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ABSTRACT
Data exploration and analysis, especially for non-programmers, re-
mains a tedious and frustrating process of trial-and-error—data sci-
entists spend many hours poring through visualizations in the hope
of finding those that match desired patterns. We demonstrate zen-
visage, an interactive data exploration system tailored towards “fast-
forwarding” to desired trends, patterns, or insights, without much
effort from the user. zenvisage’s interface supports simple drag-
and-drop and sketch-based interactions as specification mechanisms
for the exploration need, as well as an intuitive data exploration
language called ZQL for more complex needs. zenvisage is be-
ing developed in collaboration with ad analysts, battery scientists,
and genomic data analysts, and will be demonstrated on similar
datasets.

1. INTRODUCTION
We are in the cusp of a data-enabled era, with virtually every sec-

tor of society—spanning business, government, science, medicine,
and defense—having access to large volumes of data, and a press-
ing need for analyzing and extracting insights from it. Unfortu-
nately, the domain experts in these sectors analyzing the data do
not typically possess extensive programming experience [17]. As a
result, these experts primarily rely on interactive visualization tools
like Tableau [4] or Microsoft Excel. These commercial tools make
it easy for such individuals to interactively specify a visualization
of interest from a preset set of styles, and the tools generate and
display the desired visualization.

However, these tools, while immensely popular and broadening
the reach of data analysis—Excel has a user base in the billions [3],
while Tableau is a publicly traded company with valuation in the
billions [5]—still leave a lot to be desired. Specifically, these tools
have little by way of guiding their users to visualizations that cap-
ture desired trends or patterns—the onus is on the user to step
through a number of visualizations before they find these trends
or patterns. We illustrate by means of an example.

EXAMPLE 1. Consider an economist who wishes to study if
we’re heading towards another housing bubble in the USA. To do
so, she wants to explore a real estate dataset [6]. One specific
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question that this economist may be interested in is whether there
are any towns for which the average sale prices has been roughly
increasing over time. Presently, our economist would need to gen-
erate the sale prices over time, one visualization for each town, and
manually step through each one to find those that match her desired
pattern of “roughly increasing”—a tedious and cumbersome pro-
cess, given that there are 100s of towns. Next, say our economist
has a hypothesis: she feels that the increase in sale prices may
be correlated with the reduced availability of houses, in the areas
where the sale prices have been going up. To verify this hypoth-
esis, our economist will have to first find all the towns for which
the sale prices are going up like before, following which she needs
to individually generate the availability by time charts for each of
these areas, and then verify if the availability is indeed going down
for each one—an even more cumbersome process than the previ-
ous scenario, since she now needs to look at both sale prices over
time and availability over time visualizations for all towns. Lastly,
say our economist wants to explore the percentage of properties
that are foreclosed across these towns—what are the typical pat-
terns, and what are the outliers? Here, the economist will have to
perform “manual data mining”—she will have to individually step
through the visualization of foreclosure rates over time for each of
these towns, and remember what she finds to be typical trends, and
what are surprising or anomalous. Given a trend, it may be almost
impossible for the economist to remember if she’s seen a similar
trend before, if it’s actually anomalous.

In short, no matter which hypothesis she wants to test, or which
pattern she wants to find, tedium and pain abounds, virtually pre-
venting data exploration.

In contrast, we have been developing an interactive data exploration
tool called zenvisage (a portmanteau of zen and envisage, meaning
to effortlessly visualize), targeted at easing the pain of data explo-
ration in scenarios like the one described above. zenvisage uses
two mechanisms to support effortless data exploration:
• Simple Built-in Interactions and Summarization: zenvisage

supports simple interactions that allow users to specify the de-
sired patterns, following which zenvisage will automate the
search for those patterns. In our example, finding towns where
the sale prices are going up is as simple as sketching an increas-
ing curve on a canvas, following which zenvisage will automate
the search for that curve among all the candidate visualizations.
We show a screenshot of zenvisage in action for this query in
Figure 1—we will explain the interface in detail subsequently.
zenvisage also supports other interactions, as we will describe
later on. Additionally, at each step along the way, zenvisage
shows a summary of the typical trends and outliers (also seen
in Figure 1), reducing the need in our example to remember
whether a specific pattern was seen previously.
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Figure 1: zenvisage’s Interactive Visual Query Interface: Break-
down of Components

• Sophisticated Query Language, ZQL: For more complex pat-
terns, like the second hypothesis in our example, where the
economist wanted to correlate sale prices with availability, zen-
visage supports a query language called ZQL, drawing from
prior work on Query-by-Example [45]. Via a user study, we
have demonstrated that even individuals who have never pro-
grammed before, are able to use ZQL effectively after a small
training period of ten to fifteen minutes [38].

