Motivation

Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC, and a good restaurant nearby (plus relevant advice).
Motivation

Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC, and a good restaurant nearby (plus relevant advice).

“You can play baseball in Central Park and eat at Maoz Vegetarian.
Tips: Apply for a ballfield permit online”

“You can go visit the Bronx Zoo and eat at Pine Restaurant.
Tips: Order antipasti at Pine.
Skip dessert and go for ice cream across the street”
Motivation

Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC, and a good restaurant nearby (plus relevant advice).

“You can play baseball in Central Park and eat at Maoz Vegetarian. **Tips:** Apply for a ballfield permit online”

“You can go visit the Bronx Zoo and eat at Pine Restaurant. **Tips:** Order antipasti at Pine. Skip dessert and go for ice cream across the street”
Motivation

Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC and a good restaurant nearby (plus relevant advice).

“You can play baseball in Central Park and eat at Maoz Vegetarian. Tips: Apply for a ballfield permit online”

“You can go visit the Bronx Zoo and eat at Pine Restaurant. Tips: Order antipasti at Pine. Skip dessert and go for ice cream across the street”
Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC and a good restaurant nearby (plus relevant advice).

“You can play baseball in Central Park and eat at Maoz Vegetarian. **Tips:** Apply for a ballfield permit online”

“You can go visit the Bronx Zoo and eat at Pine Restaurant. **Tips:** Order antipasti at Pine. Skip dessert and go for ice cream across the street”

A dietician may wish to study the culinary preferences in some population, focusing on food dishes that are rich in fiber.
Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC and a good restaurant nearby (plus relevant advice).

“You can play baseball in Central Park and eat at Maoz Vegetarian. **Tips:** Apply for a ballfield permit online”

“You can go visit the Bronx Zoo and eat at Pine Restaurant. **Tips:** Order antipasti at Pine. Skip dessert and go for ice cream across the street”

A dietician may wish to study the culinary preferences in some population, focusing on food dishes that are rich in fiber.
Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC and a good restaurant nearby (plus relevant advice).

“You can play baseball in Central Park and eat at Maoz Vegetarian. Tips: Apply for a ballfield permit online.”

“You can go visit the Bronx Zoo and eat at Pine Restaurant. Tips: Order antipasti at Pine. Skip dessert and go for ice cream across the street.”

General knowledge:
- General truth, objective data, not associated with an individual
- *E.g., geographical locations*
- Can be found in a knowledge base or an ontology

Individual knowledge:
- Related to the habits and opinions of an individual
- *E.g., travel recommendations*
- We can ask people about it

A dietician may wish to study the culinary preferences in some population, focusing on food dishes that are rich in fiber.
Motivation

Ann, a vacationer, is interested in finding child-friendly activities at an attraction in NYC and a good restaurant nearby (plus relevant advice).

“You can play baseball in Central Park and eat at Maoz Vegetarian. Tips: Apply for a ballfield permit online.”

“You can go visit the Bronx Zoo and eat at Pine Restaurant. Tips: Order antipasti at Pine. Skip dessert and go for ice cream across the street.”

General knowledge:
- General truth, objective data, not associated with an individual
- *E.g.*, geographical locations
- Can be found in a knowledge base or an ontology

When missing in the knowledge base, we can ask the crowd!

Individual knowledge:
- Related to the habits and opinions of an individual
- *E.g.*, travel recommendations
- We can ask people about it

Crowd answers can be recoded in a knowledge base
Crowd Mining: Crowdsourcing in an Open World

Given an ontology of general knowledge and a mining task

• Incrementally explore relevant patterns
 \{Ball_Game \bowtie playAt Central_Park\}

• Generate (closed and open) questions to the crowd about them
 How often do you play ball games at Central Park?
 Which ball games do you play at Central Park?
 What else do you do at Central Park?

