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ABSTRACT
Modern database systems support one set of integrity constraints
per database. Imagine you could specify multiple sets of integrity
constraints per database, one for each type of application. This
paper argues why this might be a good idea and introduces a system
that implements this idea.

1. INTRODUCTION
Data lakes in the cloud have proliferated in the last years, driven

by suitable infrastructure support which has been added by all ma-
jor cloud providers. In data lakes, diverse applications share data
and associated computational resources to process and query the
data. However, with great capabilities often comes great peril un-
less data and resource governance creates order from chaos. In this
paper, we consider a special type of data governance, namely the
data integrity constraints that are needed by applications. A tra-
ditional OLTP system or data warehouse comes with a carefully
crafted set of integrity constraints – not too stringent to be pro-
hibitive, but not too relaxed such that applications need to consider
all corner cases. In a data lake where we have a multitude of ap-
plications accessing shared data, such a shared set of integrity con-
straints is hard to find. If we are too stringent, we prevent many
applications that require relaxed constraints from running, but if we
are too relaxed, the data lake becomes the greatest common denom-
inator of all constraints and then we have to rely on the checking
of integrity constraints and associated corner cases in application
code. Thus, we need a system that enables the creation of different
sandboxes within a data lake, each sandbox with its associated set
of integrity constraints.

Consider an example of a data lake of products and orders with
applications that have very different integrity constraints:
• A stock-keeping application that runs reports every hour and

aggregates the orders for all products. We only want to dis-
play a report for a product once all the orders for the hour
have been completed.
• A dashboard application that reports on the total value of or-

ders by product and the total value of orders by customers,
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receiving as input feeds of new orders and feeds of new cus-
tomers. If orders are ahead of associated customers, the dash-
board would generate inconsistent results.
• Another dashboard application that shows completed orders

that have shipped. This means that only orders where all
lineitems have shipped should be displayed.

All these application query the same data lake, but they have very
different requirements on the integrity of states of the data that they
want to see.

Contributions of this Paper. In this paper, we introduce a new
concept for these types of applications: A data lake with multi-
ple sandboxes with different integrity constraints. Each application
group gets its own sandbox with its own integrity constraints that
protects the application from seeing inconsistent states according to
its own integrity constraints on the database. Multiple applications
that have the same requirements can run in the same sandbox. All
of this should happen transparently to the developers of the appli-
cations. We first introduce the concept of a data lake with multiple
integrity constraints, describe design goals, the design space, and
how the concept relates to and differs from previous work (Section
2). We then describe an instance of a data lake with multiple in-
tegrity constraints, the READY System, which efficiently handles
a novel type of integrity constraint that we call a completeness con-
straint. We describe the nature of such constraints and associated
extensions to SQL and sketch the implementation of our first proto-
type (Sections 3 and 4). We then detail the results of a preliminary
evaluation of READY as compared to two natural baselines, and we
show that we can modify existing mechanisms for handling tempo-
ral data to implement data lakes with multiple constraints (Section
5). We discuss related work in Section 6, and we conclude with a
discussion of future work in Section 7.

2. DATA LAKES WITH INTEGRITY CON-
STRAINTS

This section describes the main concepts of our approach to add
integrity constraints to a data lake and discusses how these concepts
relate to traditional database systems.

2.1 Goals
By adding integrity constraints to a data lake, we would like to

achieve three goals:
• Sharing: There is conceptually only one copy of data shared

across many applications and users. Updates to data are
potentially immediately visible to all applications without
copying the data.
• Custom Integrity: Each application defines its own integrity

constraints and it only sees data and states of the data lake



Data lake versions

App1 Versions

App2 Versions

T1 T2 T3 T4 T5

Figure 1: Temporal Data Lake

that comply with its integrity constraints.
• Decoupling: Applications do not block each other. Each ap-

plication makes progress independently of the integrity con-
straints defined for other applications.

These three goals are in conflict to each other. It is easy to have
two of these three, but not all three. For instance, applications are
decoupled with custom integrity today by maintaining a separate
copy of the database for each application; i.e., data silos which sac-
rifice sharing. It is also possible to support sharing and decoupling
without any integrity constraints; that is the status quo of many
data lakes today. Finally, it is also possible to have sharing and
custom integrity (and no decoupling); in this scenario, the database
must comply to the union of all integrity constraints of all applica-
tions which blocks applications that only require compliance to a
subset of the integrity constraints. This configuration is often im-
plemented in a data warehouse with an ETL process which might
over-regulate data quality to be on the safe side.

As shown in Section 3, READY achieves these three goals by
supporting a specific scenario only: information flows between pro-
ducers and consumers which are particularly common in data ware-
housing scenarios. The underlying concepts of READY, however,
are more general and can be applied in different ways to support
other scenarios, too. The remainder of this section describes these
general concepts.

2.2 Sandboxes and Data Lake Versions
The main idea is that each application (or class of applications)

runs in a sandbox. A sandbox specifies the specific integrity con-
straints of that application. Applications that share the same set of
integrity constraints can run in the same sandbox. Sandboxes are,
thus, the key concept that implements the custom integrity goal.

Figure 1 shows how we propose to implement sharing and de-
coupling. Figure 1 depicts three timelines. The first (blue) timeline
shows five different versions of the data lake at times T1, . . . , T5.
For instance, at T1 the data lake could be empty. At T2, a file with
new orders is uploaded to the data lake. At T3, some of these or-
ders are updated. And so on. So, the first extension we propose is
to view the data lake as a versioned data lake in which each update,
insert, or delete creates a new version of the data lake.