In our companion full paper at VLDB’17 [38], we describe the
complete details of zenvisage, including the front-end and back-
end architecture, the details of the query language, along with its
underlying exploration algebra, and query optimization. We also
conduct a user survey and a user study to identify whether zenvis-
age is an appropriate tool for hastening end-user data exploration.
We also describe concrete real-world use cases via partners with
whom we’re working to test out zenvisage, spanning ad analytics,
battery science, and genomic data analysis. These real-world use
cases inform some of our demonstration scenarios later on.

The outline for this paper is as follows: in Section 2, we describe
the user experience of someone using zenvisage; in Section 3, we
briefly explain the zenvisage query language, ZQL; in Section 4,
we give a brief overview of the system architecture and query pro-
cessing; in Section 5, we describe the goals of our demonstration
scenarios; and in Section 6, we give an overview of the related
work.

2. USER EXPERIENCE
Since zenvisage is meant to be an end-user-facing interactive

data exploration tool, the user experience while using the tool for
data analysis is hugely important in determining the utility and us-
ability of the tool. Here, we describe the experience of an individual
using zenvisage. In the next section, we dive into the details of the
ZQL query language.

We once again return to our running example of the real estate
data analysis scenario. In Figure 1, we show zenvisage loaded with
the real estate dataset.
Attribute Selection. The first step is attribute selection (Box 1).
Here the user can specify the desired X axis attribute, and the de-
sired Y axis attribute, for the visualization or visualizations that the
user is interested in exploring. In this case, the user has specified
that the X axis is quarters (in other words, time), and that the Y
axis is the sold price. (By default, zenvisage assumes average as
the aggregation applied to the Y axis, but the aggregation function
can be changed by clicking on the gear symbol next to zenvisage.)
Additionally, the user specifies the category: this is a variable in-
dexing the space of candidate visualizations the user is operating
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Figure 2: Finding cities with similar sold-price over quarter trends
to a user-drawn trend

over. Here, the selected category is “metro”—indicating a metro
area or township. Implicitly, the user has indicated an interest in
exploring the set of all visualizations of sold price by quarter across
different metros.

Summarization of Typical and Outlier Trends. As soon as the
user selects the X, Y and category aspects, zenvisage populates
Box 2 with typical or representative trends across different cate-
gories, as well as outlier visualizations. In this case, there are three
typical trends that were found across different metros (i.e. cate-
gories): one corresponding to a spike in the middle (an example of
which is Panama City), one to a gradual increasing trend (an exam-
ple of which is San Jose), and one to a trend that increases and then
decreases (an example of which is Reno)—most of the other trends
were found to be similar to one of these three. The outlier visual-
izations (Pittsburgh, Peoria, Cedar Rapids) have a large number of
seemingly random spikes.

Drawing or Drag-and-Drop Canvas. Then, in Box 3, which dis-
plays the editable canvas, the user can either draw a shape or pattern
that they are looking for, or alternatively drag and drop one of the
displayed visualizations into the canvas. In this manner, the user in-
dicates that they would like to perform a similarity search starting
from the shape or pattern that they have drawn or dragged onto the
canvas. zenvisage also supports a dissimilarity search, the opposite
of a similarity search, once again a non-default option hidden away
behind the gear symbol. The user is also free to edit the drawn or
dragged pattern. In this figure, the user has drawn a trend which is
gradually increasing up, then gradually decreasing after that.

Similarity Search Results. As soon as the user completes an in-
teraction in Box 3, Box 4 is populated with results corresponding
to visualizations (on varying the category) that are most similar to
the trend in Box 3, ordered by similarity. For the current drawn
trend of increasing followed by gradually decreasing, Naples, Key
West, and Sacramento are the closest matches. We describe how
the similarity search results are computed in Section 5. As yet an-
other example of similarity search, see Figure 2, where the user has
drawn a gradually increasing trend in the canvas area (or dragged
an existing visualization onto the area), and the results returned be-
low, corresponding to San Jose, Denver, and Honolulu are matches
of increasing trends.

