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1. ABSTRACT 

RDBMSs are designed to manage well-structured data requiring 

users to design a schema before storing and querying data. This 

is the ‘schema first, data later’ approach. However, there are 

significant amount of unstructured data and semi-structured data 

that cannot be effectively modelled this way. Even if certain 

parts of the data can be modelled using schema, the inclusion of 

all fields would typically lead to a very large schema with many 

optional fields and with frequent schema evolution as data 

instances vary widely and evolve fast. Obviously, these data 

requires the ‘data first, schema later/never’ approach. We call 

these data Flexible Schema Data (FSD). In this paper, we 

describe the engineering principles and practices to manage FSD 

in RDBMSs to meet FSD’s unique requirements and challenges. 

We describe the limitations and issues of current practices and 

potential research opportunities.  Having a single data platform 

for managing both well-structured data and FSD is beneficial to 

users; this approach reduces significantly integration, migration, 

development, maintenance, and operational issues. 

Categories and Subject Descriptors 

H.2.4 [Database Management]: Systems – Relational 

databases, transaction processing. 

General Terms 
Algorithms, Management, Performance, Design, Languages, 

Standardization. 

Keywords 
JSON, SQL/JSON, Schema-less, No-SQL, XML, SQL/XML, 

Flexible Schema, MongoDB 

2. INTRODUCTION 

The focus on the ‘schema first, data later’ approach has so far 

prevented RDBMSs from being the ideal platform of managing 

FSD. Instead, FSD like support has been implemented in 

specialized DBMSs due to RDBMS is found to be inadequate to 

support schema evolution [43] to handle data whose structure 

changes a lot over time.  
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For managing unstructured documents, it is common to use 

content management systems that store documents as files with 

text index providing keyword search [13, 16]. For managing 

document-oriented semi-structured data, such as XML, 

MarkLogic NoSQL system [34] is popular with XQuery as 

query language.  As JSON becomes the data-centric semi-

structured data format, MongoDB [33] based NoSQL systems 

with JSON specific query language become a popular choice for 

managing JSON data. Polygolt storage with NoSQL [40] is 

getting popular. As the volume of FSD grows at an ever faster 

rate, the trend towards using these specialized NoSQL [4] based 

database systems accelerates. This trend leads to significantly 

increased complexity of the management of data since users 

cannot manage all of their data in one platform. When users 

have to work with different data platforms, they have to write 

data integration code in their applications. Users can not query 

all of their data using a single high level declarative query 

language. Instead, they have to use different query languages for 

querying different data and implement their own join algorithms 

to join between relational data and FSD. Last, but not the least, 

many specialized systems lack essential advanced functionality, 

such as bi-temporality, provenance, and fine grain security that 

are standard in modern RDBMSs. 

 

In contrary to [2], our goal is to enable RDBMSs to manage 

FSD along with relational data and thereby leveraging all the 

advanced data management services that have been developed 

over many years for relational data. All leading RDBMS 

platforms have supported XML data management using the 

SQL/XML [10] query language during the last decade so that 

XML and relational data can be queried and managed together. 

Lately, Oracle [21], Vertica [24], TeraData [25], Postgres SQL 

[7], and Sinew Hadapt System [22] are all supporting JSON data 

management by extending SQL so that JSON and relational data 

can be queried and managed together in an RDBMS. The 

benefits of extending RDBMSs to manage FSD are: 

 

• Enabling schema-less data application development 

paradigm (data first, schema later/never) in RDBMS. 

 

• Enable agile style rapid data access with maximum schema 

flexibility (Schema on Read but not on Write Paradigm) in 

RDBMS. 

 

• Efficient consolidated single data management platform – 

covering both relational data and FSD to reduce integration 

issues, simplify operations, and eliminate migration issues. 



 

 

• Efficient productive declarative application development – 

by leveraging SQL as a set-oriented query language to 

declaratively query domain specific FSD. 

 

We understand the rationale of “One Size Does Not Fit All” [31] 

argument as a way to encourage out-of-box thinking and re-

architecting RDBMSs to handle a variety of new challenging 

data management requirements that do not fit the original 

relational data management paradigm that has been established 

more than four decades ago. However, it is desirable to present a 

single system which hides the complexity of multiple 

architectures instead of having users to manage multiple 

systems. Therefore, we prefer to build an evolutionary path for 

extending RDBMSs to support FSD data management. 

Nevertheless, since FSD management has challenged the 

fundamental assumption of RDBMSs that require existence of 

schema to store, index and query data, we do need new ways of 

thinking how to store, query, update and index FSD differently 

from relational data. That is, we need to think out-of-the-

schema. Indeed, management of FSD challenges us to think 

how to store, query and index data without up-front schema 

definition? 

 

To accomplish this goal, we leverage the RDBMS extensibility 

technology for managing user defined object types, functions 

and indexes [12, 14]. Applying extensibility ideas leads us to the 

current engineering principles and practises for managing FSD 

in RDBMSs as follows: 

 

• Storage Principle: Use the document-object-store model 

by storing FSD as one object without relying on any static 

schema & E/R model to decompose FSD into relational 

tables. That is, no schema on write. Flexible schema that is 

embedded in FSD can be computed as data-guide to 

provide schema on read capability.  

