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ABSTRACT
Provenance is a way to answer “why” questions about computa-
tions. It has found a number of uses in the database community,
such as debugging query answers or tracing unexpected results to
database tuples. In fact, the ability to ask “why” can be useful
for a much broader range of applications. In this paper, we summa-
rize our experiences over the past few years in adapting provenance
for diagnostic and forensic uses in networks and distributed sys-
tems. Our work draws inspirations from database provenance, yet
the deployment scale, use cases, and distributed nature of networks
require a significant re-design of traditional data provenance mod-
els. We review a number of use cases, ranging from investigating
intrusions to diagnosing (and even automatically fixing) software-
defined networks, and present a unified system architecture that we
have designed and implemented for provenance in distributed sys-
tems. We conclude with a discussion of open issues in this space.

1 Introduction
Provenance is, in essence, a way to answer “why” questions about
computations. It works by linking each effect, such as a computed
value, to its direct causes, such as the corresponding inputs and the
operation that was performed on them. Thus, it becomes possible
to recursively “explain” a particular result by showing its direct
causes, and then their own causes, and so on, until a set of basic
inputs is reached. This explanation is the provenance of the result:
it is a tree whose vertexes represent computations or data and whose
edges indicate direct causal connections.

Provenance originated in the database community [13], and it has
found a number of interesting uses, such as diagnosing query an-
swers [31], reverse data management [34], or tracking unexpected
results to specific tuples in the input data [32]. However, the con-
cept itself is not database-specific: it can potentially help in any
situation where a system has shown some unexpected behavior that
must now be investigated and tracked to a set of “root causes”. This
kind of situation is common in many areas of computer science.

Over the past several years, we have been working on network
provenance, which is a general class of solutions that adapt prove-
nance for diagnostic and forensic uses in computer networks and,
more generally, distributed systems. As with database applications,
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these systems frequently do something that their operators did not
expect. In the context of database applications, a SQL query may
have been written incorrectly, resulting in erroneous query results.
Likewise, in computer networks, a network operator may observe
unusual routes or dropped packets, which may be symptoms of er-
rors in network configurations, or worse still, bugs introduced by
intentional manipulation and even targeted attacks. And, just as
in the database world, the operators are faced with the challenging
problem of tracing the observed symptoms to a set of root causes.

One way to apply provenance to distributed systems is to essen-
tially model the distributed system as a giant database: the state of
each node can be stored in tables, and the programs can be mod-
eled as a set of declarative rules [29]. The provenance of each tuple
can then be tracked just like it would be in a database, and diag-
nostic queries (say, “Why is the network using route R to reach
host H?”) can be formulated as provenance queries (say, “What is
the provenance of route R?”), which then reveal the corresponding
root causes (say, a recent configuration change).

Given the distributed nature of networks, we can partition and
distribute the state such that each node maintains only a portion
of the information required to reconstruct any tuple provenance,
rather than storing all the network state in a centralized database.
This was the approach we took in our first solution [53], but it
quickly became clear that there were a number of additional chal-
lenges. One simple example is the fact that network state, unlike
tuples in traditional databases, tends to be short-lived: by the time
that the operator is notified of the problem with route R, that route
may already have been replaced by another. We solved this by
adding a temporal dimension to the provenance, so that questions
could be asked about past states [52]; however, this massively in-
creased the amount of metadata that needed to be kept, so we added
garbage collection and a range of strong compression techniques,
along with a cost model to choose the “right” technique for a given
system [52].