A sandbox controls which versions of the data lake are visible
to an application that runs in the sandbox. A version of the data
lake is visible if it meets the integrity constraints specified in the
sandbox. For instance, Versions T1, T2, and T5 of the data lake
meet the integrity constraints of the sandbox of App1 in Figure 1.
Versions T2 and T4 are not visible.

In addition to sandboxes, we propose to define a transaction-
specific policy that determines which visible version of the data
lake is used to execute a transaction. At Time T2, for instance,
such a policy would determine whether a query issued by App1 is
executed using Version T1 or whether App1 waits for Version T3

in order to execute the query. There can be many different policies
on how to select the right visible version at every point in time, and

Section 3.3 describes the options we chose to implement for the
first READY prototype.

In summary, sandboxes control which versions of a data lake are
visible to an application. This way, sandboxes implement custom
integrity by guaranteeing that applications only run on versions of
the data lake that meet their integrity constraints. Furthermore, the
applications are totally decoupled. There might be overlap (e.g.,
Versions T1 and T5 are visible to both applications in Figure 1),
but every application defines its own sandbox and thus defines its
own visibility. Furthermore, no application is ever blocked by the
constraints of another application. It is possible to apply the up-
dates to generate Version T4 of the data lake even though Version
T4 does not meet the constraints of neither application. Finally,
there is still only one copy of each object in the data lake, thereby
enabling sharing. For instance, all updates (e.g., insertions of new
orders) made at T5 are immediately visible to both App1 and App2
without doing an extra copy of these objects.

2.3 Discussion of Related Concepts
How do these concepts relate to concepts in traditional database

systems? The closest analogy of a sandbox is a view or more pre-
cisely a temporal view. For instance, we could encode App1’s in-
tegrity constraints into a view definition and issue all of App1’s
queries against this view. This way, App1 would see Version T1

of the data lake at Time T2. There are three reasons why views
are not a good way to add integrity constraints to data lakes. First,
the view definition that includes integrity constraints would be hu-
mongously complex. In contrast, the sandbox definition can be
specified in a straight-forward way, just as integrity constraints in
SQL today. (Section 3.2 contains examples.) Second, temporal
views are not updatable. As we will see, however, we also want to
run update transactions in sandboxes and make sure that they meet
the integrity constraints of the updating application. Third, (tem-
poral) views can look into the past at best. However, at Time T2 it
might serve App1 best to wait for Version T3 to continue processing
queries.

The second related concept of traditional databases are integrity
constraints. In fact, we completely adopted this concept. A sand-
box is nothing else than a container for a set of integrity constraints.
We need the notion of a sandbox only because we want to support
multiple sets of integrity constraints in a data lake, one set per class
of applications in order to decouple the applications that run in the
data lake.

Finally, versioning the data lake fits nicely into the concept of a
temporal database [14]. In fact, READY 1.0 is implemented that
way (Section 4). However, the concepts are more general and it is
not necessary to implement versioning or a temporal database. For
instance, if App1 waits at Time T2 for the next consistent version
(i.e., T3), then there is no need to keep Version T1 of the data lake.

3. READY 1.0
The sandbox model sketched in Section 2 is generic and there

are many different ways to instantiate it. This section describes
the specific approach we took in our first implementation of the
READY system. This approach is specifically geared towards a
particular application pattern: controlling the information flow be-
tween producers and consumers. This pattern is particularly com-
mon in data warehousing with an OLTP system as a producer and
data marts as consumers. For instance, the producer could be an
ERP system that generates new orders and updates these orders as
they are fulfilled. The consumers could be different materialized
views that analyze the orders in order to make business decisions;
e.g., launch marketing campaigns or replenish supplies. The pro-



ducer/consumer pattern also supports real-time dashboards which
are updated whenever a new (consistent and complete) batch of
events have been processed or the generation of periodic reports
for decision support.

3.1 Producers and Consumers
READY 1.0 differentiates between two kinds of applications and

users: producers and consumers. Producers carry out read and up-
date transactions against the data lake. That is, they transform the
data lake from one state into the next state. Consumers carry out
read-only transactions on different versions of the data lake.

The transactions of both producers and consumers run in sand-
boxes which specify the specific integrity constraints of the produc-
ers and consumers. For instance, the marketing department may
want to wait until all the orders of a particular quarter have been
completed (shipped or canceled) before making decisions on how
to promote a particular product in a certain region. In contrast,
replenishment decisions are made on a weekly or daily basis and
orders are processed by the ERP system in real-time.

Furthermore, READY 1.0 models the data lake as a sequence
of versions as shown in the example of Figure 1. In READY 1.0,
there is exactly one producer sandbox and all update transactions
that generate new versions of the data lake must run in this producer
sandbox. This producer sandbox specifies the constraints that any
version of the data lake must fulfill and update transactions run in
this producer sandbox in the same way as update transactions run in
a traditional database with only one set of integrity constraints. If
the data lake does not meet the constraints of the producer sandbox
at the end of an update transaction, then the commit of the transac-
tion fails and all the updates are rolled back; again, just like in any
other traditional database system. In the example of Figure 1, the
first (blue) timeline represents the producer.

Note that the restriction to one producer sandbox does not restrict
to having only one data source. The data lake could, for instance,
be populated by an ERP system that uploads new orders and a CRM
system that generates new customers. However, these different sys-
tems (or the ETL process that imports data from these systems into
the data lake) need to agree on a single set of integrity constraints
which is captured in the producer sandbox.

For a (read-only) consumer, the sandbox defines which versions
of the database the consumer sees. In READY 1.0, there can be
zero, one, or any number of consumer sandboxes. For instance,
App1 and App2 are consumers in Figure 1, each running in their
own sandbox.