 

• Query and Update Principle: Leverage SQL as a 

declarative Set-oriented Query Language. That is, position 

“NoSQL” to mean Naturally open Set-oriented Query 

Language to embed FSD domain specific query language. 

FSD domain language provides query and navigation 

capability for both schema and data for each FSD instance. 

 

• Index Principle: Index FSD using relational table index 

and search index. The relational table index derivable from 

data-guide and query workload provides efficient relational 

access for pre-defined query access patterns. The search 

index using generalized inverted index strategy provides 

efficient search for ad-hoc query access patterns. 

 

The main contribution of this paper is a detailed analysis and 

discussions of these principles to understand the rationale of 

why we propose to use these principles to manage FSD, the 

issues and limitations when practising these principles, and the 

potential new research challenges and opportunities to manage 

FSD equally well as that of relational data in an integrated 

RDBMS platform. Although database extensibility technology is 

well-known as RDBMS engineering practise [12,14], we found 

that abstracting this engineering practise using these three 

principles helps to more adequately address the challenges of 

FSD. 

 

Outline of the Paper: Section 3, 4, 5 goes into details for 

storing, querying, updating and indexing FSD respectively with 

section 6 on advanced data management capability for FSD. 

Section 7 draws conclusion followed by the acknowledgements 

in section 8. 

3. Storing FSD 

3.1 FSD Storage Requirements 

 

The relational design leverages the E/R model [5] which 

provides a clean separation between structure and data. This 

method has been very successful for a large class of applications 

by extracting common structures out of data as schema. 

Schemata are managed by RDBMSs in a central dictionary. 

Therefore, in the E/R model, a schema has to be defined before 

data can be loaded. 

 

A collection of FSD data, such as JSON objects, XML 

documents, has typically a small number of common attributes 

complemented by a large variety of non-common attributes. The 

attributes form hierarchical structural relationships. The 

structure is not easily separable from data content because the 

structure varies greatly from instance to instance.  Shredding 

FSD collections relationally results in a large number of tables 

joined by a large number of primary/foreign key relationships 

and still many tables have many sparsely populated columns [1, 

3]. Furthermore, constant schema evolution is required as new 

sparse attributes are detected in new FSD instances or single 

occurrence of an existing attribute is detected to have multiple 

occurrences in new FSD instances.  Therefore, this is not a 

scalable solution. Instead, the instance schema is embedded in 

each FSD instance so that each FSD instance is self-contained 

and can be distributed to different tiers. Schemata of a FSD 

collection are not managed as central dictionary data but rather 

computable dynamically as data-guide [19] from all FSD 

instances stored in a FSD collection. 

 

Abstractly, schema based data can be defined as a set of data 

(which is denoted as 'S') that satisfies the following properties: 

there exists a set of finite size of dimension (which is denoted as 

'D')  such that every element of S can be expressed as a linear 

combination of elements from D. 

 

Flexible schema based data is the negation of Schema based 

data. That is, there does NOT exit a set of finite size of 

dimension D such that every element of S can be expressed as a 

linear combination of elements from set D. Intuitively, schema 

based data can have unbounded number of elements but has a 

bounded dimensions as schema definition whereas flexible 

schema based data has unbounded dimensions. 

 

Because schema based data has finite dimensions, therefore, 

schema based data can be processed by separating  the data 

away from its dimension so that an element in a schema based 

data set can be expressed by a vector of values, each of which 

represents the projection of the element in a particular 

dimension. All the dimensions are known as schema. Flexible 

schema based data cannot be processed by separating the data 

away from its dimension. Each element in a flexible schema 

based data has to keep track of its dimensions and the 

corresponding value.  An element in a flexible schema based 

data is expressed by a vector of dimension and value (name-



 

 

value pair). Therefore, flexible schema based data requires store, 

query and index both schema and data together. 

 

3.2 FSD Storage Current Practises 

 

Self-contained Document-object-store model: The current 

practice for storing FSD is to store FSD instances in a FSD 

collection using document-object-store model where both 

structure and data are stored together for each FSD instance so 

that it is self-descriptive without relying on a central schema 

dictionary. New structures can be added on a per-record basis 

without dealing with schema evolution. Aggregated storage 

supports full document-object retrieval efficiently without the 

cost of querying and stitching pieces of data from multiple 

relational tables. Each FSD instance can be independently 

imported, exported, distributed without any schema dependency. 

Table1 shows DDL to create resumeDoc_tab collection of 

resume XML documents, a shoppingCar_tab collection of 

shopping cart JSON objects. SQL/XML standard defines XML 

as a built-in datatype in SQL. For upcoming SQL/JSON 

standard [21], it supports storing JSON in SQL varchar, 

varbinary, CLOB, BLOB datatype with the new ‘IS JSON’ 

check constraint to ensure the data stored in the column is a 

valid JSON object. Adding a new domain FSD by storing into 

existing SQL datatype, such as varchar or LOB, without adding 

a new SQL type allows the new domain FSD to have full data 

operational completeness capability (Transactions, Replication, 

Partition, Security, Provenance, Export/Export, Client APIs etc) 

support with minimal development efforts.  