ZQL Specification Interface. Lastly, the user can specify a multi-
line ZQL query in Box 5, for more complex exploration needs.
Once the user completes the action, this request triggers a recom-
putation and redisplaying of the results shown in Box 4.

Starting from this point, the user is free to switch back and forth
from ZQL to the simple interaction mode, depending on whether



the user has complicated requirements or simple ones.

3. ZQL QUERY LANGUAGE
We now briefly describe zenvisage’s query language, ZQL, form-

ing the core of zenvisage and aimed at supporting general data ex-
ploration. ZQL draws from and extends existing languages for vi-
sualization specification and encoding such as Cleveland’s Gram-
mar of Graphics [44] and the visualization algebra of Polaris, the
basis for Tableau [39], by adding data exploration capabilities to
automate the search for visualizations with specific patterns or in-
sights. The specification format of ZQL is inspired by Query-by-
Example (QBE) and similar to QBE, a ZQL query can be con-
structed using a tabular structure as depicted in Box 5 in Figure 1—
for clarity, we provide three examples of ZQL queries explicitly
laid out in Tables 1, 2, and 3, and we will explain these examples
in detail in the following. Note that ZQL invocations can also be
embedded within code—there is no restriction that the language
has to be only used or specified within the zenvisage front-end in-
terface. Details about our formal syntax, the expressiveness and
power, and completeness of ZQL can be found in our companion
full paper [38]—here, we present a simplified version of the lan-
guage aimed at conveying the underlying intuition. We now ex-
plain the syntax and semantics of ZQL with the help of examples;
for these examples, we operate on a fictitious product sales dataset
consisting of a single table over which visualizations are specified.
ZQL also operates over multiple tables, but we do not cover the
general case in this short demonstration paper.

Overall Description. ZQL is a high level language that aims to
automate the manual visual data exploration process by allowing
users to specify their desired visualization objective in a few lines.
Instead of providing the low-level data retrieval and manipulation
operations, users operate at the level of sets of visualizations, and
compare, sort, filter, and transform visualizations as well as attri-
butes—eventually visualized on either the X or Y axis, or used to
sub-select the set of data that is visualized.

As depicted in Table 1, a ZQL query consists of one or more
rows, where each row has well-defined columns, namely Name, X,
Y, Z, Viz, Constraints, and Process. These columns can be grouped
into two components: the visual component consisting of the X, Y,
Z, Viz, and Constraints columns, and the task component consisting
of the Process column, while the Name column is an identifier for a
line of ZQL. The goal of the visual component is to specify a set of
visualizations, drawing from visualizations or attributes in previous
lines of ZQL. Then, the goal of the task component is to operate on
and subselects from these visualizations, applying filtering, sort-
ing, or processing operations using a core set of data exploration
primitives. The output of the task component can be further reused
in the subsequent rows. A ZQL query therefore has the following
structure: a user constructs a set of visualizations via a visual com-
ponent, processes them via a task component, following which the
outputs may be constructed into a set of visualizations once again
using a visual component, and so on.

As a concrete example, say a user is interested in finding visual-
izations of profits over time for products whose sales over time is
similar to that of staplers. Then, one way of expressing this query
at a very high level is the following: one line of ZQL may corre-
spond to the sales over time for staplers, another line of ZQL may
correspond to the sales over time for all products, following which
we process these visualizations to find those where the sales over
time is similar to staplers, and finally, the last line of ZQL may vi-
sualize the profits over time for the aforementioned products, i.e.,
those whose sales over time were found to be similar to staplers.

Next, we describe similar examples along with actual ZQL syntax.