3.2 Sandbox Syntax and Completeness Con-
straints

The syntax to define a sandbox is as follows:

CREATE SANDBOX sandboxName ( argname argtype )*
[ FOR UPDATES ]
[ WHEN predicate ]
[ WITH ( relationName: predicate )* ];

Listing 1: Sandbox Syntax

The optional FOR UPDATES clause indicates the producer sand-
box. READY 1.0 only supports one producer sandbox and returns
an error if an application tries to create a second producer sandbox
with a FOR UPDATES clause.

The WHEN clause contains a predicate that involves all the in-
tegrity constraints, possibly as a conjunction of predicates. Only
versions of the data lake that comply with the WHEN predicate a
visible to queries and transactions running in that sandbox. For in-
stance, the following sandbox definition indicates a sandbox that

makes sure that applications do not see any orders whose status is
“open”:
CREATE SANDBOX noOpenOrderSandabox
WHEN NOT EXISTS
(SELECT * FROM Order WHERE status = "open");

Listing 2: Sandbox Example

One particularly common class of constraints for producer / con-
sumer scenarios is completeness. For instance, the marketing de-
partments wants to make decisions only when all orders of a quarter
have been processed. As another example, we may want to analyze
the telemetry of a rack of machines in a data center only when all
machines of the rack have reported their status. Or, we want to
ship the next version of a software product once all unit tests have
passed. Unfortunately, the SQL syntax does not support univer-
sal quantification which is the basis to specify completeness con-
straints. READY, however, does support FORALL predicates in the
WHEN clause to make it easier to specify completeness predicates.

Sandboxes can be parameterized. For instance, an analyst might
be interested in orders of customers from a particular country only
and, thus, specify a WHEN predicate that involves those customers
only. The following parameterized sandbox definition makes sure
that such analysts only see versions of the data lake in which all the
orders of such customers have status “Verified”.
CREATE SANDBOX completeByNation(:nationId INT)
WHEN
FORALL (SELECT o.status as s

FROM Order o, Customer c
WHERE o.o_custkey == c.c_custkey
AND c.c_nationkey == :nationId)

SATISFY s = "Verified"

Listing 3: Parameterized Sandbox

In addition to a WHEN clause which specifies which versions of
a data lake are visible, a sandbox can also contain the definition
of one or several WITH clauses. A WITH clause defines which
tuples of a relation are visible. For instance, such a WITH clause
may specify that an application running in the data lake only sees
the telemetry of machines of a data center that have reported load
statistics in the last 5 seconds. We call this concept fine-grained
integrity constraints. The visibility of records defined by the WITH
clause of a sandbox is orthogonal to the visibility of entire data
lake versions specified by the WHEN clause. We mention WITH
clauses because READY supports them, but we will not discuss
WITH clauses in the remainder of this paper which is focused on
integrity constraints defined in WHEN clauses.

3.3 Sandbox Usage and Queries
In READY 1.0, all transactions run in a sandbox. The transac-

tions of producers always run in the one and only producer sand-
box. By definition, this sandbox is always compliant with the latest,
current version of the data lake so that all updates are applied to the
latest version of the data lake. The queries of consumers, how-
ever, may run on different versions of the data lake. To specify the
version, READY extends the SQL syntax for transaction and intro-
duces an additional keyword which can take one of the following
three values:

• LAST: The query is evaluated using the last consistent state of
the database, possibly the current state of the database. Such
a state exists because initially, the empty database is consis-
tent according to all sandboxes. LAST is also the default if
nothing else is specified and it is the mandatory mode for the
usage of a producer sandbox.
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Figure 2: Collaboration Scenario

• NEXT: If the current state of the database is not consistent
with regard to the constraints of the sandbox, then the query
blocks until the database is in a consistent state. At that point
(in future), the query is evaluated and the results returned to
the consumer. If the current state of the database is consis-
tent, LAST and NEXT are identical.

• CONTINUOUS: The query is applied to all consistent states
of the database, now and in the future. The consumer must
register a callback function to consume the results of the
continuous READY query. Continuous queries are useful in
many reporting applications; for instance, an enterprise may
want to report on the business activity at the end of every
business day once all orders of that day have been fully pro-
cessed.

The following is an example query that runs in the parameterized
sandbox of Listing 3. The query asks for aggregates of lineitems of
customers of a particular country. Since it runs in the completeBy-
Nation sandbox for “Germany”, the query blocks until the data lake
has reached a state in which all orders of German customers have
been verified.

BEGIN USING completeByNation("Germany") NEXT;
SELECT c.name, count(*)
FROM Order o, Customer c
WHERE o.o_custkey = c.c_custkey

AND c.c_nationkey = "Germany"
GROUP BY c.name

COMMIT;

Listing 4: Using a Sandbox

Any number of SQL statements can be executed within the BEGIN
USING and COMMIT bracket. In READY 1.0, the statements of
a transaction run in the same sandbox and on a single version of
the data lake. Therefore, the BEGIN USING and COMMIT bracket
also defines the boundaries of a transaction in READY 1.0.

3.4 Outlook: Multiple Producer Sandboxes
READY 1.0 supports producer / consumer scenarios which are

typical for many business scenarios today (e.g., ERP and decision
support applications). The concepts of Section 2 can also be used to
support more complex collaborations in which applications can run
read and update transactions through multiple producer sandboxes
that each have their own set of integrity constraints.

Figure 2 depicts such a scenario. Again, Figure 2 shows three
timelines. The first (blue) timeline depicts five versions of the data
lake. This time, these versions are generated by transactions cre-
ated by two producers. Producer 2 generates Versions T2 and T3

of the data lake. Producer 1 generates Versions T4 and T5. Again,
the sandboxes control which versions are visible to each applica-
tion. Producer 1 sees Versions T1, T3, T4, and T5. Producer 2 sees
Versions T1, T2, T3, and T5.