 

T1 CREATE TABLE resumeDoc_tab 

(id number, docEnterDate date,  

docVerifyDate date, resume XMLType) 

T2 CREATE TABLE shoppingCar_tab 

(oid number,  shoppingCar  BLOB check (shoppingCar IS 

JSON)) 

 

Table 1 – Document-Object-Store Table Examples 

 

Data-Guide as soft Schema: The data-guide can be computed 

from FSD collections to understand the complete structures of 

the data which helps to form queries over FSD collection. That 

is, FSD management with data-guide supports the paradigm of 

“storage without schema but query with schema”. For common 

top-level scalar attributes that exist in all FSD instances of a 

FSD collection, they can be automatically projected out as 

virtual columns or flexible table view [21, 22, 24]. For nested 

master-detail hierarchical structures exist in FSD instances, 

relational table indexes [11] and materialized views [35], are 

defined using FSD_TABLE() table function (Q4 in Table 2). 

They can be built as secondary structures on top of the primary 

hierarchical FSD storage to provide efficient relational view 

access of FSD.  FSD_TABLE() serves as a bridge between FSD 

data and relational data. They are flexible because they can be 

created on demand. See section 5.2 for how to manage 

FSD_TABLE() and virtual columns as indexing or in-memory 

columnar structures. Furthermore, to ensure data integrity, soft 

schema can be defined as check constraint as verification 

mechanism but not storage mechanism. 

 

3.3 FSD Storage Limitations and Research Challenges 

 

Single Hierarchy: The document-object-storage model is 

essentially a de-normalized storage model with single root 

hierarchy. When XML support was added into RDBMSs, the 

IMS hierarchical data model issues were brought up [32]. 

Fundamentally, the hierarchy storage model re-surfaces the 

single root hierarchy problem that relational model has resolved 

successfully. In particular, supporting m-n relationship in one 

hierarchy is quite awkward.  Therefore, a research challenge is 

how to resolve single hierarchy problem in document-object-

storage mode that satisfies ‘data first, structural later’ 

requirement.  Is there an aggregated storage model, other than 

E/R model, that can support multi-hierarchy access efficiently? 

Papers [20, 23] have proposed ideas on approaching certain 

aspects of this problem. 

 

Optimal instance level binary FSD format: The document-

object-storage model is essentially a de-normalized storage 

where master and detail data are stored together as one 

hierarchical tree structure, therefore, it is feasible to achieve 

better query performance than with normalized storage at the 

expense of update. Other than storing FSD instances in textual 

form, they can also be stored in a compact binary form native to 

the FSD domain data so that the binary storage format can be 

used to efficiently process FSD domain specific query language 

[3, 22].  In particular, since FSD is a hierarchical structure 

based, the domain language for hierarchical data is path-driven. 

The underlying native binary storage form of FSD is tree 

navigation friendly which improves significant performance 

improvement than text parsing based processing. The challenge 

in designing the binary storage format of FSD instance is to 

optimize the format for both query and update.  A query friendly 

format typically uses compact structures to achieve ultra query 

performance while leaving no room for accommodating update, 

especially for the delta-update of a FSD instance involving 

structural change instead of just leaf value change. The current 

practise is to do full FSD instance update physically even though 

logically only components of a FSD instance need to be 

updated. Although typically a FSD instance is of small to 

medium size, the update may still cause larger transaction log 

than updating simple relational columns. A command level 

logging approach [27] can be investigated to see if it is optimal 

for high frequent delta-update of FSD instances.  

 

Optimal FSD instance size: Although the size of FSD 

collections can be scaled to very large number, in practise, each 

FSD instances is of small to medium size instead of single large 

size. In fact, many vendors have imposed size limit per FSD 

instance. This is because each FSD instance provides a logical 

unit for concurrency access control, document and Index update 

and logging granularity. Supporting single large FSD instance 

requires RDBMS locking, logging to provide intra-document 

scalability [43] in addition to the current mature inter-document 

scalability. 

4. Querying and Updating FSD 

4.1 FSD Query and Update Requirements 

 

A FSD collection is stored as a table of FSD instances. A FSD 

instance itself is domain specific and typically has its own 

domain-specific query language. For FSD of XML documents, 

the domain-specific query language is XQuery. For FSD of 

JSON objects, the domain-specific query language is the 

SQL/JSON path language as described in [21]. Table 2 shows 

the example of SQL/XML[10] and SQL/JSON[21] queries and 



 

 

DML statements embedding XQuery and SQL/JSON path 

language. In general, the domain-specific query language 

provides the following requirements: 

 

• Capability of querying and navigating document-object 

structures declaratively: A FSD instance is not shredded 

into tables since hierarchies in a FSD can be flexible and 

dynamic without being modelled as a fixed master-detail 

join pattern. Therefore, it is natural to express hierarchical 

traversal of FSD as path navigation with value predicate 

constructs in the FSD domain language.  The path name 

can contain a wildcard name match and the path step can be 

recursive to facilitate exploratory query of the FSD data. 