Other challenges were more fundamental, however. For instance,
one interesting application area is security. Given that the prove-
nance graph in our setting is stored in a distributed and open fash-
ion across administrative domains, the entire system is vulnerable
to attacks. The operator might wish to learn how an attacker “got
into” the system, or what changes she has made to it. However, if
the attacker has compromised the system, what prevents her from
tampering with the provenance and giving false or misleading re-
sponses? In another class of scenarios in network debugging, the
problem is not the presence of an unexpected event, but rather the
absence of an expected event; here, it is not immediately clear how
to even apply provenance, since there is no starting point for a pos-
sible explanation. Our solutions to both problems involve new data
structures, as well as substantial re-designs and refinements of the
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Figure 1: An example diagnostic scenario.

provenance graph [50, 45, 46].
Along the way, we also discovered several interesting variants of

the problem that provenance was designed to solve. For instance,
operators often wish not only to diagnose a problem (say, a software
bug) but also to find a suitable fix. Existing solutions in the area of
automated program repair tended to involve trying out random pro-
gram mutations, which seemed inefficient. By lifting provenance
to cover not only data but also code, we were able to specifically
target the parts of a program that contributed to a faulty outcome,
which can yield higher-quality fixes [43, 44]. Another example is
the fact that operators often have additional information available,
e.g., in the form of outputs that are similar to the faulty output but
are nevertheless computed correctly (say, an unexpected network
path versus a correct path). In this case, we found it useful to return
not the provenance of the faulty output but the provenance of the
differences between the correct and the faulty output; this is often
enough to identify a single “root cause” [15, 16].

This paper is our attempt to (1) unify our point solutions over
the years, (2) present a range of applications of provenance in the
distributed systems and networking space, (3) discuss some lessons
we learned during this work, and (4) highlight inspirations from the
database literature and new insights introduced by our environment.

2 Motivating Example
Figure 1 shows an example network debugging scenario. A net-
work operator manages a network consisting of switches and servers,
and he is alerted that some HTTP requests are misrouted to the
DNS server. To diagnose this, the operator needs a comprehensive
explanation of the problem, and some aid on how to repair it. This
is just a small example of a wide variety of problems can happen in
a distributed system: switches can be misconfigured [42], hosts can
be hacked [2], and the control software can have bugs [39]. This is
further complicated by the complexity of today’s networks – even
a medium-sized network can contain as many as 757,000 routing
entries and 1,500 access control rules [47].

Provenance can help with network diagnostics, because it can
track the causal connections from a network symptom to a set of
root causes, leaving out irrelevant factors which can become a source
of confusion. For instance, we have drawn an example provenance
tree for the misrouted HTTP packet in Figure 2, which can explain
how the packet traversed the network (e.g., V0, V1, V3), the se-
ries of routing table matches (e.g., V4), and how the routes were
computed (we omitted this from the figure, but V4 can be further
explained by how the route was computed by the routing protocol).
This provides a useful starting point for the operator to understand
the symptom, find the root cause(s), and roll out a fix.

Over the years, the networking community has developed a suite

(V3-4) When the packet arrived at S5, it matched 
a flow entry that forwarded packets to port 1.!

   packetForward(@S5, 4.3.2.1, 0)) 

  flowEntry(@S5, Any, 4.3.2.0/24, 1) 

 packet(@D, HTTP, 4.3.2.1)) V0#

V1#

     packet(@S5, HTTP, 4.3.2.1)) V3# V4#

(V0-2) The HTTP packet arrived at 
the DNS server(D) because it was 
forward by the last-hop switch(S5).!r2@S5#

r1@S5#

 link(@S5, 1, D, 0)) V2#

Figure 2: The provenance tree for a misrouted packet (excerpt).

of diagnostics tools, but very few of them are based on provenance.
For instance, existing approaches include statistical learning [26, 6,
42, 3, 48], fuzz testing [39, 38], and distributed tracing [54, 27, 17,
49, 4, 28], just to name a few. Since they do not track causality in
a systematic manner as in provenance, the identified root cause(s)
and proposed repair(s) may have false positive and/or false nega-
tives as a result. “Backtraces” akin to provenance have also been
used for network diagnostics, but they typically track much less in-
formation than what provenance does. For instance, NetSight [21]
can produce a packet’s path through a network and the routing en-
try matches, but does not explain how the routing entries were com-
puted in the first place. Therefore, provenance seems to be a suit-
able candidate for enabling new ways of network debugging.