In this scenario (just as in the simple producer / consumer sce-
nario implemented in READY 1.0), there is a linear sequence of
versions of the data lake and each update transaction of a producer
operates on the latest, current version of the data lake and generates
the next version of the data lake. What makes this “multiple pro-
ducer sandbox” scenario special is that not every producer sees all
versions of the data lake. For instance, Producer 1 does not see Ver-
sion T2 of the data lake and is, thus, blocked at this point of time.
That is, all update transactions of Producer 1 fail when issued at
Time T2 and Producer 1 needs to wait until Producer 2 is done with
its changes and has created a version of the data lake that is consis-
tent with Producer 1’s requirements (Version T3 in this example).
The approach depicted in Figure 2, thus, sacrifices decoupling of
applications for a richer collaboration scenario with more custom
integrity for each producer.

In general, it is not even necessary that the versions of the data
lake are ordered by time as in the examples of Figures 1 and 2.
For instance, the model also supports branching in which versions
of different branches are not ordered. git and other software ver-
sion control systems are example systems that support branching
to effect collaboration. Branching sacrifices sharing (i.e., immedi-
ate visibility) for decoupling. All these examples demonstrate that
there are many ways to instantiate the generic sandbox concepts
of Section 2. In all cases, it is possible to define sandboxes which
control the visibility of versions of the data lake.

4. READY PROTOTYPE
To study the trade-offs of the READY concepts, we built a proto-

type of READY 1.0 on top of Spark. This prototype is particularly
geared towards an information flow pattern that matches data ware-
housing applications. This section describes this prototype. Section
5 discusses the results of the performance experiments conducted
using this prototype.

Figure 3 gives an overview of the building blocks of the READY
1.0 prototype. The application layer is depicted in red. It consists
of the OLTP systems that generate data and the analytics and re-
porting tasks that consume the data. The sandbox definitions for
the producer and all the consumers are also part of the application
layer. The implementation of the data lake (i.e, Spark) is depicted
in green. We use HDFS as a storage layer. Furthermore, we use
the Spark SQL processor and Map Reduce engine to implement all
READY components which are depicted in green: (a) Data Ingest
which batches updates and stores them in HDFS; (b) Version Selec-
tion which determines which version of the (versioned) data lake
meets the constraints of a sandbox; (c) Temporal Query Processor
which rewrites a SQL query issued by a consumer and executes it
on the right version of the data lake, thereby using the data lake’s
SQL processor. We sketch the design of these three green compo-
nents in the remainder of this section.

4.1 Data Ingest: Storage Layer
The Data Ingest component batches a stream of updates (inserts,

updates, and deletes) of records and stores them as files in HDFS.
READY differentiates between two kinds of files: (1) data files
which are created as part of inserts and contain a set of new records
and (2) update files which contain updates and deletes and are ap-
plied to the records of data files to create new versions of the data
files.

Figure 4 gives an example that shows how READY organizes
these data and update files for versioned, temporal data manage-
ment. Data files are depicted in blue, update files are shown in
brown. The figure shows a timeline of four versions of the data
lake. At the beginning, Version V1, there is only one data file in the
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data lake, “orders0_V1.data”. This file contains the first batch of
orders uploaded to the data lake. Version V2 is created by upload-
ing a new batch of orders: The orders are stored in the second data
file, “orders1_V2.data”. The third version, Version V3, is created
by applying a batch of updates from update file “updates_V3.data”.
As a result, READY creates two new data files “orders0_V3.data”
and “orders1_V3’.data” which become visible at V3 of the data
lake instead of the original data files “orders0_V1.data” and “or-
ders1_V2.data”. Version V4 is created by applying the updates of
“updates_V4.data”. These updates only involve updates to orders
of “orders0_V3.data”. As a result, only a new version of that file
needs to be created and files “orders0_V4.data” and “orders1_V3”
are visible in V4 of the data lake.

To implement the visibility of data files for each version of the
data lake, READY implements a VersionMap that associates each
version of the data lake to a set of data files. The VersionMap data
structure is depicted by the arrows from versions to files in Figure
4.

Figure 5 shows in more detail how READY applies update file
“updates_V3.data” to the two data files to generate the new data
files of Version V3. We call this process Delta Materialization. In
Figure 5, READY creates “orders0_V3.data” by applying the up-
dates of “updates_V3.data” to Orders 1 and 7. Likewise, READY
creates “orders1_V3.data” by applying the update to Order 15. Ap-
plying bulk updates in this way is like processing a join [5] between
the existing data files and the update batch. READY performs this
join by sorting the records in the update file and then applying them
block-wise to the data files. This way, READY reads each data file
that is involved in the batch of updates only once. Listing 1 shows
the pseudo-code for Delta Materialization.

One reason why READY adopted Delta Materialization and up-

 1|ORDERED|...
 2|PARTIALLY|...
 7|ORDERED|... 

orders0_V1.data

 1|VERIFIED|...
 7|VERIFIED|... 
15|VERIFIED|...

updates_V3.data

orders0_V3.data

 1|VERIFIED|...
 2|PARTIALLY|...
 7|VERIFIED|...

15|ORDERED|...
24|PARTIALLY|...

orders1_V2.data

15|VERIFIED|...
24|PARTIALLY|...

orders1_V3.data

Figure 5: Delta Materialization Example

dates all records in the granularity of files is that HDFS only sup-
ports updates in the granularity of files: HDFS does not support
“update-in-place” in a file so there is no way to update, say Order 1
in File “orders0_V1.dat” without changing the rest of that file. The
second reason is that such coarse-grained updates are sufficient in
many data warehousing applications because only a few data files
are involved in a batch of updates. The reason is that there is a
great deal of temporal locality in these applications: Records such
as orders are typically updated in bursts and often only in a short
time period after they were created. For applications that involve
small and randomly scattered updates, however, the “file-grained”
implementation of updates of our READY prototype might not be
appropriate.

