cloudera

Ask Bigger Questions

Impala: A Modern, Open-Source SQL
Engine for Hadoop

Marcel Kornacker | marcel@cloudera.com
CIDR 2015 |

5 (LT 7 7
C et L [/ &7
e T /B e ;

-~
4

: o, W o e e T e o Y 3
/ S = i AT ¢ s P
i W a7 SO AVAY 5 7 S s e g
o ,!gh!llllig%gz@gp 5 PP A RIE
..’.-ﬁ,!”/’l % ’."Q,ﬂ:_'}‘/_';ﬁ’ "{ » ’.f’:.e": 24
LI L LAAA AR P
s R
. 7
77 Sy
’l’ ' ’7%/ /’ o

AR 77 e, A
rat 'Er;,:: .'/A’/U!,?_'i G,

o

TR 77 117 B L o
RIS T

TS T
o A

Cloudera Impala — Agenda

-Overview
- Architecture and Implementation
- Evaluation

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala: A Modern, Open-Source SQL Engine

Implementation of an MPP SQL query engine for the Hadoop
environment

Designed for performance: brand-new engine, written in C++

Maintains Hadoop flexibility by utilizing standard Hadoop
components (HDFS, Hbase, Metastore, Yarn)

Reads widely used Hadoop file formats (e.g. Parquet, Avro, RC, ...)
Runs on same nodes that run Hadoop processes

Plays well with traditional Bl tools:

exposes/interacts with industry-standard interfaces (odbc/jdbc,
Kerberos and LDAP, ANSI SQL)

Copyright © 2013 Cloudera Inc. All rights reserved. CIOqura

Impala from The User’s Perspective

Create tables as virtual views over data stored in HDFS or Hbase
Schema metadata stored in Metastore, basis of HCatalog

Shared and can be accessed by Hive, Pig, etc..
Connect via ODBC/JDBC; authenticate via Kerberos or LDAP

ANSI SQL-92 with SQL-2003 analytic window functions, UDFs/UDAs, correlated
subqueries,..

Data types:
Integer and floating point type, STRING, CHAR, VARCHAR, TIMESTAMP

DECIMAL (<precision>, <scale>) up to 38 digits of precision

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala: History

‘Developed by Cloudera and fully open-source (ASF license)
‘Hosted on github (https://github.com/cloudera/impala)
‘Released as beta in 10/2012

1.0 version available in 05/2013
‘current version: 2.1

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Roadmap: Impala 2.1+

Nested data structures: Structs, arrays, maps in Parquet, Avro, json, ...
- npatural extension of SQL: expose nested structures as tables
- no limitation on nesting levels or number of nested fields in single query

Multithreaded execution past scan operator

More resource management and admission control

Support for S3-backed tables

Additional data types: DATE, TIME, DATETIME

More SQL: ROLLUP/GROUPING SETS, INTERSECT/MINUS, MERGE
Improved query planning, more elaborate statistics

Physical tuning

Copyright © 2013 Cloudera Inc. All rights reserved. CIOqura

Cloudera Impala — Agenda

- Overview
- Architecture and Implementation
*High-level design
-Components
Query Planning
- Query Execution
*Run-time Code Generation
- Parquet File Format
- Evaluation

Copyright © 2013 Cloudera Inc. All rights reserved. CIOqura

Impala Architecture: Distributed System

-Daemon process (impalad) runs on every node with data
-Each node can handle user requests

‘Load balancer configuration for multi-user environments
recommended

-Metadata management: catalog service (single node)
-System state repository and distribution: statestore (single node)
-Catalog service and Statestore are stateless

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Architecture

Catalog
Statestore

Hive
Metastore

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Statestore

+ Central system state repository
- name service (membership)
- metadata

- Soft-state

- all data can be reconstructed from the rest of the system

- cluster continues to function when statestore fails, but per-node state
becomes increasingly stale

» Sends periodic heartbeats
* pushes new data
* checks for liveness

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Catalog Service

- Metadata:

- databases, tables, views, columns, ...
- put also: files, block replica locations, block device ids

- Catalog service:
- metadata distribution hub: sends all metadata to all impalad’s via

statestore
- interface to persistent metadata storage, mediator between Hive’s

MetaStore and impala’s

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Execution Daemon (impalad)

Frontend in Java: parse, analyze and plan SQL queries

Backend in C++: coordinate and/or execute plan
fragments

Local cache of metadata
Web Ul with machine info, logs, metrics
RPC/communication: Thrift

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Query Execution at the high-level

- Query execution phases:
- Client request arrives via odbc/jdbc
- Query planner turns request into collection of plan fragments
- Coordinator initiates execution on remote impalad’s

- During execution
Intermediate results are streamed between executors
- Query results are streamed back to client
 Subject to limitations imposed by blocking operators
- top-n, aggregation, sorting

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Query Execution

Request arrives via odbc/jdbc

SQL renuest

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Query Execution

Planner turns request into collection of plan fragments
Coordinator initiates execution on remote impalad nodes

