Looking at Everything in Context: Community-Scale Data Integration for Real

Zachary G. Ives, University of Pennsylvania

with Z. Yan, N. Zheng, B. Litt, J. Wagenaar

CIDR 2015 / January 5, 2015

Funded in part by NSF IIS-1217798, NIH 5U24NS063930, and a gift from Google
The Spectrum of Data Management

- **Database / Warehouse - ETL / EII**
 - Mandated standards
 - Requires human-developed ETL, curation
 - Central authority, $$$

- **"Open" Data Integration**
 - Structured data with an uncertain scope / domain
 - Requires semi-automated solutions!

- **Web Search / WebTables**
 - Heterogeneous, partly structured data, spam
 - Exploits machine learning, pattern matching
 - Scale, workload, link struct.

Closed-domain

Open, mid-scale, dynamic domain

Open, large-scale domain-agnostic
Open Data Integration: Much Progress, or Little Progress?

Many fundamental advances the past decade to *semi-automate* certain layers of the open integration “stack”!

- Machine learning, better **matching/linking** algorithms (LSD, COMA, etc.; Tamer), better **extraction** algorithms (DeepDive; System T)
- **Human-machine**: Pay-as-you-go (dataspaces, etc.), crowdsourcing, p2p mediation, ...
- Scalable compute platforms (cloud, cluster), more robust Internet infrastructure, ...

Yet: few community-scale, end-to-end integration success stories

- **[Applications]** Lack of access to, and experience with, real data & problems!
- **[Platforms]** Lack of platforms combining best-of-breed components!
- **[Users]** Lack of ability to build user communities
Real Applications as Community Resources
How Do We Create a Lens into Real Community Data Sharing?

Data is now easy to get – but we are missing the context of how it’s used!

How do we get access to enough users to learn where the bottlenecks are?

Consider that Google, Facebook, etc. credit access to workloads, A/B testing as a huge enabler of improvement in their systems

Can a few of us build “research instruments” that the community can leverage to evaluate new data integration algorithms?

analogous to PlanetLab, EmuLab in networking

Key to applications: collaborators with vision, influence on diverse communities!
Our Efforts in this Space: Neuroscience/Electrophysiology as a 1st Foothold

Electrophysiology – key to understanding many brain activities and developing treatments

- No practice of data sharing
- Limited infrastructure to displace, “hunger” for new solutions!
IEEG.org: Neuroscience Data Sharing & Analysis on the Cloud

Portal Status

478 public datasets
659 registered users

576 academic datasets*
732 clinical datasets**

* 316 and ** 162 datasets are publicly accessible, others are shared privately within a workgroup.

Users around the world:
Neuroscience as a Lens into Real Scientific Community Data Sharing

Many aspects of IEEG.org are standard cloud/Web/DBMS, but gives us:

- multi-modal data and metadata
 (10+TB, 25+ academic, device partners)
- over 600 real users in heterogeneous communities
 (epilepsy, behavioral neuroscience, brain-computer interface, implantable/wearable devices)

Goal: testbed and user community to enable user studies

Evaluate, improve algorithms for automating integration tasks
Each new lab, data modality \rightarrow new integration task
Evaluate query answering and learning-from-feedback techniques

More broadly: can we build a new architecture for facilitating such evaluations in context?
A Proposed Platform for *in situ* Evaluation of Data Integration Techniques
Supporting Experiments with Real Users: Proposed HABITAT Platform

1. “Pay as you go” integration (i.e., user-driven, iterative process)

2. Modular, pluggable architecture

3. *Evaluation management* to recruit users, do A/B testing

 Figure out what works based on real workloads, usage
Pay-as-You-Go / Search-Driven Integration

Ingest: Offline “partial ETL” as data is discovered / loaded
- Data gets loaded (as feasible) into a weighted “search graph” (~ “data lake”)
- Data and metadata as nodes, relationships as edges