To increase the effectiveness of Delta Materialization and have
“update” batches that are as large as possible, Delta Materialization
is carried out in a lazy way. The data files of a version of the data
lake are materialized only if needed for query processing. That is,
READY’s data ingest component collects updates in a “pending up-
date file” (such as “update_V3.data”) as long as they are not visible
in any sandbox and not queried.

Algorithm 1 Delta Materialization
1: Input updBlk : block containing updated tuples
2: Input relationIndex : Range index mapping key ranges to

relation blocks
3: method Process_Updates(updBlk, relationIndex)
4: for all rows r ∈ updBlk do:
5: blkRange← relationIndex.getRange(r.key)
6: Load the relation blocks in blkRange
7: Update and write updated blocks to new location
8: End Method

Once Delta Materialization is done, READY can immediately
garbage collect the update file. For instance, READY deletes file
“updates_V3.data” after it generated files “orders0_V3.data” and
“orders1_V3.data”. Garbage collection of data files depends on the
visibility of versions of the data lake in sandboxes. If no sandbox
needs V1 and V2 of the data lake anymore (the latest compliant
version is V3 or later for all sandboxes), then READY can garbage
collect the data files “orders0_V1.data” and “orders1_V2.data”. To
this end, READY maintains a watermark of the oldest relevant ver-
sion of the data lake for every sandbox and adjusts this watermark
whenever it carries out Version Selection for that sandbox. How to
do Version Selection is the subject of the next subsection.



4.2 Version Selection
The second important component of our READY prototype is

Version Selection (Figure 3). Version Selection determines which
version of the data lake complies to which sandbox.

Version Selection involves evaluating the integrity constraints of
a sandbox, the WHEN clause. As shown in Section 5, this evalua-
tion is expensive and is worth optimizing. We have implemented
two variants of Version Selection: (1) Eager and (2) Lazy. The Ea-
ger variant checks the constraints of every sandbox for every new
version of the data lake. More precisely, Eager checks the con-
straints of all whenever READY carries out Delta Materialization
to execute the query in any sandbox. In contrast, the Lazy variant
only checks the constraints of a sandbox when a query is processed
in that specific sandbox.

As will become clear, the trade-offs of the Eager and Lazy ap-
proaches are straightforward. Eager does more frequent constraint
checking (possibly unnecessary work if a sandbox is never used),
but it can use more efficient algorithms because it can check con-
straints incrementally. Furthermore, Eager is the more general ap-
proach because it can be applied to any query, LAST, NEXT, and
CONTINUOUS. Lazy, in contrast, can only be applied effectively
to LAST queries.

4.2.1 Eager, Incremental Constraint Checking
Eager constraint checking checks the WHEN clause of all sand-

boxes for all (materialized) versions of the data lake. The most
efficient way to do that is to consider the predicate of the WHEN
clause of the sandbox as a continuous query or materialized view
and then to update this materialized view incrementally using well-
known techniques for incremental updates of materialized views;
e.g., [3, 6, 16].

In most READY applications, the predicates in the WHEN clauses
are either completeness predicates (forall) or existential predicates
(exists). These predicates can be best evaluated incrementally by
using a counter. To evaluate a completeness predicate that checks
that, say, all orders have status verified, we incrementally count
all orders and all orders with status verified. If the two counters
have the same value, we know that we are complete. Likewise,
existential predicates can be implemented with a counter; in this
case, we are ready if the counter is greater than 0. These ideas
have been studied extensively in the past and, again, we refer the
interested reader to the literature for details (e.g., [3, 6, 16]).

When a new sandbox is created, READY needs to initialize the
counters, or more generally the materialized view for the WHEN
clause. READY does that using the current version of the data lake
which may or may not meet the integrity constraints of the new
sandbox.

4.2.2 Lazy, From Scratch Constraint Checking
The Eager variant is the only option for CONTINUOUS and

NEXT queries. If most queries are LAST queries and sandboxes
are used in a sparse way, the Eager variant might be wasteful by un-
necessarily checking every version of the data lake for every sand-
box. The lazy variant in contrast, does not implement the WHEN
clause as a materialized view and, thus, does not maintain this view
incrementally. Instead, it tries to find the most recent version of the
data lake for a given sandbox whenever a query is processed in that
sandbox.

READY implements the Lazy approach using a two-phase algo-
rithm. The first phase is done with a Map/Reduce job which groups
and sorts all records by version. The second phase sweeps through
the versions in order to find the latest version that meets the in-
tegrity constraints of the sandbox. In order to speed up the sweep

and contain the search, each sandbox caches the timestamp of the
last known consistent version of the data lake.

4.3 Query Processing
Once we have created a versioned data lake and carried out Ver-

sion Selection for all sandboxes and all versions of the data lake,
transaction and query processing in a sandbox is straightforward:
Depending on the NEXT/LAST/CONTINUOUS annotation of the
transaction, READY selects the right version of the data lake and
then executes the query on all the files visible in that version of
the data lake, thereby using the VersionMap. If we would like
to issue a query with LAST annotation at Time V2 in a sandbox
whose integrity constraints are fulfilled for V1 and V3 in Figure
4, then READY would use Version V1 because V2 is not visible
to that sandbox. Correspondingly, READY would use the Ver-
sionMap to execute the query on file “orders0_V1.data”. If the
query has a NEXT annotation, READY would block and wait for
V3 and then execute the query on files “orders0_V3.data” and “or-
ders1_V3.data”.