• Evaluate the significance of the patterns and discover related ones
 Pattern score = 0.6

• Produce a concise output that summarizes the findings
 \{Baseball \bowtie playAt Central_Park.
 Permit \bowtie getAt "www.permits.org"\}
Crowd Mining Framework Design

We design a general architecture which outlines the components of a crowd mining framework and the interaction between them.

Challenges:

- Compiling user requests into a declarative query language
- Deciding which questions to generate to the crowd next
- Combining the crowd answers with knowledge base data
- Personalization and crowd member selection
- Updating and managing the knowledge base

The type of processed data (general versus individual) must be taken into account

How to aggregate crowd answers?
Today

Motivation

Framework Architecture

Zoom-in on components

Examples via the OASSIS system
The Architecture

Managing General and Individual Knowledge in Crowd Mining Applications

- User Interface
- Query Engine
 - Answer aggregation
 - Significance function
 - Overall Utility
- Crowd Task Manager
 - Task, preferences
- Crowd Selection
 - Reward
- Knowledge Base
 - Input general
 - Inferred general
 - Inferred individual
- User data
- Inference and summarization
- Input/Inferred
- Next Crowd worker
- Summary of crowd results
- Raw crowd results
- User/worker Profile
- Knowledge updates
Knowledge Repository

Different types of knowledge:

• A general knowledge base is input to the system

• Knowledge inferred in previous query evaluation

 – **General knowledge** – completes the knowledge base
 May be annotated with trust/error probability

 – **Individual knowledge** – more volatile
 may be annotated with user properties
Managing General and Individual Knowledge in Crowd Mining Applications

Knowledge Repository

Different types of knowledge:

- A general knowledge base is input to the system.
- Knowledge inferred in previous query evaluation can be recorded.
 - General knowledge: completes the knowledge base, may be annotated with trust/error probability.
 - Individual knowledge: more volatile, may be annotated with user properties.

Managing General and Individual Knowledge in Crowd Mining Applications

Knowledge Repository

Activity
- Feed a monkey
- Water Sport
- Swimming
- Water Polo
- Biking
- Basketball
- Ball Game
- Baseball

Sport
- subclassOf Activity

Food
- Falafel
- Pasta

Place
- City
- Indoor
- Outdoor
- Swimming pool
- Park
- Zoo
- Central Park
- Bronx Zoo

Restaurant
- Pine
- Maoz Veg.
Different types of knowledge:

- A general knowledge base is input to the system.
- Knowledge inferred in previous query evaluation can be recorded.
 - General knowledge completes the knowledge base and may be annotated with trust/error probability.
 - Individual knowledge is more volatile and may be annotated with user properties.

Managing General and Individual Knowledge in Crowd Mining Applications

Knowledge Repository

Grimaldi's nearby
Shake Shack
Different types of knowledge:

- A general knowledge base is input to the system.
- Knowledge inferred in previous query evaluation can be recorded.
 - General knowledge completes the knowledge base and may be annotated with trust/error probability.
 - Individual knowledge is more volatile and may be annotated with user properties.

Managing General and Individual Knowledge in Crowd Mining Applications
Enters the user...

- The user query should be formulated in a formal language
 E.g., OASSIS-QL is a SPARQL-based query language for crowd mining
 [A. et al. SIGMOD’14]

Find popular combinations of an activity in a child-friendly attraction at NYC and a restaurant nearby (plus relevant advice)
The user query should be formulated in a formal language. E.g., OASSIS-QL is a SPARQL-based query language for crowd mining.

Find popular combinations of an activity in a child-friendly attraction in NYC and a restaurant nearby (plus relevant advice).

Natural language interface
Natural language interface

Find popular combinations of an activity in a child-friendly attraction in NYC and a restaurant nearby (plus relevant advice).

Graphic UI

Hello Ann!

Start a New Query

Hello Ann!

