be read from
within the workflow. Additionally, Spark’s broadcast variables allow
remote machines to cache large read-only values between tasks, but
they cannot be used to represent shared state that changes frequently
(e.g., ML models) because they can never be updated.

2.2 Program Synthesis
After a user has composed and submitted an analytics task, Tu-

pleware automatically compiles the workflow into a distributed
program during the Program Synthesis stage. Program synthesis is
the process of automatically compiling a workflow of UDFs into a
distributed program, which involves (1) analyzing UDFs in order to
perform low-level optimizations, (2) determining how to parallelize
a task in a distributed setting, and (3) generating code to actually
execute the workflow.

UDF Analyzer: Systems that treat UDFs as black boxes have
difficulty making informed decisions about how best to execute a
given workflow. Although recent frameworks (e.g., Stratosphere)
have proposed methods for introspecting UDFs, they primarily fo-
cus on detecting special patterns (e.g., if a map filters tuples) in
order to apply high-level workflow rewrites. In contrast, our process
leverages the LLVM framework to look deeper inside UDFs and
gather statistics for optimizing workflows at a low level. The UDF
Analyzer examines the LLVM intermediate representation of each
UDF to determine different features (e.g., vectorizability, compu-
tation cycle estimates, memory bandwidth predictions) useful for
modeling execution behavior. This is a crucial step in our program
synthesis process and allows us to generate more efficient code by
considering low-level UDF characteristics.

Planner: Data parallel processing allows for the utilization of
all available computing resources to more efficiently evaluate a
given workflow. Our programming model supplies the Planner
with information about the parallelization semantics of different
operations in a workflow. The Planner can then determine how
best to deploy a job given the available resources and physical data
layout, taking into account the optimum amount of parallelization
for each individual operation. For example, workflows involving
smaller datasets may not benefit from massive parallelization due
to the associated deployment overhead. The Planner annotates a
logical execution plan with this information before passing it to the
Optimizer for translation to a distributed program.

Optimizer: Code generation is the process by which compilers
translate a high-level language into an optimized low-level form.
As other work has shown [28], SQL query compilation techniques
can harness the full potential of the underlying hardware, and TU-
PLEWARE extends these techniques by applying them to the domain
of complex analytics. The Optimizer translates the logical plan
produced by the Planner into a self-contained distributed program
and uses UDF statistics gathered by the UDF Analyzer to apply
low-level optimizations tailored to the underlying hardware. As part
of the translation process, the Optimizer produces all of the data
structure, control flow, synchronization, and communication code
necessary to form a complete distributed program. We describe the
different types of optimizations and provide an example in Section 3.

2.3 Execution
The result of the Program Synthesis process is a fully compiled,

self-contained distributed program that includes all necessary com-
munication and synchronization code, thereby minimizing the over-
head associated with interpreted execution models. This program
is then automatically deployed on a cluster of machines, visualized
in Figure 2 as 10 nodes (boxes) each with 4 hyper-threads (circles
inside the boxes). We take a multi-tiered approach to distributed
execution and assign special roles to individual hyper-threads, as
described below.

Global Manager: The Global Manager (GM) is at the top of
the hierarchy and supervises the current stage of the execution
(e.g., maintaining the distributed catalog, monitoring cluster health,
coarse-grained partitioning of data, keeping track of shared state
values). We reserve a single hyper-thread in the cluster for the GM
(located in Node 1), allowing other hyper-threads to execute data
processing tasks uninterrupted.

Local Manager: We dedicate one hyper-thread per node as a
Local Manager (LM), which is responsible for the fine-grained
management of the local shared memory. Similar to DBMSs, TU-
PLEWARE manages its own memory pool and tries to avoid memory
allocations when possible. Therefore, the LM is responsible for
keeping track of all active TupleSets and performing garbage collec-
tion when necessary. UDFs that allocate their own memory, though,
are not managed by TUPLEWARE’s garbage collector. We also try to
avoid unnecessary object creation and data copying when possible.
For instance, TUPLEWARE can perform updates in-place if the data
is not required in subsequent computations. Additionally, while the
LM is idle, it can reorganize and compact the data.