However, in order to use data provenance at Internet scale, and
to provide support for network diagnostics, significant enhance-
ments to traditional data provenance has to be made. This includes
maintaining and querying provenance in a distributed setting, pro-
cessing provenance queries on historical system state, ensuring the
integrity of provenance records, explaining why an event did not
happen, identifying a concise root cause from a large provenance
tree, and lifting provenance to a “meta” level to suggest repairs for
buggy networks. In the next two sections, we discuss each of those
challenges and the proposed enhancements in more detail.

3 Towards network provenance
First, we provide a starting point for network provenance, as pro-
posed in ExSPAN [53]. We then present a series of enhancements
to add support for temporal queries, security guarantees, and queries
on missing events. We use the scenario in Figure 1 as a running ex-
ample, where certain HTTP requests are misrouted to a DNS server
due to network misconfigurations.

3.1 Starting point: Distributed provenance
Figure 3 shows a part of the routing program in our example sce-
nario. We assume that the distributed system is written in Network
Datalog (NDlog), which is a distributed variant of Datalog pro-
posed in declarative networking [29]. (See Section 5.1 for discus-
sion on capturing provenance for non-NDlog systems.)

Figure 2 shows an excerpt of the provenance tree of a misrouted
HTTP packet, as model by ExSPAN [53]. It has two vertex types:
a) a TUPLE vertex (shown as a rectangle) corresponds to a network
event or configuration state; and b) a RULE vertex (shown as an
oval) corresponds to a step in the network execution which derive
new tuples from existing ones. The tuples can be further catego-
rized as base (EDB) tuples and derived (IDB) tuples.

ExSPAN differs from traditional data provenance (e.g., ORCHES-
TRA [24]) in three ways. First, the provenance graph is partitioned
and distributed across many nodes. For instance, the packet(@S5
,HTTP,4.3.2.1) tuple is stored at node S5, as indicated by the
location symbol @. As a result, distributed recursive queries are
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r1: packetForward(@Swi,Pro,Dip,Sip,Prt) :- packet(@Swi,Ipt,Pro,Dip,Sip), flowEntry(@Swi,Ipt,Pro,Dip,Sip,Prt).
r2: packet(@Swi’,Ipt’,Pro,Dip,Sip) :- packetForward(@Swi,Pro,Dip,Sip,Prt), link(@Swi,Prt,Swi’,Ipt’).

Figure 3: Part of the NDlog program that describes our example scenario. A routing entry matches an incoming packet and forwards it to an
outgoing port (r1). A packet reaches a neighboring device by traversing a link that is connected to the device (r2).

needed to collect a tuple’s provenance. Second, the provenance
graph is dynamic – packets can arrive at any time, and routing en-
tries can be inserted or updated. To address this, ExSPAN uses in-
cremental view maintenance on the provenance information [29].
Third, ExSPAN is targeted at Internet-scale deployments with rela-
tively small network state per node, unlike in a traditional database
where tens of nodes host a large amount of data. Therefore, the
design of ExSPAN focuses on network-centric metrics, such as re-
ducing communication overhead, minimizing query latency, and
avoiding slowing down existing protocols’ convergence speed.

3.2 Time-awareness
However, there are diagnostic queries that ExSPAN cannot answer.
As in traditional databases, ExSPAN only maintains the provenance
for the current system state, and forgets about tuples the moment
they disappear. This is not enough for network diagnostics: al-
though many network events and state are short-lived, an operator
may still need to ask queries about them after they expire.

Our approach is to extend the provenance model with a temporal
dimension [52], and to introduce additional vertexes in the prove-
nance graph. We use EXIST vertexes to record the lifespan of tu-
ples, INSERT, DELETE vertexes to record the actions performed on
base tuples, APPEAR, DISAPPEAR vertexes to record the histories
of derived tuples, and DERIVE, UNDERIVE vertexes to record how
and when tuples acquired or lost support. The new vertex types all
carry a timestamp field, and they persist even after the tuples they
describe expires. Therefore, the graph comes append-only.