5. PRELIMINARY EXPERIMENTS
This section presents the results of preliminary experiments us-

ing an extension of the TPC-H benchmark and our READY pro-
totype. We compare READY with two other ways to implement
integrity constraints in a data lake.

5.1 Systems Under Test
In addition to READY, we studied two other approaches as base-

lines:

• Global: This approach simulates a unified data warehouse
for all consumers. It involves two (non-versioned) copies
of all data and an ETL process: One copy for the producer
(e.g., an OLTP system) and one copy for all consumers (i.e.,
the data warehouse). The ETL process controls which data
(inserts and updates) are copied from the producer system to
the consumer system. Only if all the integrity constraints of
all consumers are met (i.e., the conjunction), the ETL pro-
cess copies data from the producer system to the consumer
system.

• Personal: For N different consumers with different integrity
constraints, this approach involves N + 1 copies of the data
and N ETL processes. That is, there is one copy of the data
for the producer and one copy of the data for each consumer.
This approach corresponds to the construction of specialized
data marts which is common in data warehouses. Further-
more, there is one ETL process for each of the N classes of
consumers, making sure that the integrity constraints of that
class of consumers are met.

As we will see, the Personal approach is more expensive because
it keeps more copies of the data, but all data marts are fresh at all
times. Overall, Personal scores high in the customer integrity and
decoupling goals, but low in sharing (Section 2). In contrast, the
Global approach loses in terms of data freshness because data only
becomes available to a consumer when it meets the requirements
of all other consumers, too. In other words, Global scores high on
sharing and custom integrity, but not on decoupling. READY tries
to score high on all three goals.

We implemented Personal and Global on top of Spark using the
same techniques as for READY as much as possible. In particular,
we used Delta Materialization and incremental constraint checking
for the ETL processes of Personal and Global (Sections 4.1 and



4.2). The only difference is that Personal and Global do not need to
maintain a versioned data lake: Conceptually, Personal and Global
can do update in place, whereas READY needs to implement up-
dates by creating a new version. In our implementation of Delta
Materialization, an update in place means that Personal and Global
can garbage collect an updated data file immediately (resulting in
lower storage costs) whereas READY needs to keep old versions of
data files until they are guaranteed to be no longer relevant for any
sandbox.

5.2 Benchmark
We used the database generator, queries, and refresh functions

of the TPC-H benchmark. All experiments reported in this paper
were conducted using TPC-H databases with scaling factors 1 and
10 (1 GB and 10 GB of raw data). The refresh functions (all inserts,
updates, and deletes) are executed in a (single) producer sandbox
which allows any data lake state; i.e., an empty WHEN clause. The
queries run in a varying number of consumer sandboxes with dif-
ferent sets of integrity constraints.

To simulate the compliance of different data lake versions to var-
ious consumer sandboxes, we extended the TPC-H benchmark in
the following way. In the original TPC-H benchmark, an order can
take one of three states: Ordered, Partially, Finalized.
Our implementation of the TPC-H benchmark involves a fourth
state: Verified. Originally, all new orders generated by the
TPC-H RefreshFunction1 (i.e., insertion of new orders) are in one
of the standard three states, as specified by the TPC-H benchmark.
We created a new refresh function, RefreshFunction3, which is ex-
ecuted every time the other refresh functions are executed. Refresh-
Function3 changes the status of 99 % of all the non-verified orders
to Verified.

We use the completeByNation sandbox of Listing 3 (Section 3.2)
to run queries. We generated up to 25 different sandboxes with
different nations. That is, each consumer sandbox focuses on a
particular country, specified by the nationId parameter. Such a
sandbox specifies that the consumer only considers versions of the
data lake in which all orders of customers of a particular country
are verified. We vary the number of customer sandboxes from 1 to
25, thereby selecting up to 25 different countries to instantiate 25
different customer sandboxes.

5.3 Experimental Environment
All experiments were conducted on a cluster of four machines.

Each server possessed two Quadcore Xeon E5-2609 processors and
128GB RAM. The servers were connected with a 10Gbit Ethernet.
One server was dedicated to run the Spark coordinator. The re-
maining three servers were configured to each run eight workers.
Each worker had 10GB of main memory. We used Spark Version
1.6.1 and Parquet as a storage format. Parquet is a columnar for-
mat with compression and the best format to implement the TPC-H
benchmark with Spark. We used Spark’s default sort-based shuffle
implementation and set all other Spark parameters following best
practices.

We carried out two kinds of experiments:

• Cost: We measured the cost (in $) using the AWS rates to
store the data and to execute the TPC-H refresh functions
and check the validity of every sandbox after the execution
of these refresh functions. The cost metric is a good metric
to measure the sharing goal. To reduce dependency on the
current AWS rates, we also report on the running times and
storage consumption for these experiments.

• Freshness: We measure the number of versions of the data
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lake a query lags behind. That is, when a query is issued
by a consumer at Time X and the query is executed using
Version Y of the data lake, then the freshness metric is X-Y
(lower is better). Both Personal and READY guarantee fresh-
ness so they lag behind 0 versions. However, Global can lag
behind because the ETL of fresh batches may be postponed
because the integrity constraints of a particular customer is
not fulfilled. The more consumers, the higher the probability
that the ETL process is postponed so that freshness becomes
worse with the number of consumers in Global. Freshness is
a good metric to measure the decoupling goal.

5.4 Experiment 1: Storage Cost
Figure 6 shows the size of the data lakes in GB for the three dif-

ferent systems (Global, Personal, READY) for a TPC-H database
with scaling factor 10 and a varying number of sandboxes. Due to
compression in the Parquet format, the size to store a single TPC-H
database with scaling factor 10 is significantly lower than 10 GB,
the size of the raw TPC-H data. For scaling factor 1, the database
sizes are roughly a tenth of the size for a scaling factor 10; we do
not show these results for brevity. Figure 7 shows the correspond-
ing monthly storage cost in USD using the AWS rates.