Executor Thread: The LM is also responsible for actually de-
ploying compiled programs and does so by spawning new execu-
tor threads (E), which actually execute the workflow. Assigning
each thread to a dedicated core allows it to run without interrup-
tion and avoids costly context switching and CPU-cache pollution.
During execution, these threads request data from the LM in an
asynchronous fashion, and the LM responds with the data and an
allocated result buffer. Since TUPLEWARE’s data request model is
multi-tiered and pull-based, we achieve automatic load balancing
with minimal overhead. Each thread requests data in small blocks
that fit in the CPU cache from the LM, and each LM in turn re-
quests larger blocks of data from the GM. All remote data requests
occur asynchronously, and blocks are requested in advance to mask
transfer latency.

3. OPTIMIZATIONS
By integrating high-level query optimization techniques with

low-level compiler techniques, we believe TUPLEWARE is able to
push the envelope of query optimizations to new grounds. We can
leverage our unique architecture to apply optimizations that were
previously impossible.

3.1 Optimization Categories
Since our system can introspect UDFs and generates code for each

workflow, our optimizer can apply a broad range of optimizations
that occur on both a logical and physical level, which we divide into
three categories.

High-Level: We utilize well-known query optimization tech-
niques, including predicate pushdown and join reordering. Addi-
tionally, we proposed a purely functional programming model that
allows for the integration of other traditional optimizations from the
programming language community. All high-level optimizations
rely on metadata and algebra semantics, information that is unavail-
able to compilers, but are not particularly unique to our approach.



Low-Level: Unlike other systems that use interpreted execu-
tion models, Volcano-style iterators, or remote procedure calls, our
code generation approach eliminates much associated overhead by
compiling in these mechanisms. We also gain many compiler op-
timizations (e.g., SIMD vectorization, function inlining) “for free”
by compiling workflows, but these optimizations occur at a much
lower level than DBMSs typically consider.

Combined: Some systems incorporate DBMS and compiler op-
timizations separately, first performing algebraic transformations
and then independently generating code based upon a fixed strat-
egy. On the other hand, our program synthesis process combines an
optimizable high-level algebra and statistics gathered by the UDF
Analyzer with the ability to dynamically generate code, enabling op-
timizations that would be impossible for either a DBMS or compiler
alone. Optimizations in this category consider (1) high-level algebra
semantics, (2) metadata, and (3) low-level UDF statistics together
to synthesize optimal code on a case-by-case basis. We provide an
example of one such optimization for selection operations in the
next section.

3.2 Example
We are exploring compilation techniques for selections within the

context of UDF-centric workflows to generate different code based
upon characteristics about the data (e.g., selectivity) and the com-
putations (e.g., complexity). For example, consider the following
workflow defined on a TupleSet ts with selection predicate p and
map function f :

ts.select(x => p(x)).map(x => f(x))

The most straightforward way to execute this workflow is the
branch strategy. As shown in the code snippet below, for each input
tuple in data, a conditional statement checks to see whether that
tuple satisfies the predicate p. If the predicate is satisfied, then
the map function f is applied to the tuple, which is then added to
an output buffer result; otherwise, the loop skips the tuple and
proceeds to the next iteration.

data[N]; result[M]; pos = 0;
for (i = 0; i < N; i++)
if (p(data[i]))
result[pos++] = f(data[i]);

This strategy performs well for both very low and very high selec-
tivities, when the CPU can perform effective branch prediction. For
intermediate selectivities, though, branch misprediction penalties
have a major negative impact on performance.

An alternative to the branch approach is the no-branch strategy,
which eliminates branch mispredictions by replacing the control
dependency with a data dependency. The code snippet below shows
how this approach maintains a pointer pos to the current location
in the output buffer that is incremented every time an input tuple
satisfies the predicate. If a tuple does not satisfy the predicate, then
the pointer is not incremented and the previous value is overwritten.

data[N]; result[M]; pos = 0;
for (i = 0; i < N; i++) {

result[pos] = f(data[i]);
pos += p(data[i]));

}

Although the tradeoffs between these two approaches have been
studied by other work [37], we extend these techniques by examin-
ing how UDFs impact the decision. For instance, a very complex
map function f might benefit from the branching in the first strategy,
whereas a very simple f would not be prohibitive for the no-branch
strategy. We are also investigating how to optimize at a low level
by generating different code that considers: (1) how best to handle

arbitrary UDFs that come after a selection in a workflow; (2) how
the optimal strategy changes when considering multiple predicates
of varying complexities; and (3) how to allocate space for the result
of a selection.