For example, capabilities of the wildcard tag name match 

and recursive descendant tag match in XPath expressions 

support the notation of navigating structures without 

knowing the exact names or the exact hierarchy of the 

structures. See ‘.//experience’ XPath expression in Q1 and 

Q2. Such capability is needed to provide flexibility of 

writing explorative and discovery queries. 

 

• Capability of doing full context aware text search 

declaratively: FSD instances can be document centric with 

mixture of textual content and structures. There is a 

significant amount of full text content in FSD that are 

subject to full text search. However, unlike plain textual 

document, FSD has text content that is embedded inside 

hierarchical structure. Full text search can be further 

confined within a context identified by path navigation into 

the FSD instance. Therefore, context aware full text search 

is needed in FSD domain languages. See XQuery full text 

search expression in XMLEXISTS() predicate of Q1 and 

Q2 and path-aware full text search expression in 

JSON_TEXTCONTAINS() predicate of Q3. 

 

• Capability of projecting, transforming object 

component and constructing new document or object: 

Unlike relational query results which are tuples of scalar 

data, results of path navigational queries can be fragments 

of FSD. New FSD can be constructed by extracting 

components of existing FSD and combine them through 

construction and transformation. Therefore, constructing 

and transforming FSD instances are required in any FSD 

language. See XQuery constructor expression in the 

XMLQUERY() function in Q1.  

 

• Capability of performing component-wise update: FSD 

instance shall be updatable at component-wise level. New 

structure shall be addable to existing structures; existing 

structures and their values shall be updateable and 

deletable. XQuery update facility has provided all of these 

functionalities for XML document. See XQuery update 

facility expression in XMLQUERY() function in Q2. 

 

4.2 FSD Query and Update Current Practises 

 

While a FSD domain-specific query and update language serves 

as an intra-document query language, SQL can be used as an 

inter-document query language.  The current practices of 

querying FSD is to position SQL as a set-oriented language to 

provide declarative access of a set of FSD instances by 

leveraging the set based algebra supported by SQL.  By 

positioning SQL as a Set (oriented) Query Language, SQL 

provides the necessary constructs to express set algebra 

operators, such as selection, projection, join, group by, 

aggregation, union, intersection and difference among FSD 

instances.  SQL is openable to support a set of FSD_XXX() 

functions that can embed FSD domain specific query language. 

 

These FSD_XXX() functions are used in strategic places in SQL 

to filter, process, transform and update FSD instances. See 

Figure 1 for details. 

 

• FSD Filtering: FSD_EXISTS() is used as a conditional 

expression in a SQL WHERE clause to filter FSD 

instances.  

• FSD un-nesting: FSD_TABLE() is used as a table function 

in SQL FROM clause to unnest collection components 

within FSD instances into a virtual relational table.  Un-

nesting can be done recursively, therefore Q4 shows the 

example NESTED PATH support in JSON_TABLE() to 

un-nest master-detail-detail relationships. Being concrete 

form of FSD_TABLE(), XMLTABLE() and 

JSON_TABLE() are very popular features in RDBMS to 

provide a relational bridge between hierarchical FSD and 

flattened relational table.  Supporting FSD un-nesting 

concept can be traced back to SQL over NF2 model [42]. 

• FSD Scalar Projection: FSD_VALUE() is used to extract 

scalar value within a FSD and then to cast it as SQL built-

in type values so that it can be used in a scalar value 

expression in  SELECT, GROUP BY, ORDER BY clauses 

where scalar values are typically expected.  

• FSD Component Projection and Construction: 

FSD_Query() is used to query components within FSD or 

to construct new FSD in SELECT and UPDATE clause.  

• FSD Update: FSD_Query() is used at RHS side of  

UPDATE expression to generate a new FSD instance.  

• SQL JOIN of FSD Tables: SQL can be used to join 

multiple FSD tables.  This can be accomplished by 

leveraging the SQL JOIN concept and FSD_VALUE() 

function. Q6 in table 2 shows the join of resumeDoc_tab,  

shoppingCar_tab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – FSD_XXX() Function Usages in Open-SQL 
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Q1 SELECT XMLQUERY(‘<summary>{$doc/contact-info, 

$p//employment}</summary>’  PASSING p.resume as “doc”) 
FROM resumeDoc_tab p 

WHERE XMLEXISTS( 

‘$doc/resume[.//experience contains text “xquery” ftand “json” 
and .//employmentHistory/employment[starting-time > 

xs:date(“2000-01-01”)]] ’ PASSING p.resume as “doc”) 

Q2 UPDATE resumeDoc_tab p  
SET p.resume =  XMLQUERY(‘copy $new := $doc delete node 

$new/contact-info/ssn return $new ’  PASSING p.resume as 

“doc”) 
WHERE XMLEXISTS( 

‘$doc/resume[.//experience contains text “xquery” ftand “json”  

and .//employmentHistory/employment[starting-time > 
xs:date(“2000-01-01”)] and .//GPA[. > 3.5]]’ PASSING 

doc.resume) 

Q3 SELECT JSON_VALUE(‘$.shoppingCarDate AS TIMESTAMP) 
FROM shoppingCarTab  

WHERE JSON_TEXTCONTAINS(p.shoppingCar, 

‘$.item.promotion.Description’, ‘discount and warrenty’) and 
JSON_EXISTS(‘$.item?(price > 100 && quantity <=10)’) 