Example 1. In this example, we are interested in finding the sales
over time overall for the products whose sales over time in the US
is similar to the sales over time for staplers. This example may be
interesting to a sales data analyst who wants to investigate global
trends for the products whose local behavior—i.e., sales over time
in the US, is displaying a desired trend that is similar to the staplers
trend. The example is displayed in Table 1. In the first row, we
find our first line of ZQL, with the Name identifier set to f1. This
row retrieves the visualization corresponding to the sum of sales
by year for the product ‘stapler’. The X column (corresponding to
the X axis of the visualization) is set to year, the Y column (cor-
responding to the Y axis) is set to sales, and the Z column is set
to product.stapler, indicating that the attribute product has been set
to the value ‘stapler’. The Z column corresponds to the Category
header in the previous section, indicating the space of visualiza-
tions over which the user is operating—in this case, the Z column
is fairly simple, there is a single visualization, corresponding to
product stapler. Lastly, the Viz column is set to indicate that the
displayed chart needs to be a bar chart (indicated using ‘bar’) with
aggregation (indicated using ‘agg’) as the SUM aggregation per-
formed to the attribute selected for the Y axis. The Viz column
thus specifies the visualization type and the aggregation method,
additionally it can also apply binning and interpolation; this col-
umn draws from the Grammar of Graphics format [44]—this col-
umn can be omitted, and defaults will be used [39]. For this row,
there are no Constraints or Process.

In the next row, with identifier f2, the X, Y, and Viz columns stay
similar, while the Z column is set to product.* indicating that the
visual component for this row corresponds to a set of visualizations
formed by iterating over various product categories, one for each
product. The variable v1 is used to iterate over these categories.
Additionally, there is an entry in the Constraint column, indicating
that location has been set to ‘US’. Unlike the Z column, which
is used to iterate through visualizations, the Constraints column is
used for applying filters to the data prior to the visualizations being
generated or specified. Since we only want to compare with local
product sales in the US, the location has been set to US. Thus, we
operate over visualizations for various products for sales over time
in the US.

Before we explain the process column for row f2, we briefly con-
vey the purpose of the process column. The Process column is used
to compare, sort, and filter the visualizations retrieved in this row
or previous rows. The process column returns a subset of values for
one or more variables that it operates over, essentially correspond-
ing to visualizations that satisfy the desired properties. The selected
variable values can be then used in the visual component columns
of subsequent rows for output visualization or further processing.
The process column consists of two main portions: a functional
primitive, and a sort-filter primitive. The functional primitives as-
sign a score to each visualization based on how well the visual-
ization satisfies the condition laid out by the primitive. To handle
the vast majority of visual data exploration use cases, we define
three classes of functional primitives, differing in their inputs: T
is a class of functional primitives that assign a score by measur-
ing the prevalence of a particular pattern or trend within a single
visualization—for example, monotonicity, repetitiveness, or num-
ber of peaks. In our system at the moment, we support monotonic-
ity, but other primitives are easy to handle. D is a class of primitives
that assign a score by comparing two visualizations: for example,
one instantiation we support is distance computation—for which
standard distance metrics can be used (more details later). Lastly,
R is a generic class of functional primitives that support arbitrary



Name X Y Z Constraints Viz Process
f1 ‘year’ ‘sales’ ‘product’.‘stapler’ bar.(y=agg(‘sum’))
f2 ‘year’ ‘sales’ v1 <– ‘product’.* location=‘US’ bar.(y=avg(‘sum’)) v2 <– argminv1[k = 10]D(f1, f2)

*f3 ‘year’ ‘sales’ v2 bar.(y=avg(‘sum’))
Table 1: A ZQL query which returns the overall sales over year visualizations for the top 10 products that have the most similar sales over
year visualizations within the US to the overall sales over year visualizations for staplers.

Name X Y Z Constraints Process
f1 ‘year’ ‘sales’ v1 <– ‘product’.* location=‘US’ v2 <– arganyv1[t > 0]T (f1)
f2 ‘year’ ‘sales’ v1 location=‘UK’ v3 <– arganyv1[t < 0]T (f2)
f3 ‘year’ ‘profit’ v4 <– (v2.range & v3.range) v5 <– argmaxv4[k = 5]R(f3)
*f4 ‘year’ ‘profit’ v5

Table 2: A ZQL query which returns 5 representative profit over years visualizations among the products that have positive sales over years
trends for the US but have negative sales over years trends for the UK.