Subsequent UDFs: Unlike standard DBMSs, TUPLEWARE con-
siders selection operations in the context of more complex UDF
workflows. As described, a traditional approach would attempt to
pipeline selections with all subsequent operations in the workflow,
but considering the characteristics of these subsequent UDFs might
change the optimal way to generate the code. For example, it may
sometimes be better to defer execution of the remainder of the work-
flow until filling an intermediate buffer with tuples that satisfy the
predicate, and the benefits would be twofold: (1) far better instruc-
tion locality because the processing occurs in a tight loop free of
conditional branches; and (2) allowing for vectorization that would
otherwise be prevented by the conditional statement.

Multiple Predicates: Increasing the number of predicates shifts
the bottleneck from branch mispredictions to the actual predicate
evaluation. The no-branch strategy always performs a constant
amount of work, which increases linearly with each additional pred-
icate. Conversely, short-circuit evaluation in the branch strategy
becomes increasingly valuable, thereby making this approach an
attractive option. The fixed nature of predicate evaluation in the
no-branch strategy, however, lends itself to SIMD vectorization, and
we notice a significant opportunity for the vectorized computation of
compound predicates as demonstrated by promising initial results.

Result Allocation: Result allocation is particularly difficult for
selections, since the output size is not known a priori. The most
obvious way to completely avoid over-allocation is to allocate space
for only one result tuple every time an input tuple passes the predi-
cate. However, the overhead of tuple-at-a-time allocation quickly
becomes prohibitive for even relatively small data sizes. The other
extreme would assume a worst case scenario and allocate all possible
necessary space, thereby paying a larger allocation penalty once at
the beginning and avoiding result bounds checking. This approach
may work for very high selectivities but ultimately wastes a lot of
space. Therefore, an intermediate allocation strategy that incremen-
tally allocates blocks of tuples seems most promising, and we are
looking into the tradeoffs associated with these various strategies.

4. PRELIMINARY RESULTS
We evaluated our TUPLEWARE prototype against two popular

analytics frameworks (Hadoop 2.4.0 and Spark 1.1.0) on a small,
powerful cluster consisting of 10×c3.8xlarge EC2 instances
with Intel E5-2680v2 processors (10 cores, 25MB Cache), 60GB
RAM, 2× 320GB SSDs, and 10 Gigabit*4 Ethernet. Our prelimi-
nary results show that our techniques can outperform these systems
by up to three orders of magnitude for the tested workloads.

4.1 Workloads and Data
Our benchmarks included five common ML tasks that operate on

datasets of 1, 10, and 100GB in size. We implemented a consistent
version of each algorithm across all systems using synthetic datasets
in order to test across a range of data characteristics (e.g., size,
dimensionality, skew). For iterative algorithms, we report the total
time taken to complete 20 iterations. We record the total runtime
of each algorithm after the input data has been loaded into memory
and parsed, except in the case of Hadoop, which must always read
from and write to HDFS. We now describe each ML task.

K-means: K-means is an iterative clustering algorithm that parti-
tions a dataset into k clusters. Our test datasets were generated from
four distinct centroids with a small amount of random noise.

Linear Regression: Linear regression produces a model by fit-
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Figure 3: Preliminary Benchmarking Results

ting a linear equation to a set of observed data points. Our implemen-
tation builds a model on data with 1024 features using a parallelized
batch gradient descent algorithm.

Logistic Regression: Logistic regression attempts to find a hy-
perplane w that best separates two classes of data by iteratively
computing the gradient and updating the parameters of w. We im-
plemented logistic regression with gradient descent on data with
1024 features.

Naive Bayes: A naive Bayes classifier is a conditional model that
uses feature independence assumptions to assign class labels. We
trained a naive Bayes classifier on a dataset with 1024 features and
10 possible labels.

