
CEREBRO: A System to Manage Deep
Learning for Relational Data Analytics

Arun Kumar
University of California, San Diego

arunkk@eng.ucsd.edu

Deep learning a.k.a deep neural networks (DNNs) are push-
ing the state of the art in AI tasks such as image and speech
recognition [3]. Leading Web companies are betting big on
DNNs. Beyond all the hype, a key question remains: Will
deep learning transform relational data analytics, which is
critical for multi-billion dollar tasks like customer churn pre-
diction in enterprise domains? Machine learning (ML) over
relational data systems is a major focus of our community;
thus, this is an existential question for this line of work.

Conversations with data scientists at many enterprise com-
panies revealed that there is indeed broad interest in DNNs,
but there are at least two major non-economic challenges to
their adoption. First, unlike multimedia, relational data typ-
ically have interpretable features. Preserving interpretabil-
ity is key for business purposes but DNNs obscure it. Fortu-
nately, ML folks are already tackling this challenge [1]. Sec-
ond, unlike images/speech, where models are more reusable
across domains, relational data have different schemas and
features across domains even for the same task; this forces
data scientists to perform the painful process of model engi-
neering on their data: tuning the number of layers and neu-
rons, their connectivity, and hyper-parameters. Like feature
engineering, these decisions depend on several factors: data
schema, attributes’ properties, database dependencies, time
budget, resources, etc. This process involves data and model
transformations, tracking such changes, and archiving the
models for inference and auditing. Alas, existing DNN tools
provide little support for this iterative process. This forces
data scientists to manage such information mostly manually
and lowers their productivity. Also, since DNN tools are sep-
arate from production systems such as RDBMSs, inference
becomes a cumbersome task straddling two systems.

We propose Cerebro, the first data system to support
the process of model engineering for deep learning over rela-
tional data. Our goal is three-fold: (A) make it easier and
faster to build high quality DNNs over relational data, (B)
archive DNNs and manage their provenance to help with au-
diting and with (A), and (C) integrate DNN inference with
an RDBMS to make it easier to use DNNs in production.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017, Chaminade, California, USA.

We plan to prototype Cerebro on top of TensorFlow us-
ing the abstraction of a model selection triple (MST) [2]. We
abstract a DNN as a triple (FE, AS, PT) that is changed
iteratively: FE (feature engineering) represents data trans-
formations at the input layer (e.g., joins and aggregates),
AS (algorithm selection) represents the graphical structure
(hidden layers), and PT (parameter tuning) represents the
hyper-parameters and activation functions. This abstraction
helps us explore alternate physical layouts for large DNNs.
We plan to use PostgreSQL for storage in our first design
to exploit its indexing/querying capabilities. We will add a
simple embedded domain specific language (DSL) to declare
MST changes, capture popular DNN structures, and make it
easier for us to store and search over DNNs. We also envision
providing model recommendations based on data properties,
past DNNs, and MST changes in a model engineering ses-
sion. We do not aim to support all possible DNNs in our
first design; rather, we will support a large class of popular
DNNs for classification and make our design extensible.

Cerebro raises several new research questions at the in-
tersection of data management and ML; we outline some
and discuss why they are interesting from a data manage-
ment perspective. (i) What is the “data model” to repre-
sent DNN MSTs? An effective representation should pro-
vide opportunities to optimize physical layout and indexing.
Such storage-runtime trade-offs are reminescent of RDBMS
storage systems. (ii) What DNN structures and operations
should the DSL capture? This also involves determining how
they interact with existing operations in TensorFlow, similar
to declarative dataflow languages. (iii) How best to exploit
DNN MSTs to reduce runtimes across iterations? This in-
volves new cost-based optimizations to avoid redundancy in
both data and model transformations and optimizing exe-
cution over both GPUs and CPUs. (iv) How to optimize
DNN inference in an RDBMS for large data? This involves
jointly optimizing database accesses with DNN computa-
tions, exploiting any database dependencies, and managing
both data and model parallelism. (v) How to recommend
DNN structures and MST changes for a new task/dataset
using an archive of DNNs? This involves characterizing the
effects of different DNN MSTs on accuracy and devising rec-
ommendation algorithms, potentially using ML.

1. REFERENCES
[1] Z. Che et al. Distilling Knowledge from Deep Networks with

Applications to Healthcare. CoRR, abs/1512.03542, 2015.

[2] A. Kumar et al. Model Selection Management Systems: The
Next Frontier of Advanced Analytics. SIGMOD Rec.,
44(4):17–22, Dec. 2015.

[3] Y. Lecun et al. Deep Learning. Nature, 521:436–444, 5 2015.