Name X Y Z Process
f1 x1 <– * y1 <– * ‘product’.‘chair’
f2 x1 y1 ‘product’.‘stapler’ x2,y2 <– argmaxx1,y1[k = 1]D(f1, f2)

*f3 x2 y2 ‘product’.‘chair’
*f4 x2 y2 ‘product’.‘stapler’

Table 3: A ZQL query retrieving two different visualizations (among different combinations of x and y) for chairs and staplers that are the
most dissimilar.

processing on collections of visualizations, and assigns a score to
each visualization. One concrete instantiation of R in zenvisage is
for typical trends and outlier computation, for which standard clus-
tering algorithms can be used (again, details later). Note that while
we are describing these functional primitives as conceptually oper-
ating on visualizations, we must emphasize that what we’re doing
is actually operating on the data that represents the visualizations,
as opposed to the visualizations themselves, which can be rendered
in many different ways. Then, the sort-filter primitive takes the out-
put of a functional primitive, sorts them using argmax, argmin or
argany (returning any visualization that satisfies some condition)
and then filters them either based on top-k or a threshold-based cri-
terion.

Returning to the second row of Table 1, we compare the visu-
alization for each product in the visual component of f2 with the
visualization of staplers (f1) using a functional primitive D, com-
puting distance, via D(f1, f2). Then, argmin is a sort-filter primitive
that sorts the products based on distance scores and selects the top
10 product with minimum scores. Finally, in row 3, we output the
overall sales over year visualizations for the selected products as
bar-charts. The * in *f3 indicates that these visualizations are to be
output to the user. Notice the use of the variable v2 within the task
component of f2 that allows us to record the appropriate products
that need to be visualized as part of the output in line f3.

Example 2. In this example, we want to examine typical trends for
profit over time across all regions, for those products whose sales
are increasing over time in the US, while decreasing over time in
UK. Perhaps products whose sales are increasing in the US but de-
creasing in the UK are an important space of products that the sales
data analyst wants to understand global trends better, before recom-
mending actions, e.g., increasing marketing expenditure in certain
countries. The ZQL query is depicted in Table 2. (Note that we
exclude the Viz and Constraints column if it is unused, in the for-
mer case, default settings are used.) In the first row, we first fetch
the sales over time visualizations for all products in US and in the
process column, we select those products that have an increasing
trend with the help of the T functional primitive. Similarly, in the
second row, we select the products that have decreasing sales over
time trends in UK. In the third row, corresponding to f3, we first
find the products whose visualizations appeared in both the first
and the second rows, by applying the expression v4 <- v2.range &
v3.range, where v4 is the intersection of the elements in v2 and v3,
and generate their profit over time trends. As the task component,
we use the R functional primitive to find five representative or typ-
ical trends. Finally in the last row, we output the profit over time

line charts visualizations for these five representative products.

Example 3. In this example, we are interested in finding a pair
of X and Y axes where the visualizations for two specific products
‘stapler’ and ‘chair’ differ the most. For doing this, we write a ZQL
query depicted in Table 3. In the first line, we fetch all visualiza-
tions for the product ‘chair’ that can be formed by having different
combinations of X and Y axes. Similarly in the second row, we
retrieve all possible visualizations for the product ‘stapler’. In the
process column, we iterate over the possible pairs of X and Y axes
values, compare the corresponding visualizations in f1 and f2 and
finally select the pair of X and Y axis values where the two products
differ the most. In the last two rows, we output these visualizations.

Capabilities and Limitations. While the examples above have in-
dicated that ZQL is rather powerful, the reader may be wondering
what it does not handle. Indeed, there are many types of data anal-
ysis tasks that ZQL is not meant for, including data manipulation
(e.g., declaring new attributes to visualize), developing predictive
models, or data cleaning. We expect that users are already oper-
ating on structured datasets, i.e., data cleaning—removal of dirty
or missing values—is already performed, and are performing vi-
sual analysis and exploration as a precursor to developing predic-
tive models. Indeed, the wide popularity of Tableau indicates that
there is a need for this intermediate step. We characterize the space
of data exploration operations that ZQL is capable of handling in
our paper [38].

4. SYSTEM OVERVIEW
In this section, we provide an overview of the system architec-

ture of zenvisage: we begin by describing the various components
of zenvisage followed by a brief description of one of the most
interesting components of zenvisage: the query processor and op-
timizer.

4.1 zenvisage components
zenvisage is fully functional, with our collaborators in battery

science, ad analytics, and genomic data analysis either already us-
ing the tool, or fine-tuning the tool to their requirements. The
source-code of our current implementation is also available to pub-
lic1, with regular updates posted at zenvisage homepage2.