Q4 SELECT p.id, v.itemName, v.itemPrice, 

v.partName,v.partQuantity, v.partPrice  

FROM shoppingCarTab p, JSON_TABLE(p.shoppingCar, 
‘$.items’ 

  COLUMNS 
    ( itemName varchar(200) PATH ‘$.itemname’, 

itemPrice number PATH ‘$.itemPrice’, 

NESTED PATH ‘$.parts’   

  COLUMNS 
    ( partName varchar(100) PATH ‘$.partname’, 

    partQuantity number PATH ‘$.partQuantity’, 

    partPrice number PATH ‘$.partPrice’))) v 

Q5 SELECT COUNT(*) FROM resumeDoc_tab p, shoppingCarTab 
p2 WHERE XMLVALUE(p.resume, ‘$p/contact-info/email-

address’) =  

JSON_VALUE(p2.shoppingCar, ‘$.user.loginName’ )  

Q6 SELECT COUNT(*)  

FROM resumeDoc_tab p, shoppingCarTab p2  
WHERE p.resume.contact-info.email-address =  

p2.shoppingCar.user.loginName 

Q7 UPDATE shoppingCarTab p2 set 

p2.shoppingCar.items[1].availability = ‘false’ 
WHERE p2.shoppingCarTab.shoppingCarDate BETWEEN 

TO_TIMESTAMP(:1) and TO_TIMESTAMP(:2) 

 

Table 2 – SQL/XML and SQL/JSON Example 
 

4.3 FSD Query Limitations and Research Challenges 

 

Syntatic sugar for FSD Domain Language into SQL: The 

issue for embedding FSD domain language into SQL is that the 

FSD query appears to be “glued” into SQL instead of being 

natively part of it. A user friendly syntactic sugar would be to 

make path navigation appear to be SQL object navigation 

syntax. Q6 and Q7 show a simplified syntax that makes SQL 

natively understand the FSD path navigation access. However, 

an even friendlier SQL FSD language approach shall be 

investigated to integrate the idea of Schema-Free SQL [30] to 

query FSD based on data-guide [19] collected from FSD. 

Modelling JSON and XML path navigation as SQL object type 

path navigation is very attractive as it provides a uniform 

language interface to both schema-based SQL99 object type 

[12,14] and flexible schema based JSON and XML instances. 

Declarative Multi-Hierarchy Transformation: To overcome 

the single hierarchy issue of the FSD storage model discussed in 

section 3.3, it shall be feasible to come up with a declarative 

transformation language to transform a collection of FSD 

instances with one hierarchy to another collection of FSD 

instances with a different hierarchy having the same semantic 

equivalence. For example, given a FSD collection of FSD 

instances, each of which represents a student taking a set of 

courses, a transformation shall be applicable to generate another 

FSD collection of FSD instances, each of which represents a 

course is taken by a set of students. Recall in E-R model, this is 

handled by maintaining m-n mapping table so that both 

hierarchies can be generated using SQL. In the document-

object-store model, the challenge is to come up with a 

declarative transformation language extension to SQL to 

transform hierarchy.  Category theory [26] may help us to define 

transformation algebra between relational model and all of the 

implied equivalent hierarchical models that can be derived from 

the relational model so that a path query over hierarchical model 

has its equivalent SQL query over the relational model. One 

concrete application of such XPath to SQL transformation is the 

SQL/XML query rewrite technique that is well-practised in 

XML enabled RDBMS [41]. 

 

DataGude Statistics: All FSD_XXX() functions and 

FSD_TABLE() can be built into the RDBMS kernel for efficient 

execution. However, understanding the cost model for FSD 

accesses and statistics distributions of FSD data-guide are 

essential for optimizers to get an optimal plan for SQL/FSD 

query. This issue is presented in paper [22].  

 

Columnar layout of FSD for Vector Set Processing of 

SQL/FSD Query: The last decade has witnessed drastic 

performance improvement for relational data via columnar 

storage and processing [15] and vector processing [28]. The idea 

has been applied to hierarchical data as nested columnar store 

[38]. However, Dremel [38] relies on the presence of schema for 

the nested data in order to construct the columnar storage. 

Furthermore, record assembly from columnar storage to get 

original record can be expensive compared with native 

aggregated store.  It is known that relational row-store is good 

for OLTP workload whereas relational columnar-store is good 

for OLAP workload. In the same way, FSD binary format at 

instance level is good for OLTP FSD workload whereas FSD 

columnar format at set level is good for OLAP FSD workload. 

Since relational in-memory-columnar structures [29] can 

optimize both OLTP and OLAP workload by implicitly 

managing these two dual formats and converting between them 

on user behalf without forcing users to make up front storage 

choice, research is needed to apply similar strategy to manage 

FSD as well.  A more attractive approach is to develop an 

indexing or in-memory columnar layout strategy for FSD.  Such 

FSD columnar layout shall be friendly for vector based 

processing without relying on any central schema definition.  

