
SQL for NoSQL Databases: Déjà Vu (Part 2)

Christoph Bussler
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065

Christoph.Bussler@oracle.com

1. THE ALTERNATIVE APPROACH TO

QUERYING JSON WITH SQL: JSON SQL
Providing a query interface for querying “schema-less” JSON

documents using SQL as declarative query language [1] is finally

gaining momentum (e.g. [4], [5]).

The approach proposed in [2] called JSON SQL, however,

represents an alternative approach as it adheres to the following

principles:

• extends the SQL 92 grammar ([3]) without changing the

existing grammar rules, but by strictly adding new rules

or extending existing rules

• supports a syntax for specifying query results as both,

documents or tables, with the results as documents

precisely matching the stored documents’ structure

without modification

• defines a clear semantics based on the relational model

• implements the complete set of JSON data types,

including JSON true, JSON false and JSON null

In JSON SQL no assumption is made about the JSON document

structure except that it must comply with the JSON standard.

Documents are grouped into collections (which imply neither a

specific semantics nor specific constraints).

2. EXAMPLES OF JSON SQL
A few examples are introduced next with more details in [2]:

select {a, b} from exampleColl

return a JSON document for each JSON document in exampleColl

with properties “a” and/or “b” if present, if none is present, return

the empty document

select a, b from exampleColl

return a table with two columns with the value of property “a”

and/or the value of property “b” populated if present

select {a AS a.b} from exampleColl

project property “a” but relocate it to “a”.“b” in the result

document

select {a AS a.b.c, b AS a.b} from exampleColl

illegal as “a”.“b” would remove “a”.“b”.“c” from the result

select {*} from exampleColl where a.x.y = true

return all documents completely where the value of property

“a”.“x”.“y” is of literal JSON true

select {*} from exampleColl where a = ‘true’

return all documents where the value of property “a” equals to

String “true”

select {*} from exampleColl where “true” < ‘true’

return all documents where the value of property “true” is less

than the String “true”.

select * from exampleColl where a.b = c.[3]

return all properties as columns where the value of property

“a”.“b” is equal to the 4th array element value of array “c” in the

same document

select {*} from exampleColl where a = [7, null]

return all documents where the value of property “a” corresponds

to the JSON array [7, null]

select {c.[2]} from exampleColl

project the 3rd array element; this requires a “filler” representation

(<>) to return an array as e.g. [<>, <>, 5] indicating that the first

and second array elements are unknown (since not projected).

This is the only extension required for representing JSON values

(or the absence of).

3. SEMANTICS
If a property or a path to a property does not exist, then the

property will not participate in projection or selection.

Property value comparisons with values or JSON literals must

have matching types (every JSON type has a literal representation,

e.g., true, false, null, ‘abc’, {“a”:5} and [0, 1, ‘three’, null]).

4. THE WAY FORWARD: KEEP GOING
The implementation outlined in [2] is not complete yet, but

adheres to the principles outlined in Section 1. The

implementation work continues and the step-wise progress will be

reported in [2].

5. REFERENCES
[1] Bussler, C.: SQL for NoSQL Databases: Déjà Vu. 7th

Biennial Conference on Innovative Data Systems Research

(CIDR ’15) January 4-7, 2015, Asilomar, California, USA.

[2] http://realprogrammer.wordpress.com

[3] http://savage.net.au/SQL/sql-92.bnf.html

[4] Microsoft Azure DocumentDB:

https://azure.microsoft.com/en-

us/documentation/articles/documentdb-sql-query/

[5] Couchbase: http://www.couchbase.com/n1ql

This article is published under a Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/), which permits

distribution and reproduction in any medium as well allowing derivative

works, provided that you attribute the original work to the author(s) and

CIDR 2017.

8th Biennial Conference on Innovative Data Systems Research

(CIDR ’17) January 8-11, 2017, Chaminade, California, USA.