A key concern in this append-only model is the maintenance
and querying overhead. To address this, we allow provenance to
be maintained proactively or reactively, depending on the desired
tradeoff. The proactive approach logs all provenance tuples; this re-
quires more storage, but provides lower query latencies. The reac-
tive approach only logs base tuples, nondeterministic events (e.g.,
incoming packets and their order), and optionally, some intermedi-
ate snapshots; upon a query, provenance can be reconstructed using
deterministic replay; this requires less storage, but may incur query
processing delays. Our query optimizer has a cost model that can
automatically choose the best approach for a given use case.

Moreover, several other key design decisions have to be reworked
due to the distinct challenges in distributed systems, such as loosely
synchronized clocks, interactions via message passing, heteroge-
neous computing resources, just to name a few. We refer interested
readers to [52] for more details.

3.3 Security
If performing network diagnostics were our only goal, the above
model would already go a long way; however, we also have a need
for secure forensics, since today’s networks and computers are tar-
gets of malicious attacks. In an adversarial setting, compromised
nodes can tamper with its local data and/or lie to other nodes. For
instance, when answering a provenance query, an adversary may
return fabricated provenance to frame innocent parties and derail
the investigation. Therefore, when performing forensics, it is im-
portant to validate the integrity of the provenance data.

To address this, we introduce additional vertex types to cap-
ture cross-node interactions, and validate them using secure cryp-

tographic primitives [50]. The new vertex types include SEND,
RECEIVE, and BELIEVE. When a nodeN derives a tuple τ because
it received another tuple τ ′ from N ′, our enhanced model would
reflect this by inserting a BELIEVE tuple on N , which encodes N ’s
belief that τ ′ indeed appeared on node N ′; it would also insert cor-
responding SEND and RECEIVE tuples, recording howN developed
that belief by receiving τ ′ from N ′. If we later find out that τ ′ in
fact never existed on N ′ (i.e., N ′ lied about τ ′), N and its belief
are still considered innocent. Those vertexes are further stored in a
tamper-evident log, and secured by a commitment scheme [20], so
a node can always prove about a past interaction with other nodes.

We observe that, even with those enhancements, it is still in-
herently impossible to guarantee that all queries can be correctly
answered: how can we force compromised nodes to respond to
our query, or prevent them from wiping out their local data? Nev-
ertheless, this new model can provide two (weaker but) provable
guarantees: a) if any behavior is observable by at least one correct
node, then the provenance of that behavior will be correct, and b)
if a correct node detects a misbehavior, it can tell which part of the
provenance is affected, and attribute the misbehavior to at least one
faulty node. Our prototype shows that this model works well for
BGP routing, Chord DHT, and Hadoop MapReduce applications.

3.4 Negative provenance
So far, our provenance model explains why something happened,
like many of its database counterparts, but not why something good
failed to happen. But our survey shows that, a common diagnostic
task in distributed systems is to explain the absence of an expected
event [46] – e.g., why a certain route is not available.

To support this, we have developed an approach we call nega-
tive provenance [46], which further extends the provenance model
by adding negative vertexes, and which builds negative provenance
trees using counterfactual reasoning. At a high level, negative
provenance finds all possible ways in which a missing event could
have occurred, and the reasons why each of them did not happen.
As a result, this enhancement creates a “negative twin” for each ver-
tex type (except for BELIEVE), e.g., SEND/NSEND, INSERT/NINSERT.

Negative provenance is related to “why-not” queries in the datab-
ase literature, which explain why a particular tuple is absent from a
query result. The negative vertexes in our model share similar roles
with proxy tuples [23] or c-tuples [22], which also represent miss-
ing tuples that should have been derived or inserted. To explain
a missing tuple, Huang et al. [23], Artemis [22], and Meliou et
al. [34] take an instance-based approach, which aim to obtain miss-
ing answers by editing base tuples; Why-Not [14], ConQueR [40],
and Why-Not polynomials [9, 8, 10] take a query-based approach,
which suggests changes to query operators and query plans.