 

Single language for both imperative logic and declarative 

query access for FSD: This has been attempted in OODBMS, 

Microsoft LINQ and full-fledged XQuery without 

SQL/XML[43]. However, the challenge is to teach the language 

compiler and optimizer to understand what is imperative and 

what is declarative as each of them requires different 

optimization techniques. This challenge requires integrated 

research between SIGMOD and SIGPLAN groups. 



 

 

5. Indexing FSD 

5.1 FSD Indexing Requirements 

 

RDBMS indexing techniques, such as B+ tree indices, bitmap 

indices are defined based on the existence of schema, so are 

materialized views which is defined based on schema in 

conjunction with query workload that provide pre-defined query 

access pattern. Therefore, the creation of index and materialized 

view in RDBMS is based on the paradigm of ‘schema first, 

index definition later’. 

 

FSD indexing shall be able to provide performance for both pre-

defined query access pattern and ad-hoc query access pattern. 

Pre-defined query access pattern in the context of FSD means 

that users are aware of the partial schema within FSD computed 

from data-guide so that a relational projection out of FSD in the 

form of FSD_VALUE() for a set of scalar value projections or 

in the form of FSD_TABLE() for a set of relational view can be 

defined. This is referred as ‘data first, schema later as index’ 

relational indexing approach. On the other hand, Ad-hoc query 

access pattern in the context of FSD means users do not have 

any prior knowledge of the FSD so that a FSD search index is 

needed to provide efficient evaluation of FSD_EXISTS() with 

ad-hoc query search. This is referred as ‘data first, schema 

never’ search index approach, which is similar to full text 

index style search index. 

 

5.2 FSD Indexing Current Practices 
 

5.2.1 Relational Columnar Index for Efficient Relational 

Column Query Access Pattern Using FSD_VALUE() 

 

In RDBMSs, the result of a SQL function expression over a 

column is commonly used for range queries, e.g., for range 

search over an UpperCase() function of a varchar type column, a 

functional index [12,14] can be created on the result of 

functional expression over a column to speed up range queries 

over that functional expression; functional indices can be 

defined on a FSD column using the FSD_VALUE() function. 

We propose to use columnar compression techniques [36] to 

handle result of FSD_VALUE() function. Columnar 

compression technique clusters all column values of a single 

column together, therefore, a column having many NULL values 

and repetitive values is more amendable to columnar 

compression and results in much smaller size. Therefore, the 

size of FSD_VALUE() projection values encoded in compressed 

columnar format is often small enough such that the whole 

columnar encoded FSD_VALUE() can fit into main memory 

allowing efficient in-memory scan and vector processing 

leveraging hardware support, such as SIMD instructions. In 

contrast to the classical columnar storage usage [15], we 

promote the idea of using the columnar layout as a secondary 

indexing structure and not as a primary storage structure. We 

call this columnar index or in-memory columnar structure 

[29]. The columnar index supports efficient range queries over 

the columnar projection of FSD_VALUE() and returns a set of 

DOCIDs, each of which is an ordinal number that identifies a 

row of the base document-object-store table having FSD that 

satisfy the range query. Unlike columnar storage, we don’t need 

to stitch columnar data together to get the original FSD since the 

original FSD can be obtained directly from the primary 

document-object-store table using the DOCID returned by the 

columnar index.  

 

To support range queries over multiple scalar values projected 

from FSD via a set of FSD_VALUE() functions, multiple 

columnar indexes, each of which maps to a FSD_VALUE() 

function, can be created. Boolean expression using multiple 

FSD_VALUE() functions can be processed efficiently by using 

bitmap merges of DOCIDs from multiple columnar index 

lookups. Therefore, the columnar index gives us the benefit of 

both worlds: efficient query processing using columnar 

compression without the need to stitch to obtain the original 

row. Indeed, we think that even for processing of pure relational 

data, positioning columnar storage structure as an indexing or 

in-memory columnar structure over the row storage gives us the 

best of both worlds: fast columnar based search and query 

without the need to do row stitch. 

 

5.2.2 Relational Table Index for Efficient Relational View 

Query Access Pattern Using FSD_TABLE() 
 

FSD_VALUE() can only handle one-to-one scalar projection 

relationship, not one-to-many master-detail expansion 

relationship. However, FSD has internal hierarchy representing 

one-to-many master-detail relationships. For example, both 

XML and JSON have embedding collection objects in the form 

of repeating XML elements in XML and JSON array. These 

collection elements are typically projected out and accessed as 

relational views defined using FSD_TABLE() by users. 

 

To efficiently process FSD_TABLE() queries, we use the idea 

of table index [11].  Table index can have two physical forms. 

In a classical row store, table index can internally maintain 

master-detail relational tables to hold the relational results 

computed by evaluation of FSD_TABLE(). The master-detail 

table is linked by internally generated primary foreign key so 

that the column values in the master table are NOT repeatedly 

stored in detail tables. Indeed, the table index layout in row store 

is the same as if FSD were decomposed and stored relationally 

using E-R design. This physical form is ideal for FSD OLTP 

workload. However, a more attractive physical form of table 

index is to leverage the power of columnar index and in-memory 

columnar structure to load FSD_TABLE() results as in-memory 

columnar structures without physical materialization. The 

FSD_TABLE() in memory form can leverage columnar 

compression techniques to efficiently handle repeated master 

values and sparse NULL value filled entries so that queries over 

the in-memory FSD_TABLE() can leverage the full power of in-

memory columnar scan and vector processing. This physical 

form is ideal for FSD OLAP workload with mainly read-only 

data. 