Start a New Query

Tourist attraction +

Relation: visit at

Property: Child-Friendly

Restaurant +

Relation: restaurant chain

Property: restaurant

Popularity Level: Medium

Answers per Question: 4

View Query Start Mining!
Query Engine

- Efficiently executes the query plan
 - By querying the knowledge base (standard)
 - And generating questions/tasks to the crowd

```graph
{x instanceOf Attraction.
y subClassOf Activity}
{y doAt x}

$x = Central_Park
$y = Baseball
```

Crowd task:
isSignificant({Baseball doAt Central_Park})
Budget: $0.5
User preferences: …
Query Engine

• Efficiently executes the query plan
 – By querying the knowledge base (standard)
 – And generating questions/tasks to the crowd

\[
{x \text{ instanceof} \text{ Attraction.}} \\
{y \text{ subclassof} \text{ Activity}}
\]

\[
{x = \text{ Central Park}} \\
{y = \text{ Baseball}}
\]

Crowd task:
\[
is\text{Significant}({\text{Baseball doAt Central Park}})
\]
Budget: $0.5

User preferences: …

Crowd task:
\[
\text{specify} (z, \{\text{Baseball doAt Central Park. [] eatAt z}\})
\]
Budget: $0.6
Crowd Task Manager

- Distributes tasks to crowd members
- Aggregates and analyzes the answers
- Dynamically decides what to ask next

Crowd task:
\texttt{isSignificant\{Baseball doAt Central_Park\}}

Budget: $0.5

User preferences: ...

“How often do you play baseball at Central Park?”
Crowd Task Manager

- Distributes tasks to crowd members
- Aggregates and analyzes the answers
- Dynamically decides what to ask next

Crowd task:
\[\text{isSignificant}\left\{\text{Baseball doAt Central_Park}\right\} \]
Budget: $0.5
User preferences: …

“How often do you play baseball at Central Park?”

Answer 1: never (score=0)
Crowd Task Manager

- Distributes tasks to crowd members
- Aggregates and analyzes the answers
- Dynamically decides what to ask next

Crowd task:
\[
\text{isSignificant}\{\text{Baseball} \text{ doAt Central_Park}\}
\]
Budget: $0.5
User preferences: ...

"How often do you play baseball at Central Park?"

Answer 1: never (score=0)

Answer 2: once a week (score=1/7)
Crowd Task Manager

- Distributes tasks to crowd members
- Aggregates and analyzes the answers
- Dynamically decides what to ask next

Crowd task:
\[\text{isSignificant}\{\text{Baseball doAt Central_Park}\} \]
Budget: $0.5
User preferences: ...

"How often do you play baseball at Central Park?"

Answer 1: never (score=0)
Answer 2: once a week (score=1/7)

Crowd Task Manager

Aggregation: estimated mean \(M \)
Significance: \(\Pr(M \geq \Theta) \geq 0.5 \)
Overall utility: next question expected to reduce error probability by 0.1
Aggregation, significance and utility choices depend on the type of data collected from the crowd.

For **individual** data, the aggregated answer should account for **diverse opinions**

- e.g., statistical modeling

For **general** data the aggregated answer should reflect **the truth**

- e.g., weighing by expertise, outlier filtering

“**How often do you play baseball at Central Park?**”

Answer 1: never (score=0)

Answer 2: once a week (score=1/7)

Aggregation: estimated mean M

Significance: $\Pr(M \geq \Theta) \geq 0.5$

Overall utility: next question expected to reduce error probability by 0.1
Other crowdsourcing systems

Can be put in terms of the architecture for comparing and identifying possible extensions

- NL to query translators
- Majority vote, custom function
- # questions is fixed or bounded

Declarative crowdsourcing platforms
Crowdsourced entity resolution
Task to worker assignment
In Conclusion

• Crowd mining allows users to ask queries that mix general and individual data needs, and use multiple sources to obtain relevant answers

• Our generic architecture outlines the components required for such complex reasoning

• Other crowdsourcing systems share a part of these components, possibly with alternative implementations

• This analysis highlights challenges for future work
Thank you

Please choose the most relevant answer below.

The talk you have just heard has been:

- Exceedingly interesting
- Important and inspiring
- Way too short!