As expected, the storage costs of Personal grow linearly with
the number of consumers. The storage costs of both Global and



READY are independent of the number of consumers and sand-
boxes. Global needs to keep one copy of the database for the pro-
ducer and one copy for all consumers. READY keeps one ver-
sioned copy of the database. READY has higher storage costs than
Global because READY needs to keep old versions of data files
and can only garbage collect when a data file is not relevant for any
sandbox anymore. Overall, however, the differences between the
three approaches are small and storage costs were negligible in all
our experiments.

5.5 Experiment 2: TPC-H Refresh Functions

Delta Materialization
Figure 8 shows the time in seconds to do Delta Materialization with
every execution of the TPC-H refresh functions. The TPC-H re-
fresh functions update about 10 percent of the TPC-H database:
For scaling factor 10, for instance, RefreshFunction1 inserts 15,000
new orders and RefreshFunction3 updates about 15,000 orders and
sets their status to “Verified”. We executed the refresh functions
50 times and Figure 8 shows the average time for each iteration.
Accordingly, Figure 9 shows the average cost of Delta Materializa-
tion per Refresh Function invocation in USD, using the AWS rates.
Overall, the computational costs to execute updates and queries
were much more significant than the storage costs.

Not surprisingly, Personal has the highest cost for Delta Ma-
terialization and its cost grows linearly with the number of cus-
tomers because it loads and refreshes a private copy for each sand-
box whenever the Refresh Function generates a new version of the
data lake that meets the integrity constraint of the sandbox.

READY is much cheaper and its average cost for Delta Materi-
alization is (almost) independent of the number of sandboxes. In
any event, READY needs to materialize at most one copy of each
version of a data file and this copy can then be shared by an ar-
bitrary number of sandboxes as discussed in Section 4.1. In fact,
READY is even cheaper than Global in this experiment because
Global maintains two copies of each data file: one for the producer
and one for all consumers.

Interestingly, the cost for Delta Materialization drops for Global
with the number of sandboxes. This phenomenon is an artifact of
our benchmark. As shown in Experiment 4 (Section 5.7), Global
does not refresh the consumer data warehouse for more than eight
sandboxes because the integrity constraints of all sandboxes are
never fulfilled with so many sandboxes. Consequently, Global does
not carry out Delta Materialization for the “consumers” with more
than eight sandboxes and the cost for Delta Materialization drops
with the number of sandboxes.

Incremental Constraint Checking
Figure 10 shows the average cost of checking integrity constraints
incrementally (Section 4.2) for the TPC-H Refresh Functions for
READY and scaling factor 10. Obviously, this cost grows with
the number of sandboxes as more constraints need to be checked.
Because of caching effects, however, checking the constraints of
25 sandboxes is only roughly 10 times as expensive as checking
the constraints of 10 sandboxes.

Our benchmark sandbox definitions involves a join (Listing 3,
Section 3.2) so that checking the constraints was pretty expensive in
our benchmark. Inserting a new batch of orders (RefreshFunction1
of the TPC-H benchmark) involved a join of the new orders and the
Customer table for every sandbox. To update the counters for the
other refresh functions, we kept the ids of all orders that has a status
other than “Verified” for each sandbox and READY joined this set
of ids with the ids of the updated orders. Of course, READY can
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check simpler integrity constraints much faster and cheaper.
Comparing Figures 10 and 9, it becomes clear that the cost of in-

crementally checking integrity constraints is negligible compared
to the cost of Delta Materialization. That is why we spent consid-
erable more time to optimize Delta Materialization and to make it
scalable in our implementation of the READY prototype. How-
ever, checking integrity constraints can be expensive, too, if not
done right. Lazy constraint checking, for instance, is expensive,
roughly in the same order as initialization which is studied in the
next subsection.

The cost to do incremental constraint checking is almost iden-
tical for Personal and Global as for READY; so, we do not show
these results for brevity. In all of these approaches, the main effort
of incremental constraint checking is to maintain the materialized
views for all sandboxes (i.e., the counters) and this cost is indepen-
dent of the approach or whether the integrity constraints are met or
not. For lazy constraint checking (not shown), Global is cheaper
than Personal and Ready because Global benefits from short cir-
cuiting: Global checks the conjunction of the WHEN clauses of all
sandboxes and it can stop checking as soon as one of the predicates
of one sandbox fails. That is, if Sandbox 1 is not compliant, Global
does not need to check the constraints of any other sandbox. In
contrast, Personal and READY must check the WHEN clauses of all
sandboxes separately.

Initialization
When a new sandbox is created the counters (and id sets) need to
be initialized for incremental constraint checking. In READY, this
initialization requires a scan through the whole database to evaluate
the complete WHEN clause. For our benchmark sandboxes (List-
ing 3), this initialization took about 14 secs for a TPC-H database
with scaling factor 1 and about 23 secs for a TPC-H database with
scaling factor 10. So, creating a new sandbox and initializing it
for incremental constraint checking is an expensive operation in
READY.

Like constraint checking, this initialization cost to set up the
counters is the same for READY, Personal, and Global: It is fun-
damental to any system that supports multiple sets of integrity con-
straints in a data lake. For Personal, there are substantial additional
costs to materialize and create the “Personal” copy of the new sand-
box which are in the order of the size of the database. So, again,
Personal is by far the most expensive approach for accommodating
a new class of customers with a specific set of integrity constraints.