As depicted in Figure 3, zenvisage consists of two main com-
ponents: a front-end and a back-end, both of which work indepen-
dently of each other.
1https://github.com/zenvisage/
2http://zenvisage.github.io
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Figure 3: System Architecture

Front-end. The zenvisage front-end is implemented as a light-
weight web-client application that runs completely within a user’s
browser. As described in Section 2 and Section 3, the front-end pro-
vides a combination of intuitive drag-and-drop based operations as
well as an advanced ZQL based exploration interface for users to
search for visualization with desired insights. An important com-
ponent of the interface is the drawing panel where the users draw
trend lines, bar-charts, scatter-plots, or drag and drop an existing
visualization and edit it. Dygraph [1] is an open-source charting
library, that we use for the drawing panel as well as for visualiz-
ing the output. (While Dygraph was an adequate choice to get a
version up and running, we have identified limitations in the func-
tionality of Dygraph, due to which we are currently switching over
to D3.js.) In addition to Dygraph, the front-end uses javascript li-
braries such as Bootstrap (getboostrap.com) and Angular (angu-
larjs.org). All user inputs at the interface are internally translated
and composed into one or more ZQL queries by the query builder
module at the front-end before being sent to the back-end for pro-
cessing. The front-end talks to the back-end through a REST inter-
face, and all of the data transfers happen via a JSON format. The
results from the back-end are processed and rendered using the re-
sult visualizer module. By applying simple rules that we draw from
prior work [20, 39], the result visualizer can also figure out effec-
tive visualization mappings and visual encodings for the results, if
the user has not already specified these in the query.

Back-end. The zenvisage back-end is responsible for running all
of the computations necessary for generating output visualizations
that match user-specified insights. It is developed completely in
Java and runs within an embedded Jetty web-server [2]. At a high
level, the back-end consists of a ZQL compiler, consisting of a
parser, an optimizer, and a query executor, and is capable of pro-
cessing any ZQL query. We provide the details of query processing
in Section 4.2. For storing and retrieving data, the back-end cur-
rently supports two types of databases: a roaring bitmap-based [8]
in-memory database for small to medium-sized datasets, and a Post-
greSQL relational database for extremely large datasets. In addition
to ZQL query processing, the back-end also recommends typical
trends and outliers for the attributes specified, independent of user
queries. The generated visualizations are all sent to the front-end
for rendering in a JSON format.

4.2 Query Processing
The ZQL query processor is responsible for compiling and exe-

cuting ZQL queries. It consists of four sub-components: the parser,
optimizer, visual component processor, and task component pro-
cessor. The visual component processor and task component pro-
cessor together make the ZQL query executor. The details of the
query processor and optimizer can be found in our full paper [38].

Parsing. The parser reads in the ZQL query is a textual format,
parses the query and validates its structure, and checks the database

catalog for the existence of the referenced columns and operators
including the functional primitives. If everything succeeds, the
parser creates a graph of computation from the ZQL rows—this
graph is a directed acyclic graph that describes the steps of compu-
tation and the dependencies across them as expressed in the ZQL
query. For each ZQL row, the parser creates two types of graph
nodes: a node for the visual component, and one for the task com-
ponent: we will simply call these the visual node, and the task node,
respectively. The visual node corresponds to the X, Y, Z, Viz and
Constraints columns; these columns specify the collection of visu-
alizations to be retrieved. The task node consisting of the functional
primitive and the sort-filter primitive, specifies the processing to be
applied on the visualizations generated from the visual nodes.

Optimizations. At a high level, we have two types of optimizations
on the parsed ZQL graph: inter-node and intra-node optimizations.
Inter-node optimizations reduce the ZQL graph by merging multi-
ple visual or task nodes. While merging multiple visual nodes, we
try to minimize the number of SQL queries as well as the number of
operations that need to be issued to the database for retrieving data.
For instance, we can merge two visual nodes that have the same X
axis value but different Y axis values. By doing so, we reduce the
number of scans and group by operations applied to the same data.
Similar to merging visual nodes, multiple task nodes can be merged
if we can apply multiple forms of processing together on the same
collection of visualizations. Inter-node optimizations also exploit
speculation: where two nodes are combined even if the latter de-
pends on the results of the former, as long as there is benefit to do-
ing it jointly. Intra-node optimizations transform individual graph
nodes by minimizing the number of visualizations or the number of
possible values in a given visualization by applying data reduction
techniques such as sampling, binning, and regression. By doing
this, we minimize the time taken by the task processor for process-
ing these visualizations. For instance, if we know the maximum
number of the pixels that can be visualized for a scatterplot, we can
apply the appropriate binning to both aggregate at a coarser gran-
ularity, and reduce the size of the intermediate JSON that needs to
be sent to the front-end.