Copyright © 2013 Cloudera Inc. All rights reserved. CIOqura

Impala Query Execution

Intermediate results are streamed between impalad’s
Query results are streamed back to client

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Overview

2-phase planning process:
- single-node plan: left-deep tree of plan operators

- partitioning of operator tree into plan fragments for parallel
execution

Parallelization of operators across nodes:
- all query operators are fully distributed

Cost-based join order optimization
Cost-based join distribution optimization

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Single-Node Plan

SELECT t1.custid,
SUM(t2.revenue) AS revenue
FROM LargeHdfsTable t1
JOIN LargeHdfsTable t2 ON (t1.id1 = t2.id)
JOIN SmallHbaseTable t3 ON (t1.id2 = t3.id)
WHERE t3.category = 'Online’
GROUP BY t1.custid
ORDER BY revenue DESC LIMIT 10

<_-
4_-

Copyright © 2013 Cloudera Inc. All rights reserved. CIOquﬂrﬂa

Query Planning: Distributed Plans

Goals:
* maximize scan locality, minimize data movement
- full distribution of all query operators (where semantically correct)

Parallel joins:

* broadcast join: join is collocated with left input; right-hand side table is

broadcast to each node executing join
-> preferred for small right-hand side input

- partitioned join: both tables are hash-partitioned on join columns
-> preferred for large joins

» cost-based decision based on column stats/estimated cost of data
transfers

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Distributed Plans

Parallel aggregation:
- pre-aggregation where data is first materialized
- merge aggregation partitioned by grouping columns

Parallel top-N:
- initial top-N operation where data is first materialized
- final top-N in single-node plan fragment

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Distributed Plans — Example

-Scans are local: each scan receives its own fragment

-1st join: large x large -> partitioned join

-2nd scan: large x small -> broadcast join

-Pre-aggregation in fragment that materializes join result
-Merge aggregation after repartitioning on grouping column
-Initial top-N in fragment that does merge aggregation
-Final top-N in coordinator fragment

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Query Planning: Distributed Plans

Single-Node

._ Merge -

hash at HBase RS
t1.custid

Copyright © 2013 Cloudera Inc. All rights reserved.

at coordinator

hash t2.id
<

E .

- —

cloudera

Impala Execution Engine

‘Written in C++ for minimal cycle and memory overhead
‘Leverages decades of parallel DB research
-Partitioned parallelism
‘Pipelined relational operators
-Batch-at-a-time runtime
‘Focussed on speed and efficiency
‘Intrinsics/machine code for text parsing, hashing, etc.
‘Runtime code generation with LLVM

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Runtime Code Generation

Uses llvm to jit-compile the runtime-intensive parts of a

query
Effect the same as custom-coding a query:

Remove branches, unroll loops
Propagate constants, offsets, pointers, etc.
Inline function calls

Optimized execution for modern CPUs (instruction
pipelines)

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Runtime Code Generation — Example

IntVal my func(const IntVal& v1l, const IntVal& v2) {
return Intval(vl.val * 7 / v2.val);

}
SELECT my func(coll + 10, col2) FROM ...

I function

pointer
function functlon
pointer pointer

@ (col1 +10) * 7 / col2
function

pointer function pointer

interpreted codegen’d

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Ask Bigger Que

Impala Runtime Code Generation — Performance

10 node cluster (12 disks / 48GB RAM / 8 cores per node)

~40 GB / ~60M row Avro dataset

> 16X speedup!
240
B Codegen off

.~ | Codegen on

180
:E: 120
3 > 6X speedup
o > 4x speedup
select count(*) from select count(l_orderkey) TPCH-Q1
lineitem from lineitem

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Resource Management: Admission Control

Workload management in a distributed environment

Enforce global limits on # of concurrently executing
queries and/or memory consumption

Admin configures pools with limits and assigns users to
pPools

Decentralized: avoids single-node bottlenecks for low-
latency, high-throughput scheduling

Does not require Yarn/Llama
Works in CDH4/CDH5

Copyright © 2013 Cloudera Inc. All rights reserved. CIOqura

Resource Management: Admission Control

- Configure one or more resource pools
max # of concurrent queries, max memory, max queue size
same configuration as Yarn resource queues
easily configured via Cloudera Manager

- Each Impala node capable of making admission decisions:
no single point of failure, no scaling bottleneck

- Incoming queries are executed, queued, or rejected

queue if too many queries running concurrently or not enough memory
reject if queue is full

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Resource Management: YARN

YARN is a centralized, cluster-wide resource
management system that allows frameworks to share
resources without resource partitioning between
frameworks

Impala can do resource reservation via YARN for
individual queries

However, YARN is targeted at batch environments:
results in extra cost for both latency and throughput

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Resource Management in Impala

Admission control and YARN-based resource management cater to
different workloads

Use admission control for:

- low-latency/high-throughput workloads
- mostly Impala or resource partitioning is feasible