Scalability
Figure 11 shows how the cost of executing the refresh functions
varies with the scaling factor for each approach. The figure shows
the aggregate of the cost for Delta Materialization (Figure 9) and
Constraint Checking (Figure 10). While the cost of checking in-
tegrity constraints grows with the size of the database (in our bench-
mark a larger join needs to be executed), we expect the cost to be
fairly flat and independent of the database size because overall the
costs are dominated by Delta Materialization. The cost for Delta
Materialization should be independent of the size of the database
because READY only creates a new version of the data files that
contain updated records and the size of each data file is constant
and independent of the total size of the database. In our experi-
ments, for instance, we had 117 data files of size 2 MB to store a
TPC-H database with scaling factor 1 and 1170 data files of size 2
MB to store a TPC-H database with scaling factor 10.

As shown in Figure 11, the average cost to execute the TPC-H
Refresh Functions is actually smaller with scaling factor 10 than
with scaling factor 1. The reason is again an artifact of our bench-
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mark and our benchmark sandbox definitions. As shown in Exper-
iment 4 (Section 5.7), the likelihood that a version of the data lake
satisfies the integrity constraints of a sandbox decreases with the
size of the database in our experiments so that we need to carry
out Delta Materialization less often to execute the TPC-H Refresh
Functions in a database with scaling factor 10 than in a database
with scaling factor 1.

5.6 Experiment 3: TPC-H Queries
Figure 12 shows the average running times of executing all the

TPC-H queries with READY and a scaling factor of 10. These
numbers are not READY-specific and are the same for Personal
and Global or just regular SparkSQL without any integrity con-
straints. Due to the coarse-grained approach to implement version-
ing, READY has no overheads when it comes to processing queries.
All that READY needs to do is to use the VersionMap to find all
data files that are relevant for a specific sandbox and execute the
query on these data files.

Comparing Figures 12 and 10 relates the overheads of READY
(constraint checking) to the cost of executing queries. It becomes
clear that READY is affordable and that the overheads of adding
integrity constraints to a data lake are roughly in the same order or
even less as answering a few queries in the data lake (depending
on the scale of the database and complexity of the query). With a
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growing query workload, the overheads of READY become negli-
gible compared to the total cost of ownership which is dominated
by the cost to execute queries.

5.7 Experiment 4: Data Freshness
Figure 13 shows the average number of versions a query lags

behind for a TPC-H database with scaling factor 1. READY and
Personal guarantee freshness as the integrity constraints of one con-
sumer do not block any other consumer. In contrast, Global does
poorly with regard to freshness with a growing number of sand-
boxes as all integrity constraints of all consumers must be visible
before a batch of updates with new orders becomes visible. Fur-
thermore, the variance is high because we might get lucky and the
updates become visible immediately or unlucky.

Figure 14 shows the data freshness for a TPC-H database with
scaling factor 10. This experiment shows that with Global and a
large number of sandboxes, it might even happen that updates never
become visible. In this experiment, there is always some order that
has not yet been verified and relevant to some sandbox so that with
more than eight sandboxes no version of the data lake meets the
integrity constraints of all sandboxes. That is why ETL processes
of data warehouses are crafted very carefully in practice.

6. RELATED WORK
This work builds on top of a great deal of related work. First, the

READY prototype makes use of temporal database technology to
execute a query on the right version of a data lake [15]. Thus, all
temporal query processing techniques are relevant; e.g, [8]. Sec-
ond, all techniques to incrementally maintain views are important
to achieve good performance with READY; e.g., [3, 1].

Another related area of research is work on data completeness
and data quality [11, 13, 9]. Motro et al. studied how to define
query entailment and verification by verifying the database meta-
data [11]. More recent work discussed the impact of missing data
records on query results [13, 9] and how it impacts the monetary
costs [9]. Libkin et al. [10] show that the current SQL semantics
are prone to deliver incomplete results when null values are present
in the data set. That work proposes improvements to the SQL stan-
dard and SQL processors to achieve completeness. All this work,
however, focused on data completeness such as missing records
and missing values. In contrast, our work considers an orthogonal
aspect: semantic completeness defined by integrity constraints.

In the recent years, there has been a great deal of interest on data
quality issues in data lakes. For example, Constance [7] helps im-
proving data integration tasks within data lakes by providing users
a unified interface for query processing and data exploration. An-
other example is the CLAMS system [4]. CLAMS focuses on data
quality issues with unstructured and semi-structured data, where
there are no integrity constraints. CLAMS automatically discovers
data quality rules over such semi-structured data. Again, all that
work is orthogonal to our work on READY.

Arguably, the most related system is DataHub [2]. Even though
DataHub was developed for a totally different purpose, with differ-
ent scenarios in mind, and, thus, different technical contributions,
DataHub and READY share some interesting features such as com-
plex versioning and sharing of data.

7. CONCLUSION
This paper studied how to add integrity constraints to data lakes.

The most important observation is that it is not enough to sim-
ply support one set of integrity constraints (as done by relational
database systems today). Instead, the sharing nature of data lakes
gives rise to supporting multiple sets of integrity constraints and
expose each set in a separate sandbox. This paper studied the basic
principles of sandboxes, a first scenario that applies these princi-
ples (producer / consumer information flows for data warehousing),
and the results of preliminary experiments that study cost and data
freshness trade-offs.

There are a number of avenues for future work. One area is to
study more complex models such as multiple producer sandboxes
and branching (Section 3.4). Another important area is perfor-
mance; there are many ways to improve the performance of the
basic algorithms presented in Section 4; in particular, for special
classes of integrity constraints such as completeness constraints
with universal quantification. One particular area of optimization
that READY could benefit from is “multi-query optimization” be-
cause there are typically many common sub-expressions across the
integrity constraints of different sandboxes that READY could ex-
ploit. READY would already improve greatly by implementing a
shared scan to evaluate integrity constraints.
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