However, “why-not” questions pose unique challenges in a net-
working context. Since a negative provenance graph can, in princi-
ple, contain a vertex for every tuple that could potentially exist, the
graph can have a large number of vertexes or even be infinite. To
tackle this problem, we use a top-down procedure to construct the
negative provenance of a given event “on demand”, without ma-
terializing the entire graph. Moreover, our algorithm can simplify
the provenance even further by pruning unhelpful branches, and
by summarizing common patterns (e.g., a packet being forwarded

3



  NEXIST([t9,∞], H, packet(@H,0,HTTP,4.3.2.1)) 
V1)a#

(V1-2) The  HTTP server (H) did not 
receive any HTTP requests from 
4.3.2.1 since t9, because H’s last-hop 
switch (S6) never forwarded any such 
requests.  

      NRECEIVE([t9,∞], H, packet(@H,0,HTTP,4.3.2.1)) 

      NSEND([t9,∞], S6, packet(@H,0,HTTP,4.3.2.1)) 

      NAPPEAR([t9,∞], S6, packet(@H,0,HTTP,4.3.2.1)) 

      NSEND([t9,∞], S6, packet(@H,0,HTTP,4.3.2.1)) 

   NEXIST([t9,∞], S6, pktFwd (@S6,HTTP,4.3.2.1,1))      EXIST([0,∞], S6, link(@S6,1,H,0)) 

       NDERIVE([t9,∞], S6, pktFwd (@S6,HTTP,4.3.2.1,1)) 

     NDERIVE([t9,∞], S4, pktFwd (@S4,HTTP,4.3.2.1,2)) 

    APPEAR(0, S6, link(@S6,1,H,0)) 

    INSERT(0, S6, link(@S6,1,H,0)) 

       EXIST({t11,…}, S4, packet(@S4,0,HTTP,4.3.2.1)) 
      NEXIST([t6,∞], S4, flowEntry(@S4,0,HTTP,*,2)) 

     NINSERT([t6,∞], C, config(@C, S4,0,HTTP,*,2)) 

V1)b#

(V3) A forwarding entry on S6 can 
forward HTTP requests to the H. But S6 
never received any such requests from 
any of its neighbors (such as, S4). 

       NRECEIVE([t9,∞], S6, packet(@S6,*,HTTP,4.3.2.1)) 

(V4) S4 received HTTP packets. However, S4 did not have a flow entry to forward such packets to 
S5: (a) a previous such entry disappeared at t6, (b) a new entry was never configured after t6. 

      NAPPEAR([t9,∞], S6, pktFwd (@S6,HTTP,4.3.2.1,1)) 

       DISAPPEAR(t6, S4, flowEntry(@S4,0,HTTP,*,2)) 

V1)c#
V1)d#
V2)a#

V2)b#
V2)c#
V3)a#

V3)b#

V2)d#
V2)d#
V2)e#

V4)a#
V4)b#

V4)d#
V4)c#

V4)e#

       EXIST([t1,∞], S6, flowEntry(@S6,*,HTTP,*,1)) 
V3)c#

Figure 4: The provenance tree for a missing HTTP request, as gen-
erated in our final provenance model.

along its path), so that the final provenance tree is much more com-
pact and readable. We have applied negative provenance to a range
of diagnostic scenarios in software-defined networks (SDN) and
Internet routing. Please refer to [46] for more details.

3.5 Final provenance model
Starting from the basic provenance model, we have enhanced the
vertex types, developed novel provenance algorithms, and addressed
several practical challenges unique to distributed systems. As a re-
sult, our final provenance model is significantly different from that
in traditional databases. Figure 4 shows a provenance tree for our
running example in this new model, which contains substantially
richer information than the initial version. Here, the operator asks
a “why-not” question: “Why did the HTTP server not receive any
HTTP requests?”. We note that a) besides explaining the presence
of a unexpected behavior, it can also explain the absence of the de-
sired behavior; b) it contains new vertex types, such as SEND and
RECEIVE, which can attribute actions to specific nodes (we omitted
the BELIEVE vertexes); and c) it contains past events and state, e.g.,
the disappearance of an expired routing entry.