Query Execution. The query executor takes the transformed graph
as an input; starting from the root nodes and following the outgo-
ing edges, it executes one or more nodes in parallel. Based on the
type of the node, it creates an instance of either a visual processor
or a task processor. The visual processor translates a visual node to
a SQL query and issues it to the underlying database. The gener-
ated SQL query has the following form: SELECT X, Y FROM
R WHERE Z=V AND (CONSTRAINTS) ORDER BY X.
The retrieved data is transformed into a set of visualizations by ap-
plying interpolation, regression, binning or aggregation. This set of
visualizations is stored in an n-dimensional array where each loca-
tion in the array contains one visualization. The result is either sent
as an input to another processor for further processing, or is sent to
the front-end for rendering. The task processor generates the post-
processing code from the functional and the sort-filter primitives in
the task node. It iterates through visualizations and for each visu-
alization, the functional primitive is called to process it and give it
a score. After scoring all the visualizations, the sort-filter primitive
is used to sort and filter the visualizations based on their scores.
The attribute values of the selected visualizations are then passed
to subsequent nodes for further processing, or for generating output
visualizations.

5. DEMONSTRATION SCENARIOS
The goals of our demonstration scenarios are to enable the con-



ference attendees to (1) understand how zenvisage’s simple interac-
tions can help facilitate the fast-forwarding to interesting insights;
(2) view how ZQL queries can support multi-step data exploration
workflows; (3) appreciate the wide applicability of zenvisage, across
a spectrum of use cases within a domain, and across domains; and
(4) see how zenvisage supports customizability for the basic inter-
actions, and the impact of these customizations; and (5) take a bit
of a peek under the covers to see how zenvisage parses and opti-
mizes ZQL queries. Since we have already described (1) and (2) in
Section 2, we focus on the remaining points in the present section.
Datasets. Our primary focus will be on the real estate dataset [6],
like in our example in the introduction. This real estate dataset
is relatively small but quite intuitive with easy to understand at-
tributes, with 11K tuples and 12 attributes. In addition, we will use
larger datasets from real domains with a need for rapid data explo-
ration, such as: (1) A synthetic ad analytics dataset: This dataset
is modeled after the real datasets at Turn, Inc., for enabling ad an-
alysts to explore data related to advertising campaigns. For exam-
ple, one typical question for this dataset is the following: “which
ad has similar behavior in terms of click-through rates over time
to a given ad?”—requiring a similarity search of visualizations dis-
playing click-through rates over time to the corresponding visual-
ization for the given ad. (2) A physical dataset of electrolyte prop-
erties: This is a dataset from battery scientists at Carnegie Mellon
University, for enabling the rational design of Lithium-Ion batter-
ies. The status quo for these scientists is to not even explore their
datasets, which is too tedious and beyond the capabilities of many
scientists who aren’t comfortable with programming, and instead
perform physical testing of these electrolytes, which is both labo-
rious and resource intensive. For example, one typical question
for this dataset is the following: “are there any electrolytes for
which the dependence between these two physical properties fol-
lows a hockey-stick shape?”—requiring a similarity search of visu-
alizations of the given pairs of properties across all electrolyes to
a user-drawn shape. (3) A genomics dataset of gene-gene and pro-
tein interactions. This dataset is from an NIH-sponsored genomics
center at Illinois, supporting questions like “are there features on
which these two classes of genes can be effectively separated on
a scatterplot?”—requiring the identification of X and Y axes for
which the distance between two scatterplot visualizations, one for
each gene class is maximized (i.e., a dissimilarity search).