Periodic workload-driven improvement of data, e.g., when new extractor is developed
Pay-as-You-Go / Search-Driven Integration

Ingest: Offline “partial ETL” as data is discovered / loaded
 - Data gets loaded (as feasible) into a weighted “search graph”
 - Data and metadata as nodes, relationships as edges

Periodic workload-driven improvement of data, e.g., when new extractor is developed

User-driven integration: users pose keyword searches over data and metadata

[Talukdar+08,10][Yan+13,15]
 - Keywords match nodes
 - Record linking, schema matching algorithms link nodes
 - Query result: a Steiner tree whose leaves are the keywords – presented in a domain-specific way
 - User marks answers as good or bad, and the system learns to repair mistakes

[Talukdar+10][Yan+13]!
HABITAT Modular System Architecture

Ingest Core Library: Extractors, Measures, Algorithms
User-Driven Processing
Storage & Query Layer
Cataloging, Extraction, Indexing (partial ETL)

Task Services
New source discovery / upload

Alternative query interfaces

Periodic Content Processing
Offline learner

User-Driven Processing
Data View

Evaluation Management
Design
Analytics
Alternate Configs
Timing & Usage

Support Services
Info extraction
Cleaning

Workload & Provenance

Feature Weights

Event Bus

Task Services
Evaluation Services

Alternative data presentation & feedback UIs

Evaluation Management
Alternate Configs
User Selection
Timing & Usage

Sampling / Profiling

Sampling / Profiling

Entity resolution

Entity resolution

Feature extraction

Feature extraction

Schema alignment

Schema alignment

Indexing

Clustering

Info extraction

Cleaning

Info extraction

Info extraction

Sampling / Profiling

Entity resolution

Feature extraction

Schema alignment

Indexing
Status

Current status of HABITAT: integrating components within IEEG

- **Modular components** for linking, query processing, query, and presentation
- Capabilities for recruiting users into groups, conducting A/B testing and surveys using different components

Meanwhile – many lessons learned on the way to this point!
Highlights of Lessons Learned and Open Challenges
(See Paper for More)
Public Data Doesn’t Lead to Users!

Simply offering data is very different from engaging the community and changing the culture. “If you build it, they won’t necessarily come.”

We need to sponsor challenges, show successes, and highlight benefits.
“Passive Sharing” Is a Major Hurdle

In the life sciences, many are required to make their data available.

But in many sciences, data is very costly to obtain, thus there is perception of risk in sharing.

Tendency to make a token effort to share. Posting files on an FTP site vs. ensuring the data is documented, includes provenance, and is usable by others!

We need to offer rewards (and reduce the costs) to encourage sharing.
Open Research Challenge: Data Sharing Metrics & Incentives

How do we get past the practice of measuring impact by citation counts and h-indices?

Need a “Sharing-index” (S-index) for data, databases, and users:

• We can capture data usage in a provenance graph [Green+07]
 Adapt h-index, PageRank, ObjectRank?

• But data isn’t atomic; how do we account for joins, aggregation, net impact?
 • Perhaps generalize from notions like responsibility (Meliou, Gatterbauer, Suciu)?
Open Research Challenge: Privacy Preserving User Studies

There has been much progress in privacy-preserving computations, e.g., differential privacy

But how do we facilitate user studies in a way that:

- assures privacy (of user queries, workloads, data)

 yet enables us to determine what techniques are most effective under what conditions?

A key challenge: the algorithms we’re testing may not be data-independent!
Conclusions

Community-scale data integration will *only happen* if we have infrastructure that lets us evaluate, improve our techniques *in context* of real usage

- One “launching pad” in this effort, for neuroscience
- A *platform* for evaluating data integration techniques

Our journey has led to numerous lessons learned:

- Perceived risks and inertia
- Encouraging adoption
- Key research challenges:
 - data sharing metrics & incentives
 - privacy-preserving user experiments

More lessons in the paper – but hopefully more to come if we as a community can work together to get our techniques evaluated in the real world