4 Automated Network Repair
With these enhancements, we have arrived at a more comprehen-
sive model that can answer far more useful queries than the model
we started with. But so far, our model has focused on explain-
ing what did or did not happen in the network, but it cannot an-
swer questions of the form “How should we change the network
state, so that a wrong output, such as a wrong route, can be fixed?”.
Such queries are analogous to their database counterparts – “how-
to” queries [34], and are a form of reverse data management [33].
They are more challenging to answer, but can potentially help the
operator a lot more, as they can identify the root cause of a prob-
lem and/or suggest a repair. In the networking context, we refer to
this problem as automated network repair. Next, we discuss two
applications of provenance in automated network repair.

4.1 Differential provenance
Understanding how to change an underlying database so that query
answers become correct is an important problem in the database

literature. Examples include Tiresias [34] that answers “how-to”
queries by formulating them as mixed integer programs, functional
causality [31] that ranks the responsibility of database tuples in a
given query result, and view-conditioned causality (VCC) [32] that
correlates correct and incorrect results to narrow down likely cul-
prits, and others. Among these, VCC is most closely related to
our first application, which repairs network misconfigurations by a
differential analysis across provenance trees.

Although network misconfigurations are quite common, they of-
tentimes only affect a subset of traffic/nodes, and they only mani-
fest infrequently. Therefore, an operator typically has both working
and non-working instances of similar traffic or service. Our key in-
sight is that, in those cases, we have more diagnostic information
that classic provenance is using: if we reason about the differences
between the provenance trees for the working and non-working in-
stances, it would be much easier to identify the root cause of the
problem. We call this approach differential provenance [15, 16].

Differential provenance shares a similar insight with VCC, but it
works quite differently. One challenge in networks is that a small,
initial difference can lead to wildly different network executions
afterwards – for instance, a different routing decision may send
packets down an entirely different path. Therefore, the differences
between working and non-working provenance trees can be much
larger than one might expect. Differential provenance addresses
this with a counterfactual approach: it “rolls back” the network ex-
ecution to a point where the provenance trees start to diverge; then,
it changes the mismatched tuple(s) on the non-working provenance
tree to the correct version, and the “rolls forward” the execution
until the two trees are aligned.

But now a second challenge arises. The two provenance trees
describe inherently different network executions (e.g., how two dif-
ferent packets traversed the network); therefore, short of changing
one packet to another, we cannot hope to align the trees completely.
How, then, should we preserve the packets as invariants, and at
what point should the alignment terminate? Differential prove-
nance introduces an “equivalence” relation between two provenance
trees, and uses this to distinguish between differences that need to
be aligned, and differences that need to be preserved.

We have applied differential provenance in a number of case
studies on repairing software-defined networks and Hadoop MapRe-
duce jobs. Our results show that reasoning about the differences of
provenance is quite effective – it can pinpoint one or two miscon-
figured entries to be the root cause of the problem.

4.2 Meta provenance
When generating network repairs, differential provenance only con-
siders changes to network configuration data, but not how compu-
tations are performed on the data. Today’s networks, however, can
also be affected by wrong computations due to buggy router soft-
ware, especially in SDNs where a controller program can modify
router behaviors dynamically – a significant departure from tradi-
tional hardware-only routers. Our second application can repair
both network configuration data and controller program, using a
novel data structure that we call meta provenance [43, 44].