 

In summary, both the table index and the columnar index are 

very flexible approaches because they are secondary structures 

on top of the primary FSD store. Such secondary structures can 

be dropped and re-created without affecting the base document-

object table.  Therefore, users have the flexibility to decide what 

to index based on query workload without the need of changing 

the base storage. Although it is not feasible to use the relational-

tuple-store model to store FSD due to lack of a central schema 

to describe every pieces of FSD, it is feasible to use the 

relational-tuple-store model to define columnar index in the 

form of FSD_VALUE() and FSD_TABLE() to index FSD when 



 

 

the relational query patterns can be extracted out from query 

workload and used as partial schema to define the index.  

 

5.2.3 Search Index based on generalized inverted index for 

Ad-hoc Query Access Pattern Using FSD_EXISTS() 
 

Columnar based table index assume that users know the query 

pattern and query workload. This is not possible for ad-hoc 

query use cases. For the document search use case, the path 

expressions that are used in FSD_EXISTS() may not be known 

in advance. To handle such an ad-hoc query, a search index over 

a FSD table without having users to specify what path structures 

or values need to be indexed is built. In other words, a search 

index indexes everything in a FSD collection. Search indices can 

be built based on classical inverted index that indexes all 

keywords in a document to provide ad-hoc keyword search 

capability [16]. This provides the basic full text search capability 

over document centric XML documents or JSON objects. 

However, unlike classical inverted indices that index only 

keywords in a document, a generalized inverted index is 

extended to index hierarchical path structures inside FSD to 

support path-aware full text search scalar range value search 

workload queries.  

 

Extending inverted index for indexing path structures to 

handle path-aware full text search: Inverted index is 

originally designed for full text search [16]. The advantage of 

inverted indices is that even though they index all keywords of 

all documents in a document collection, the posting list for each 

keyword in the inverted index is highly compressed so that the 

total size of the inverted index is still smaller than the size of 

original document collection [16]. A smaller index size is 

obviously I/O friendly since physical disk I/O is generally a 

primary performance bottleneck in DBMS systems [17]. Each 

FSD document in a FSD collection indexed by the search index 

is identified by an ordinal number as a DOCID. The DOCIDs of 

all documents containing the keyword are stored in a sorted 

manner with delta-compression within a posting list so that 

efficient multi-predicate Zig-Zag pre-sorted merge join 

(MPPZZSMJ), is performed on the posting lists to efficiently 

handle multi-keywords searches and phrase searches connected 

by AND, OR, NOT Boolean predicates [17].  By indexing path 

structures and their hierarchical relationship and leveraging 

MPPZZSMJ, classical inverted indices can be extended to 

support efficient processing of path containment query and path-

aware full text search [18] that is a common query for XML full 

text search . 

 

Search Index for XML: Consider Q1 that has predicate 

XMLEXISTS() using XQuery full text search to find resumes 

which has ‘xquery’ and ‘json’ keywords in their ‘experience’ 

element tag, this XMLEXISTS() predicate can be processed by a 

generalized inverted index  created on resume columns. Like 

classical inverted indices, generalized inverted indices index all 

keywords so that each distinct keyword (subject to stemming, 

stop words rules) in XML text node is indexed as an entry in 

inverted index with the posting list storing not only the DOCIDs 

of documents containing the keyword but also the positions of 

the keyword within the document. Such keyword position helps 

to do phrase search or search a group of keywords within certain 

distances. Unlike classical inverted indices, the extension in 

generalized inverted indices is to index all XML tags of XML 

documents stored in document object table. Each distinct XML 

tag is indexed and stored as an entry in inverted index with the 

posting list storing not only the DOCIDs of documents 

containing the XML tags but also the range of tag open and 

close positions within the document. These positions are used to 

test hierarchical relationship for path traverse query and node 

containing keyword query during the MPPZZSMJ process. The 

key idea behind extending inverted index to index XML is that it 

captures both XML path structures (tags and their hierarchical 

relationships) and content data (full text) together in one index 

[18]. With such an integrated index, querying structure and data 

together can be processed efficiently. 

 

Search Index for JSON: In the same way, an inverted index can 

be extended to index JSON objects stored in JSON collection 

table as well [21]. Like XML tree nodes, JSON objects and 

arrays form nested hierarchical relationship that can be indexed 

using their positions within the JSON object. All JSON object 

field names are like XML tag names that can be indexed with a 

posting list containing the DOCIDs of JSON object that contains 

the object field names and their positions within the JSON 

object so that JSON_EXISTS() path query can be answered 

using an inverted index. Full text in JSON object field content 

can be indexed to facilitate full text query within a JSON path.  

 

Extending inverted index for indexing scalar values to 

handle path-aware scalar range query search: Compared 

with XML documents, JSON objects are more data centric. 

