
Reprowd: Crowdsourced Data Processing Made
Reproducible

Jiannan Wang
Simon Fraser University

Burnaby, Vancouver, Canada
jnwang@sfu.ca

ABSTRACT
Crowdsourcing is a multidisciplinary research area includ-
ing disciplines like artificial intelligence, human-computer
interaction, database, and social science. To facilitate coop-
eration across disciplines, reproducibility is a crucial factor,
but unfortunately it has not gotten enough attention in the
crowdsourcing research community.

Imagine a researcher Bob did a crowdsourcing experiment,
and another researcher Ally would like to reproduce the ex-
periment (Note that in this paper, we trust the crowdsourced
answers collected by Bob, which is a weaker claim of repro-
ducibility than [4].). This reproducibility process could take
a lot of time for both Bob and Ally. From the Bob’s per-
spective, he has to spend additional time in modifying the
code since the code written for doing the experiment is dif-
ferent from that used for reproducindog the experiment. For
example, the former requires to collect answers from crowd
workers, but the latter just reuses the cached crowdsourced
answers. From the Ally’s perspective, once she receives the
Bob’s code and crowdsourced answers, she might find it hard
to examine the experimental result since the code may not
be easy to extend or the crowdsourced answers may not con-
tain enough lineage information (e.g., when were the tasks
published? which workers did the tasks?).

These issues discourage researchers from sharing exper-
imental results or analyzing others’ results to derive new
insights, resulting in a significant negative impact on the
crowdsourcing research community. While some recently de-
veloped tools [3, 1] can be used to mitigate the impact of
these issues, they do not fully meet Bob and Ally’s require-
ments. Reprozip [1] is tool for automatically packing an
experiment along with the entire programming environment
(e.g., dependent libraries or packages). It saves the time for
deploying an experiment but not the time that Bob spends
in modifying the code or Ally spends in examining the code.
Turkit [3] proposes a crash-and-rerun programming model.
This programming model can help Bob to solve his issue,
but add extra burden to Ally. The reason is that Turkit
caches the functions’ returned values into a database in se-
quence, thus Ally has to be very careful with the order of
these function calls. If she accidentally swapped the order
of two functions or added a new function between them, the
whole experiment would break.

In this paper, we present Reprowd, a system aiming
to address these issues. We identify two requirements for
making a crowdsourcing experiment easy to reproduce. 1)
Sharable. Once Bob finishes a crowdsourcing experiment,
he should be able to directly share the experiment to Ally
without any need to change the code. (2). Examinable.
The experiment should capture complete lineage informa-
tion about how crowdsourced answers were collected and

allow Ally to extend the code more easily.
We restrict the current focus of the system on the database

field only. Most of the crowdsourcing works in the database
field are centered around the implementations of crowd-
sourced data processing operators [2]. That is, how to com-
bine computers and crowds to implement traditional database
operators such as join, sort, and max. Despite the restricted
focus, Reprowd is actually beneficial to any research field
that needs to collect data from the crowd.

A key insight in designing Reprowd is to model a list of
steps for doing a crowdsourcing experiment as a sequence of
manipulations of a tabular dataset called CrowdData. It en-
ables us to leverage existing techniques that were originally
developed for data management, such as data recovery and
data lineage, to address reproducibility challenges. Specif-
ically, in order to satisfy the “sharable” requirement, the
system guarantees that any manipulation of CrowdData is
fault recovery. That is, when the program is crashed, re-
running the program is as if it has never crashed. Thus,
at any given point, Ally can simply rerun the Bob’s code
(without any modification) to reproduce his experimental
result. In order to satisfy the “examinable” requirement,
CrowdData not only contains complete lineage information
about crowdsourced answers but also allow other researchers
to extend it using the provided APIs. We find that the
CrowdData programming model is general enough to be
used in re-implementing a large number of existing crowd-
sourced data processing algorithms in the literature. We
have implemented two crowdsourced join algorithms [5, 6]
based on CrowdData. A preliminary result suggests that
the implementations of high-level operators (e.g., join, sort,
max) can easily inherit the sharable and examinable prop-
erties from CrowdData. We have open sourced Reprowd
at http://sfu-db.github.io/reprowd/, and will continue im-
plement more crowdsourced data processing operators using
CrowdData in the future.

1. REFERENCES[1] F. Chirigati, R. Rampin, D. Shasha, and J. Freire. Reprozip:
Computational reproducibility with ease. In SIGMOD, pages
2085–2088, 2016.

[2] G. Li, J. Wang, Y. Zheng, and M. J. Franklin. Crowdsourced
data management: A survey. IEEE TKDE, 28(9):2296–2319,
Sept 2016.

[3] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit:
human computation algorithms on mechanical turk. In UIST,
pages 57–66, 2010.

[4] P. Paritosh. Human computation must be reproducible. In
CrowdSearch, pages 20–25, 2012.

[5] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. PVLDB, 5(11):1483–1494,
2012.

[6] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng.
Leveraging transitive relations for crowdsourced joins. In
SIGMOD, pages 229–240, 2013.