Use LLAMA/YARN for:

- mixed workloads (Impala, MR, Spark, ...) and resource partitioning is impractical
- latency and throughput SLAs are relatively relaxed

Future roadmap: low-latency/high-throughput mixed workloads without
resource partitioning

Copyright © 2013 Cloudera Inc. All rights reserved. CIOqura

HDFS: A Storage System for Analytic Workloads

High-efficiency data scans at or near hardware speed, both
from disk and memory

Short-circuit reads: bypass DataNode protocol when reading

from local disk
-> read at 100+MB/s per disk

HDFS caching: access explicitly cached data w/o copy or
checksumming

-> access memory-resident data at memory bus speed

-> enable in-memory processing

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Parquet: Columnar Storage for Hadoop

- State-of-the-art, open-source columnar file format

- Available for (most) Hadoop processing frameworks:
Impala, Hive, Pig, MapReduce, Cascading, ...

- Offers both high compression and high scan efficiency
- Co-developed by Twitter and Cloudera
- with contributors from Criteo, Stripe, Berkeley AMPlab, Linkedln
Now an Apache incubator project
Used in production at Twitter and Criteo
- The recommended format for Impala

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Parquet: The Details

Columnar storage: column-major instead of the traditional row-
major layout; used by all high-end analytic DBMSs

Optimized storage of nested data structures: patterned after
Dremel’s ColumnlO format

Extensible set of column encodings:
 run-length and dictionary encodings in 1.2
+ delta and optimized string encodings in current version 2.0

Embedded statistics: version 2.0 stores inlined column statistics for
further optimization of scan efficiency

e.g. min/max indexes

Copyright © 2013 Cloudera Inc. All rights reserved. CIOqura

Parquet: Storage Efficiency

GB

900

700

500

300

100

TPC-H Lineitem Size

Text

Textw/ Seqw/ Avrow/ RcFile Parquet
Lzo Snappy Snappy w/ w/

Snappy Snappy

Seq w/
Gzip

B Size

era

Copyright © 2013 Cloudera Inc. All rights reserved.

Cloud

Parquet: Scan Efficiency

Seconds

500

380

260

140

20

TPCDS Query Times

Q27

Q34

Q42

Q43 Q46 Q52 Q55 Q59 Q65

Copyright © 2013 Cloudera Inc. All rights reserved.

Q73

Q79

Q96

B Text

B Seqw/ Snappy
o RC w/Snappy

B Parquet w/Snappy

cloudera

Cloudera Impala — Agenda

- Overview
- Architecture and Implementation
Evaluation

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Performance

Benchmark: TPC-DS

Subset of queries (21 queries)

15TB scale factor data set

On 21-node cluster
2 processors, 12 cores, Intel Xeon CPU E5-2630L 0 at 2.00GHz
12 disk drives at 932GB each (one for the OS, the rest for HDFS)
64GB memory

Comparison of: Impala 1.4, SparkSql 1.1, Presto 0.74, Hive 0.13
(with Tez)

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Geometric Mean (in Seconds)

Impala Performance: Single-User

250

200 -

150 -

100 -

50

Single-User Response Time/Impala Times Faster Than
(Lower bars are better)

216

176

6

Interactive Reporting Analytics
Ql9, g42, @52, 955, b3, q68, 73, Q98 a3, a7,q27,q43, g53, q89 G34, q46, 959, q79, ss_max

Bimpalal4 %" SparkSQL WPresto ¥ Tez

Copyright © 2013 Cloudera Inc. All rights reserved.

single-user
execution

*group queries
by how much
data they
access:

‘Interactive
‘reporting
-deep analytic

cloudera

Impala Performance: Multi-User

Single User versus 10 Users Response Time/Impala Times Faster Than

(Lower bars are better) ® 1 O CO n Cu rre nt
queries

‘from the

350

300 -

o~
o
™~ = n
3 Interactive
v
-
=
7 bucket
> :
Lo
g ~ 1
= = ~V
8 g V7774
...... D
< 18.3x
sl C Vi
w V74

10 User, 11

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala Performance: Multi-User

Query Throughput/Impala Throughput Times More Than

(Higher bars are better)
= 2,333
2,000 -
5
=)
T
= 1,500 1
a
g
]
-
o 1,000 -
500 -
e 106
ol 133 e
Impala Spark SQL Hive-on-Tez Presto

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Impala vs. Commercial Competitor

Impala faster on 19 of 21 queries
Lower is better

1 | I | | I I i | I | I I | I I | I
qO4 q05 q06 g0/ q08 q09 10 q1 ql2 q13 ql14 q15 q16 ql’/ q18 q19 q20 q21

Query

000 -

400 -

Mean Seconds
(-

N
o
S

101

(-

.y

| I
q02 q03

o- e
I
qO1

” prohibits uSilag

e M[REDACTED]MImpala

cloudera

Copyright © 2013 Cloudera Inc. All rights reserved.

Thank You