Many JSON object leaf fields are scalar values of numbers, 

dates and timestamp relational column like datatypes. In 

classical full text search, it is not capable of processing range 

predicate query on such scalar data. In XQuery, a range scalar 

type query is typically mixed with full text query, all of which 

are searched within a context defined by XPath. Considering 

Q2, XQuery used in the XMLEXISTS() predicate requires not 

only full text query search but also range query over scalar data 

embedded in specific XML element, a date range search and a 

number range search: 

  ‘.//employmentHistory/employment[starting-time > 

xs:date(“2000-01-01”)]  and .//GPA[. > 3.5]’. 

Processing such range expressions requires extending the 

inverted index to auto detect number, date, timestamp scalar 

values embedded in FSD and then index them. The range-data 

index structure maps a range of typed data value for a particular 

datatype to a posting list. The posting list contains the set of 

DOCIDs of FSD data having that value together with its 

positions within the document. The MPPZZSMJ processing can 

be extended to join posting lists for ranged-typed scalar data, 

textual keywords and path structures using DOCIDs, word 

positions and range value positions. The generalized inverted 

index essentially accomplishes the goal of efficient processing of 

join-of range data query and full text search query.  

 

5.3 FSD Indexing Limitations and Research Challenges 

 

Both the columnar index and inverted index share the same 

property that their compact layout is very query friendly for 

efficient set processing and updated in batch model. Columnar 

index and inverted index is not instance update friendly 

compared with B+ tree index. Columnar store requires in-

memory buffering, tuple mover and partition-merging to 

transform ingestion friendly row format into columnar format. 

Query over columnar format provides snapshot isolation. 

Inverted indices [13] are typically asynchronously maintained 



 

 

for large batch of documents and search results are based on 

snapshot semantics. Providing a real time inverted index has 

been researched [16]. The  solution generally relies on querying 

the read-friendly indexing structures union with the querying 

over delta documents that are temporarily in write-friendly 

structures. It is a research opportunity to integrate columnar 

index and inverted index layout together so that their presence to 

users is one index and is always maintained in real time [37]. 

Furthermore, in the context of RDBMS, the inverted index must 

provide transactional consistency between the dual formats: 

instance ingestion friendly OLTP format and set query friendly 

OLAP and search format. 

6. Advanced Data Management Support 

In addition to the storage, index query and update requirements, 

advanced data management capabilities developed for relational 

data, such as: Bi-temporal support [8], provenance, query 

expression data [9] are equally applicable to the management of 

FSD data. These advanced data management services in 

RDBMS provide advanced declarative data services that 

applications can easily exploit. It would be extremely time 

consuming and costly to provide these advanced data 

management services in the application tier.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Unified RDBMS Architecture for supporting both 

relational data and flexible schema data 

 

In summary, by applying these three principles, Figure 2 shows 

the unified RDBMS architecture to manage both relational data 

and FSD. At high level, our storage, query, index principles to 

manage FSD is similar to the idea of OCTOPUSDB [39]. That 

is, rather than creating a zoo of DBMS systems with Polyglot 

persistence [40], we think the primary storage shall be a simple 

log based document object store with many different storage 

views maintained as secondary structures: such as index, 

materialized view or in-memory structures to speed up query 

and DML workloads from different kinds of usecases. 

Furthermore, regardless of the choice of primary data storage 

structures or secondary auxiliary structures to speed up query 

workload, database application transparency shall be maintained 

via supporting a declarative query language interface, such as 

SQL so that the application programs that access data via SQL 

need NOT be changed. The spirit of storage, query and index 

principles for FSD can be further applied to big data 

environment where the primary data can be stored in various 

forms. SQL extended with domain language remains to be the 

declarative language to query the data. Intelligent secondary 

auxiliary structures can be created in-memory to deliver ultra 

query performance. 

 

7. Conclusion  

With the rapid growth of flexible schema data, we are living in 

interesting time where E.F Codd’s relational model [6] that 

assumes the existence of data schema to manage data is being 

challenged. A strength of NoSQL systems is the support of the 

‘data first, schema later/never’ approach; i.e., data can be stored 

without designing a schema first. In this paper, we have shown 

that RDBMSs can be extended to handle FSD by following three 

principles: leveraging document-store model, opening SQL with 

extension functions to declaratively query and update FSD, and 

adopting relational indexing and inverted indexing strategies. 

These principles can be implemented in the RDBMS kernels at 

data storage, query, and indexing layer to make RDBMS a 

unified platform to manage both kinds of data.  The underlying 

philosophy for the principles is simple: Treat Schema as if it 

were data: Store, Index and Query schema along with the 

data for FSD. However, there are issues, limitations, and 

research opportunities to mature FSD data management in 

RDBMS. In fact, most of the issues do exist in specialized 

DBMS to manage FSD as well. In contrary to [2], we think that 

SQL is not dead, relational mode is not dead. Being RDBMS 

researchers and developers, we shall feel good about living in 

such exciting time to provide declarative management of data 

regardless of their existence of schema or not. Let’s hope that 

the year 2015 will be for RDBMS like 1905 for Physics in 

which the classical framework for a mature field is being 

challenged to accommodate new phenomenon. 
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