PageRank: PageRank is an iterative link analysis algorithm that
assigns a weighted rank to each page in a web graph to measure
its relative significance. Our synthetic web graph had one million
distinct pages.

4.2 Discussion
As shown in Figure 3, TUPLEWARE outperforms Hadoop by up

to three orders of magnitude and Spark by up to two orders of
magnitude for the tested ML tasks.

TUPLEWARE is able to significantly outperform Hadoop because
of the substantial I/O overhead required for materializing interme-
diate results to disk between iterations. On the other hand, TUPLE-
WARE is able to cache intermediate results in memory and perform
hardware-level optimizations to greatly improve CPU efficiency.
For this reason, we measure the greatest speedups over Hadoop
on k-means, linear and logistic regression, and PageRank, whereas
the performance difference for naive Bayes is not as pronounced.
Furthermore, Hadoop’s simple API is not intended for complex
analytics, and the system is not designed to optimize workflows for
single-node performance.

Spark performs better than Hadoop for the iterative algorithms
because it allows users to keep the working set in memory, eliminat-
ing the need to materialize intermediate results to disk. Additionally,
Spark offers a richer API that allows the runtime to pipeline opera-
tors, further improving data locality. However, for CPU-intensive
ML tasks such as k-means, TUPLEWARE outperforms Spark by
synthesizing distributed programs and employing low-level code
generation optimizations.

In order to explain these speedups, we conducted a preliminary
performance breakdown to quantify the impact of some of TU-
PLEWARE’s distinguishing features. First, we found that although
C++ offers significantly lower level control than Java, the choice
of C++ over Java has relatively little overall impact on runtime
(around 2.5× faster for most workloads). We also found that by
compiling workflows directly into distributed programs, TUPLE-
WARE can both inline UDF calls and avoid the overhead associated

with Volcano-style iterators, improving performance by 2.5× and
4×, respectively. The remainder of the speedup can be attributed to
a combination of optimization techniques and intangible design dif-
ferences (e.g., workflow compilation, deployment architecture). We
are still investigating other factors and plan to have a more complete
performance breakdown in the future.

5. FUTURE DIRECTIONS
Code generation for UDF-centric workflows on modern hardware

offers a wide range of unique optimization opportunities. We now
outline three promising future research directions.

Automatic Compression: TUPLEWARE’s UDF Analyzer can
detect UDFs inside a workflow that are likely to be memory-bound.
An interesting line of work would be to automatically inject code to
compress and decompress data at different points in the workflow.
The challenge is not only to inject the code but also to develop an
accurate cost model that can decide based on the UDF and data
statistics whether compressing and decompressing data on-the-fly is
worthwhile. Similar to work examining how relational operations
can operate directly on compressed data [39], it might even be
possible to do the same for some UDFs.

On-Demand Fault Tolerance: As our experiments demonstrate,
TUPLEWARE can process gigabytes of data with sub-second re-
sponse times, suggesting that completely restarting the job entirely
would be simpler and more efficient in the rare event of a failure.
Extremely long-running jobs on the order of hours or days, though,
might benefit from intermediate result recoverability. In these cases,
TUPLEWARE could perform simple k-safe checkpoint replication.
However, unlike other systems, TUPLEWARE has a unique advan-
tage: since we fully synthesize distributed programs, we can option-
ally add these fault tolerance mechanisms on a case-by-case basis.
If our previously described program synthesis process estimates that
a particular job will have a long total runtime, we could combine
that estimation with the probability of a failure (given our intimate
knowledge of the underlying hardware) to decide whether to include
checkpointing code.

High-Performance Networks: High-performance networks of-
fer tremendous opportunities for data analytics, since they can pro-
vide bandwidth in the same ballpark as the memory bus. This
property changes a number of long-standing assumptions about
distributed data processing, including the primacy of data locality
and the common practice of always pushing the work to the data.
Furthermore, recent advances in Remote Direct Memory Access
(RDMA) improve data transfer latency and could allow the CPU to
concentrate on other tasks [32], and advanced CPU features, such
as Intel’s Data Direct I/O (DDIO) technology [6], might enable
the next generation of systems to read data directly into the local
CPU cache from another machine. Current frameworks, though, are
based on the TCP/IP stack and would require significant rewriting in
order to fully take advantage of these new technologies [31]. As the
network bottleneck starts to disappear, we therefore need a critical
rethinking of data partitioning and load balancing schemes.

