Instant Recovery for Main-Memory Databases

Ismail Oukid*, Wolfgang Lehner*, Thomas Kissinger*, Peter Bumbulis°, and Thomas Willhalm+

*TU Dresden °SAP SE + Intel GmbH

CIDR 2015, Asilomar, California, USA, January 5, 2015
Storage Class Memory

- Non-Volatile Memory
- Low, asymmetric latency
- Energy efficient
- Denser than DRAM

SCM
SCM Compared with Today’s Technologies

SCM is a merging point between memory and storage

1/Latency

Capacity

Bandwidth

SCM

HDD

SSD

DRAM

1/Latency

PCM

MRAM

STT-RAM

Memristors

Technische Universität Dresden
SCM and Databases

Improving the logging infrastructure, e.g.:
- Fang et al. High performance database logging using Storage Class Memory. ICDE’11
- Pelley et al. Storage management in the NVRAM era. VLDB’13
- Huang et al. NVRAM-aware Logging in Transaction Systems. VLDB’14

Improving specific database algorithms, e.g.:
- Chen et al. Rethinking Database Algorithms for Phase Change Memory. CIDR’11
- Stratis D. Viglas. Write-limited sorts and joins for persistent memory. VLDB’14

It takes a greenfield approach to measure the full potential of SCM
SCM-enabled Architecture

Traditional Architecture

SCM-enabled Architecture

Transient Main Memory

Persistent Storage

Database

Log

Database

Non-Volatile Main Memory

Transient Main Memory

Moving the persistency bar

SOFORT is a single-level column-store, i.e., the working copy is the durable copy
Understanding SCM through Microbenchmarks

Hardware-based SCM simulation:
• Special BIOS, tunable latency with means of a microcode patch
• Limitation: symmetric instead of asymmetric read/write latency
• Avoiding NUMA effects: benchmark run on a single socket
• **DRAM** Latency: 90ns **SCM** latency: 200ns
Understanding SCM through Microbenchmarks (2)

SIMD-Scan performance on DRAM and SCM

[Graph showing throughput over bit case for different configurations: DRAM, DRAM-NoPrefetch, SCM, SCM-NoPrefetch]

- 8% average slowdown
- 41% average slowdown

Workloads with sequential memory access patterns perform well on SCM
Understanding SCM through Microbenchmarks (3)

Skip List performance on DRAM and SCM

Workloads with random memory access patterns do not perform well on SCM

We Still Need DRAM
SOFORT Column Structure

Persisted in SCM
Volatile in DRAM

On DRAM for better performance

Implementation details in “SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast Data Recovery”, DaMoN’14
Continuing Unfinished Transactions

Each executed statement is guaranteed to have persisted its changes in SCM.

The Transaction array is persistent allowing unfinished transactions at crash time to continue.
Performance Overview

Throughput

- Competitive performance even in high latency environment

Restart Time

- Fast restart time. No need to fetch data stored in SCM

Still not instant
Improving Recovery Performance

Synchronous Recovery
- Step 1: Recovery memory management
- Step 2: Recover primary data
- Step 3: Continue unfinished statements
- Step 4: Rebuild secondary data structures on DRAM
- Step 5: Start accepting user queries

Instant Recovery
- Idea 1:
 - Use primary data to answer queries
 - Rebuild secondary data structures asynchronously
- Idea 2:
 - Persist part of or all secondary data structures in SCM

Primary data already “loaded”

Restart time depends on the size of secondary data structures to be rebuilt

Instant recovery at peak performance

Perf. Penalty on throughput

Instant responsiveness
Evaluation: Recovery Time

<table>
<thead>
<tr>
<th>Synchronous Recovery</th>
<th>Instant Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0% indexes in SCM</td>
</tr>
<tr>
<td>[x10^5 TXs/s]</td>
<td>[x10^5 TXs/s]</td>
</tr>
</tbody>
</table>

First query accepted after ~8s, i.e., Recovery delta = 8s

Throughput: -0%
Recovery area: -16%
Recovery delta: ~8s

Throughput: -14%
Recovery area: -82%
Recovery delta: <2s

Throughput: -30%
Recovery area: -99.8%
Recovery delta: <5ms
Evaluation: Throughput Vs. Recovery

- Throughput drop limited to 30%
- Curves are not linear: secondary data structures are not equally important for TATP
- Taking advantage of a workload’s characteristics leads to an optimal tradeoff
Evaluation: Average Response Time

Seek tradeoff depending on:
- throughput requirements
- response time requirements
- desired recovery performance

Max. avg. (over 100ms) Response time:
- 0% pers. indexes: 506 µs
- 100% pers. indexes: 2 µs
Conclusion and Future Work

We showed that SCM can help:
- Achieve instant recovery for main-memory databases
- Continue unfinished transaction at crash time
- Simplify durability management
- Remove the need for a traditional transactional log

Current and future work include:
- Improve recovery performance without compromising query performance
- Design new SCM-friendly persistent indexing structures
- Persistent, DRAM like memory management for SCM
- Testing tools for single-level store architectures
Will SCM trigger a new rewrite of databases?

Thank You! Questions? Comments?

Ismail Oukid
ismai.oukid@sap.com
https://wwwdb.inf.tu-dresden.de/team/external-members/ismail-oukid/

Instant Recovery for Main-Memory Databases

Ismail Oukid*, Wolfgang Lehner*, Thomas Kissinger*, Peter Bumbulis®, and Thomas Willhalm+

*TU Dresden °SAP SE + Intel GmbH