This problem also has its counterparts in the database literature,
which consider modifications to relational queries so that they yield
expected results on the underlying data [14, 40, 9, 8, 10]. However,
these database approaches face some challenges in the networking
setting. For instance, a common assumption is that there are known
ways to identify “unpicked” [14] or “compatible” tuples [8], which
are tuples in the source database that satisfy a user’s criteria of de-
sired tuples but are absent from the result. In the context of net-
works, such tuples are difficult (if not impossible) to identify. For
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example, if a router is missing a routing entry, it is very challeng-
ing for the operator to know upfront which set of routing entries–
distributed across hundreds of switches–can derive the missing en-
try, and using which route computation algorithm(s).

In meta provenance, we take a fundamentally new approach to
this problem, by extending provenance to reason about changes to
both program and configuration data. Meta provenance has a set of
meta tuples, which represent the syntactic elements of the program
itself, and a set of meta rules, which describe the operational se-
mantics of the programming language. We next use negative prove-
nance (Section 3.4) to ask why some conditions did not hold. The
result is a set of changes to the program and/or to the configuration
data that makes the condition become true.

One challenge is that there can be infinitely many potential re-
pairs. To overcome this, we leverage the fact that most bugs affect
only a small part of the program, and that programmers tend to
make certain errors more often than others [37]. This allows us to
rank the possible repairs according to plausibility, and to explore
only the most plausible ones. Another challenge is that repairs can
have side-effects: they may cause new problems elsewhere in the
network. To avoid such repairs, we backtest candidates by replay-
ing them with historical information collected in the network.

Moreover, we leverage multi-query optimization [19, 30] from
the database literature to speed up the backtesting, which can back-
test multiple repairs in a single run. In [43, 44], we have validated
this approach by finding high-quality repairs for moderately com-
plex SDN programs written in NDlog, Trema [41], and Pyretic [35].

5 System Architecture
Figure 5 shows the architecture of the system that we have designed
and implemented. The runtime components include the primary
system that runs the actual network program, and the provenance
system that collects diagnostic and forensic information about the
primary system. The query processing components answer diag-
nostic queries. Overall, we have implemented the core components
of our system using more than 67, 000 lines of code in C++. In this
section, we describe each component in more detail.

5.1 Runtime components
The runtime components include a) a graph recorder that extracts
provenance from a node’s primary application and records it in a
local log; b) a commitment module that adds cryptographic com-
mitments to outgoing messages and verifies the commitments in
incoming messages to detect tampering; and c) an audit responder
that sends excerpts from the log to the query processor when they
are needed to respond to a query.

Since these components must run continuously even if there are
no queries, it is important to keep the overhead as low as possible.
To this end, the graph recorder does not materialize the provenance
graph; rather, it records only just enough information to reconstruct
the graph if and when necessary. Typically, it is enough to record
just the application’s inputs and any nondeterministic events. When

a query arrives, our system can selectively reconstruct an applica-
tion’s state and its provenance using deterministic replay [52].

The graph recorder can extract the provenance in three ways,
depending on the application. If the application is written in a
declarative language, such as NDlog, the provenance can be ex-
tracted transparently through the runtime. Otherwise, if the source
code is available, the application can be instrumented to record the
provenance explicitly by making calls to the recorder, as, e.g., in
PASS [36]. If the application is only available in binary and cannot
be changed, provenance can still be extracted through an external
specification [50].

The commitment module is only activated when the system must
work under attack; its purpose is to make the log tamper-evident [20].
This requires, among other things, performing cryptographic oper-
ations on outgoing and incoming messages. To keep the corre-
sponding overhead low, messages can be processed in batches.

5.2 Query processing components
The query processing components do not necessarily reside on the
same nodes with the runtime components; they are instead used as
diagnostic applications that can run separately, for example, on an
operator’s laptop. There are five components, as shown in the fig-
ure: a) a query parser that accepts provenance queries from the op-
erator; 2) a microquery module that can, given a single vertex in the
provenance graph, find the parents and children of that vertex; 3) a
query processor that uses microqueries to construct larger subtrees
needed for answering the query; 4) a postprocessor that improves
the readability of the provenance, e.g., through aggregation or by
reasoning about differences; and 5) a visualizer that displays the
provenance and allows the operator to explore it interactively.