6. RELATED WORK
While other work has looked at individual components, we plan

to use TUPLEWARE to collectively explore how to (1) easily and con-
cisely express UDF-centric workflows, (2) synthesize self-contained
distributed programs optimized at the hardware level, and (3) deploy
tasks efficiently on a small cluster.

6.1 Programming Model
Numerous extensions have been proposed to support iteration



and shared state within MapReduce [11, 19, 7], and some projects
(e.g., SystemML [21]) go a step further by providing a high-level
language that is translated into MapReduce tasks. Conversely, TU-
PLEWARE natively integrates iterations and shared state to support
this functionality without sacrificing low-level optimization poten-
tial. Other programming models, such as FlumeJava [14], Ciel [33],
and Piccolo [34] lack the low-level optimization potential that TU-
PLEWARE’s frontend provides.

DryadLINQ [42] is similar in spirit to TUPLEWARE’s frontend
and allows users to perform relational transformations directly
in any .NET host language. Compared to TUPLEWARE, though,
DryadLINQ cannot easily express updates to shared state and re-
quires an external driver program for iterative queries, which pre-
cludes cross-iteration optimizations.

Scope [13] provides a declarative scripting language that is trans-
lated into distributed programs for deployment in a cluster. How-
ever, Scope primarily focuses on SQL-like queries against massive
datasets rather than supporting UDF-centric workflows.

TUPLEWARE also has commonalities with the programming mod-
els proposed by Spark [43] and Stratosphere [23]. These systems
have taken steps in the right direction by providing richer APIs that
can supply an optimizer with additional information about the work-
flow, thus permitting standard high-level optimizations. In addition
to these more traditional optimizations, TUPLEWARE’s algebra is
designed specifically to enable low-level optimizations that target
the underlying hardware, as well as to efficiently support distributed
shared state.

6.2 Code Generation
Code generation for query evaluation was proposed as early as

System R [9], but this technique has recently gained popularity as a
means to improve query performance for in-memory DBMSs [35,
28]. Both HyPer [26] and VectorWise [46] propose different opti-
mization strategies for query compilation, but these systems focus
on SQL and do not optimize for UDFs. LegoBase [27] includes a
query engine written in Scala that generates specialized C code and
allows for continuous optimization, but LegoBase also concentrates
on SQL and does not consider UDFs.

DryadLINQ compiles user-defined workflows using the .NET
framework but applies only traditional high-level optimizations.
Similarly, Tenzing [15] and Impala [2] are SQL compilation engines
that also focus on simple queries over large datasets.

OptiML [40] offers a Scala-embedded, domain-specific language
used to generate execution code that targets specialized hardware
(e.g., GPUs) on a single machine. TUPLEWARE on the other hand
provides a general, language-agnostic frontend used to synthesize
LLVM-based distributed executables for deployment in a cluster.

6.3 Single-Node Frameworks
BID Data Suite [12] and Phoenix [41] are high performance

single-node frameworks targeting general analytics, but these sys-
tems cannot scale to multiple machines or beyond small datasets.
Scientific computing languages like R [5] and Matlab [4] have these
same limitations. More specialized systems (e.g., Hogwild! [36],
DimmWitted [44]) provide highly optimized implementations for
specific algorithms on a single machine, whereas TUPLEWARE is
intended for general analytics in a distributed environment.

7. CONCLUSION
Complex analytics tasks have become commonplace for a wide

range of users. However, instead of targeting the use cases and
computing resources of the typical user, existing frameworks are
designed primarily for working with huge datasets on large cloud

deployments with thousands of commodity machines. This paper
described our vision for TUPLEWARE, a new system geared towards
compute-intensive, in-memory analytics on small clusters. TUPLE-
WARE combines ideas from the database and compiler communities
to create a user-friendly yet highly efficient end-to-end data anal-
ysis solution. Our preliminary experiments demonstrated that our
approach can achieve speedups of up to several orders of magnitude
for common ML tasks.
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