For all our datasets and usage scenarios, zenvisage will come
pre-loaded with starting points for analysis—via canned queries
that the domain experts found to be very useful for their objectives—
with the participants able to change the queries if they so choose to.
Our intended objective is to both convey some of the richness of ex-
ploration goals in these domains, and educate the participants about
these domains.
Customizability. zenvisage supports the retrieval of visualizations
similar to a given visualization, as well as typical and outlier visu-
alizations. To do so, zenvisage needs distance metrics to assess the
distance between the data underlying two visualizations, be it ordi-
nal visualizations (like time charts), categorical visualizations (like
bar charts or histograms), or non-aggregated visualizations (like
scatterplots). For example, for ordinal visualizations, one stan-
dard distance metric is the Euclidean distance metric, which com-
putes the sum of the element-wise square of the difference between
corresponding values in two visualizations, followed by an overall
square-root. Yet another distance metric is Dynamic Time Warp-
ing [43], a standard distance metric for time series analysis that
is based on computing the least amount of effort to transform two
visualizations by stretching and compressing them until they look
like each other. We have also been developing other home-grown

distance metrics that assess the perceptual difference between the
two visualizations, e.g., metrics that weight different features on
the visualizations based on their visual prominence. One aspect of
our demonstration will be to allow participants to set the distance
metric (once again hidden away under the gear symbol), allowing
them to observe the impact of these metrics on visual similarity.
Similarly, the choice of the algorithm for typical trends and out-
liers also has a huge impact on performance. Currently, we support
variations of the k-means and k-shape [32] algorithms, as well as
our perceptually-aware variants—once again, the attendees will be
able to see the impact both in terms of performance and accuracy
of these mechanisms.

Under the Covers. As described previously, zenvisage’s ZQL
query optimizer operates on a graph of nodes corresponding to
visual and task processors, with edges indicating the dependen-
cies between them. The query optimizer rewrites or simplifies this
graph using a combination of batching, parallelism, and speculation-
based rules, applying a cost model that we have developed [38],
to dictate if applying the rule helps reduce the query execution
time. Moreover, the optimizer simplifies or transforms individual
nodes in the graph by applying binning or interpolation. Subse-
quently this graph is executed as a sequence of SQL queries on a
traditional relational database or on the in-memory roaring-bitmap-
based database. To gain an appreciation for the query optimization
approach, attendees will be able to view the graph representing the
starting point of optimization, as well as the rewritten graph post
application of the optimization rules.

6. RELATED WORK
zenvisage draws from work in several communities; detailed re-

lated work descriptions can be found in our companion full pa-
per [38]—here, we briefly survey the most important related work.

From the visualization community, zenvisage draws from visual
specification algebra developed by Polaris and Tableau [4, 39] and
extends it to add support for exploration, aimed at reducing the need
for manual trial-and-error. Visualization systems like SeeDB [41,
33, 40] or Profiler [21], and Voyager [20] provide restricted forms
of visualization recommendation—the first two based on what is
visually different, and the last based on aesthetics—without being
full-fledged data exploration tools. Similarly, from the data min-
ing community, there has been a lot of work on time series data
mining [25, 13, 9, 24, 7, 10, 23] including clustering and similar-
ity search, however, this work has primarily focused on indexing
for retrieval of, or clustering for a fixed set of time series as op-
posed to a comprehensive exploration tool that supports arbitrary
exploration of attributes. Work by the visualization community on
TimeSearcher [14] develops a front-end for time-series data mining
while being restricted to a fixed set of time series, and only support-
ing a specific form of drill-down, as opposed to the many operations
possible on zenvisage, plus a full-fledged query language. There
are other interfaces [31, 42, 35, 15] which let users search for vi-
sualizations by sketching a pattern on a single attribute, zenvisage
extends these work to multiple data types, multiple sets of visual-
izations, and multiple data sets, with necessary customization ca-
pabilities to the sketching interface that can adapt to various needs
of analysts. Our work is also similar to the work on image search,
e.g., [18, 28], however, we instead operate on the underlying data
points—which are in many cases, more compact—as opposed to
the images of the final visualizations.

Work on data cube exploration [36, 37] is also related; our focus
is not recommendation of aggregates to explore and instead to sup-
port the search for patterns, trends, or insights via a data exploration



language, and simple interaction primitives.
Our technical approach draws from principles in multi-query op-

timization (MQO) [11, 16, 22, 12], since our setting requires us to
generate many SQL queries that need to be executed in parallel;
however more fine-grained optimizations that do not apply in the
general MQO setting apply here. There has been some work on
generating visualizations on large datasets more rapidly preserving
visual properties; we draw from that work to apply sampling to
generate visualizations even faster [26, 19, 34] using bitmap-based
online sampling [27]. Unlike Immens [30] and Nanocubes [29],
also tailored for large-scale visualization, we cannot precompute
all aggregates upfront.
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