Our system contains several instances of the microquery mod-
ule, because this module is specific to the provenance model; but
the instances expose a similar set of APIs for compatibility, and
they can be dynamically swapped in and out. The microquery mod-
ule for negative provenance [46] is more complex than the others
because there are more vertex types that need to be supported. An-
other factor that adds complexity is the threat model: our module
instance for secure provenance [50] must not only reconstruct the
provenance graph but also authenticate it and check for tampering.
If a node is found to have tampered with some part of its (local)
provenance, the corresponding vertexes are annotated accordingly;
the system also guarantees that the actions of a compromised node
cannot affect the provenance of a correct node.

In the prototype we have built, there is no nontrivial query lan-
guage: the operator simply describes a symptom – say, a message
that was sent by a particular node – and thus identifies a vertex in
the provenance graph. (However, this is not inherent; more com-
plex provenance query languages, e.g., from [25], could be very
useful.) The query processor can be as simple as starting from
this vertex and expanding the subtree that is rooted at it. However,
in use cases where the provenance graph is conceptually infinite
(in particular, negative provenance), the query processor has to do
more work, e.g., to prune inconsistent or nonsensical subtrees.

When provenance is tracked at such a fine granularity, the result-
ing provenance trees can be very large, which complicates the oper-
ator’s job. To mitigate this problem, our postprocessor implements
several summarization techniques [46] that can aggregate certain
parts of the graph, e.g., a message being forwarded across several
hops, and thus reduce the size of the graph in the common case. Our
visualizer, NetTrails [51], further improves usability. A more so-
phisticated form of postprocessing is differential provenance [16],
which pinpoints only those vertexes that are causal to the differ-
ences between two provenance trees.
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6 Open Problems
Looking ahead, we believe that the confluence of data provenance
and networking is creating many more exciting research opportu-
nities; we sketch some of them below.
Provenance on sensitive network data: Using provenance to di-
agnose network problems that span multiple trust domains remains
an open problem. Provenance is easier to collect within a sin-
gle trust domain, e.g., in a centralized database or an enterprise
network; but collecting and analyzing provenance while providing
strong privacy guarantees seems to be a challenging problem, e.g.,
when performing diagnostics in a multi-tenant cloud. One candi-
date that could help is differential privacy [18], which offers prov-
able privacy guarantees; secure multi-party computation [7] and/or
trusted hardware platforms (e.g., Intel’s SGX [1]) may also be able
to help, though it remains to be investigated whether they would
incur too much overhead when applied to provenance.
Provenance on high-speed network data: Existing uses of prove-
nance have mostly targeted at control-plane protocols that compute
routes, such as the BGP protocol, SDN controller programs, etc.;
but it remains to be seen whether provenance can work as well for
the Internet’s data plane used for forwarding packets, where the
data rates are on the order of 1-100 Gbps. In fact, even the Inter-
net’s backbone itself needs to process such data with highly opti-
mized, hardware-based routing fabric. Therefore, for provenance
to work for the data plane, we may need to incorporate hardware
elements in our system architecture, e.g., at least for the compo-
nents that need to operate at linespeed, such as the graph recorder
and commitment modules in Figure 5. Fortunately, we could lever-
age open hardware platforms, such as NetFPGA [11] or P4 [12],
for this purpose. New algorithms may also be required to achieve
high compression rates on any stored provenance data.
Provenance for timing faults: Our focus so far has been on diag-
nosing wrong computation results, much like in the database coun-
terparts. However, this does not cover a broad class of problems
that plagues distributed systems – timing faults. For instance, a
web client may have received a response correctly, but the delay
was much higher than usual. In those cases, provenance cannot be
used out-of-the-box, since it only captures functional, but not tim-
ing causality, so we may need to further enhance the provenance
model to capture the latter. Moreover, diagnosing timing faults in-
volves capturing provenance for aggregation queries [5], which is
more challenging; this may be needed when explaining why there
is a drop in average throughput or an increase in tail latency.
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