
MODELDB: A System for Machine Learning Model
Management

Manasi Vartak
MIT

mvartak@csail.mit.edu

Introduction. Building a machine learning model is an iterative
process. A data scientist will build many tens to hundreds of mod-
els before arriving at one that meets some acceptance criteria (e.g.
AUC cutoff, accuracy threshold). However, the current style of
model building is ad-hoc and there is no practical way for a data
scientist to manage models that are built over time. This gives rise
to three types of problems: (1) Reproducing models and results is
excessively time-consuming or at times infeasible. E.g., one of the
companies we interviewed described how lack of documentation
regarding a previous experiment forced them to spend a week re-
creating and running the same experiment; (2) The data scientist
must “remember” results and parameters of previous versions of a
model. E.g., the data scientist must remember what combinations
of parameters or features have been tested as well as their results
in order to draw insights and inform the next experiment; (3) Data
scientists have no means of answering aggregate or example-level
questions regarding different versions of a model. E.g., a data sci-
entist often discovers a discrepancy in the code or data at some
point and must then re-run all analyses downstream from it. How-
ever, in the absence of model versioning, identifying experiments
that must be re-run is an uphill battle.

The above challenges which are a result of the iterative nature
of modeling highlight an important and little-studied problem for
machine learning tools: model management. Model management
is the problem of tracking, storing, and indexing large numbers of
machine learning models so that they may subsequently be repro-
duced, shared, queried and analyzed. In this talk, we will present
ongoing work on ModelDB, a system to manage machine learn-
ing models. ModelDB automatically tracks models in their native
environments, indexes them intelligently, and allows flexible ex-
ploration of models via SQL as well as a visual interface.

Related Work. Scientific workflow management is a rich area
of research that has produced systems including Kepler [3], Tav-
erna [4], and VisTrails [1]. Commercial software vendors have also
introduced tools such as the AzureML suite and the SeaHorse suite
that allow the (graphical) construction of machine learning work-
flows. While these systems provide good workflow management,
they suffer from several drawbacks: (a) almost all of these sys-
tems require workflows to be pre-specified via GUIs, a mode of
interaction unacceptable to most data scientists; (b) these systems
track some subset of – but not all – ingredients required for re-
producibility and versioning: code, data, models and results; (c)
they have limited ability to build workflows across multiple envi-
ronments (e.g. hadoop + torch); (d) they do not support interesting
queries on models as described above.

Architecture. Figure 1 shows the high-level architecture of our
system. ModelDB consists of three key components: native client
libraries for different machine learning environments, a backend

Figure 1: ModelDB Architecture

that defines key abstractions and brokers access to the storage layer,
and a web-based visualization interface. Using the native client
libraries for ModelDB (currently available for spark.ml and scikit-
learn), data scientists can perform experimentation and model build-
ing in their favorite ML environment as usual while, in the back-
ground, the library automatically extracts relevant information and
passes it to the ModelDB backend. The backend exposes a thrift in-
terface to allow clients in different languages to communicate with
it. ModelDB stores models and pipelines as a sequence of actions
(as opposed to states) and uses a branching model of history to track
the changes in models over time [2]. The backend uses a relational
database to store modeling workflows while a custom storage en-
gine is used to store and index models. Logging model-specific
metadata and results allows ModelDB to support aggregate as well
as example-level queries as described in the introduction. The third
component of ModelDB, the visual interface, provides an easy-to-
navigate layer on top of the database that permits visual exploration
and analyses of models and workflows.

In this abstract, we described ongoing work on ModelDB, a novel
system to manage machine learning models. The talk will describe
details of the system design and results from early adopters of Mod-
elDB.

1. REFERENCES
[1] L. Bavoil, S. P. Callahan, P. J. Crossno, J. Freire, C. E. Scheidegger, C. T. Silva,

and H. T. Vo. Vistrails: Enabling interactive multiple-view visualizations. In
Visualization, 2005. VIS 05. IEEE, pages 135–142. IEEE, 2005.

[2] M. Derthick and S. F. Roth. Enhancing data exploration with a branching history
of user operations, 2001.

[3] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee,
J. Tao, and Y. Zhao. Scientific workflow management and the kepler system.
Concurrency and Computation: Practice and Experience, 18(10):1039–1065,
2006.

[4] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al. The taverna workflow
suite: designing and executing workflows of web services on the desktop, web or
in the cloud. Nucleic acids research, page gkt328, 2013.


