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ABSTRACT
The onset of cloud computing has brought about comput-
ing power that can be provisioned and released on-demand.
This capability has drastically increased the complexity of
workload and resource management for database applica-
tions. Existing solutions rely on query latency prediction
models, which are notoriously inaccurate in cloud environ-
ments. We argue for a substantial shift away from query
performance prediction models and towards machine learn-
ing techniques that directly model the monetary cost of
using cloud resources and processing query workloads on
them. Towards this end, we sketch the design of a learning-
based service for IaaS-deployed data management applica-
tions that uses reinforcement learning to learn, over time,
low-cost policies for provisioning virtual machines and dis-
patching queries across them. Our service can effectively
handle dynamic workloads and changes in resource availabil-
ity, leading to applications that are continuously adaptable,
cost effective, and performance aware. In this paper, we dis-
cuss several challenges involved in building such a service,
and we present results from a proof-of-concept implementa-
tion of our approach.

1. INTRODUCTION
Infrastructure-as-a-Service (IaaS) providers offer low cost

and on-demand computing and storage resources, allowing
application to dynamically provision resources, i.e., procure
and release them depending on the requirements of incom-
ing workloads. Compared with traditional datacenters, this
new approach allows applications to avoid static over or un-
der provisioned systems by scaling up or down for spikes or
decreases in demand. This is realized by the “pay as you go”
model of IaaS cloud, in which applications pay only for the
resources they use and only for as long as they use them.

However, taking advantage of these benefits remains a
complex task for data management applications, as deploy-
ing and scaling an application on an IaaS cloud requires
making a myriad of resource and workload decisions. Appli-
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cation developers must choose how many machines to pro-
vision, which queries to route to which machines, and how
to schedule queries within machines. Minimizing and even
predicting the cost of each of these decisions is a complex
task, as the resource availability of each machine and the ex-
ecution order of the queries within them have great impact
on the execution time of query workloads. This complexity
increases significantly if applications wish to meet certain
performance goals (Service-Level-Objectives/SLOs).

Most IaaS providers assume their users will manually in-
stigate a scaling action when their application becomes pop-
ular or during periods of decreased demand, and that they
will deploy their own custom strategies for dispatching work-
loads to their reserved machines. Therefore, in many real-
world applications, scaling and workload distributions deci-
sions are still made based on rules-of-thumb, gut instinct,
or, in the best cases, past data. Even when application de-
velopers grasp the complexity of cloud offerings, it is often
still difficult to translate an application’s performance goal
(e.g., queries must complete within 5 minutes, or the average
latency must be less than 10 minutes) into a cost effective
resource configuration and workload distribution solution.

While this problem has been partially addressed in the
literature, the landscape of solutions is fractured and incom-
plete. Many workload and resource management solutions
are not end-to-end : they address only one issue, such as
query routing to a reserved machine (e.g., [34]), scheduling
within a single machine (e.g., [16]), or provisioning machines
(e.g., [43]), without addressing the others. However, appli-
cations must address all of these challenges, and integrating
multiple solutions is extremely difficult due to different as-
sumptions made by each individual technique.

More importantly, even solutions that span several of the
decisions that must be made by cloud applications depend
on a query latency prediction model (e.g., [10, 16, 17, 22, 24,
29, 31, 32, 36, 37, 47, 51, 52]). This dependency is problem-
atic for two reasons. First, many latency prediction models
(e.g., [8,20,50]) depend on seeing each “query template” be-
forehand in a training phase, leading to poor predictions on
previously-unseen queries. Second, accurate query latency
prediction is very challenging. State-of-the-art results for
predicting the performance of concurrent queries executed
on a single node achieve 85% accuracy for known query types
(e.g., [20]) and 75% accuracy for previously unseen queries
(e.g., [19]). A cloud setting only brings about additional
complications like “noisy neighbors” (e.g., [11, 39]) and re-
quires training these models on virtual machines with vastly
different underlying resource configurations.



In this paper, we argue that both the status quo solution
of scaling based on rules-of-thumb, human-triggered events,
or methods that rely on a query performance prediction
models, fail to fully achieve the promise of IaaS-deployed
cloud databases. Humans may drastically mispredict the
best times to scale and what scale to achieve. Latency pre-
diction based techniques suffer from a large range of accu-
racy problems that worsen with scale and unknown query
types, inherently undermining the main objective: estimat-
ing the cost of using cloud resources while meeting perfor-
mance goals. Hence, instead of explicitly modeling the la-
tency of each query and then using that latency to estimate
the cost of various scheduling or provisioning decisions, we
propose modeling the cost of these actions directly.

We envision a new class of services for IaaS-deployed data
management applications that:

• Accept application-defined performance goals and tune
themselves for these goals.

• Adapt and continuously learn from shifts in query
workloads, constantly aiming for low-cost deploy-
ments.

• Automatically scale resources and distribute incoming
query workloads.

• Refuse to explicitly model query latency, which is im-
possibly problematic in a cloud setting, and instead
build models of the cost of various actions, which will
implicitly capture query latency information.

• Balance exploration and exploitation, automatically
trying out new resource configurations while taking
advantage of prior knowledge.

In this paper, we discuss the complexities of implementing
our vision, and we give an imperfect but illustrative proof-of-
concept workload and resource management and provision-
ing service. Our system, called Bandit, is decoupled from
query performance prediction models. Instead, it utilizes
reinforcement learning algorithms to learn on the fly (and
improve over time) cost-effective performance management
policies that are aware of application-defined service-level
objectives (SLOs).

Bandit learns models that capture the relationship be-
tween workload management decisions and their monetary
cost. These models relieve developers from the tedious tasks
of system scaling, query routing, and scheduling: Bandit
automatically scales up and down the pool of reserved ma-
chines and decides the processing sites of incoming queries
without any prior knowledge of the incoming workloads
(e.g., templates, tables, latency estimates). Bandit demon-
strates how machine learning techniques can produce sys-
tems that naturally adapt to changes in query arrival rates
and dynamic resource configurations, while handling diverse
application-defined performance goals, all without relying on
any performance prediction model.

The rest of the paper is organized as follows. Section 2
describes the high-level system model of Bandit. Section 3
highlights the parallels between problems studied in rein-
forcement learning and the problems faced by the cloud
database research community, and describes how Bandit
uses reinforcement learning to address resource provisioning
and workload management challenges. Section 4 showcases
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Figure 1: The Bandit system model

preliminary results from our proof-of-concept implementa-
tion. We discuss related works in Section 5. Finally, we
conclude in Section 6.

2. SYSTEM MODEL
We envision our service lying between the IaaS provider

and a data management application as shown in Figure 1.
We assume applications are deployed on an IaaS cloud (i.e.,
AWS [2], Azure [4]) and hence they have full control of pro-
visioning virtual machines (VMs) and distributing incoming
queries across them.1

We serve OLAP (analytic) workloads with read-only
queries. Each reserved VM runs on either full replicas of
the database or partitioned tables (where partition could
also be replicated). We also assume that the application
aims to meet a Service-Level-Objective (SLO) promised to
its end-users, and if the SLO is not met, a penalty function
defines the monetary cost of the violation.

Our system facilitates online scheduling on behalf of the
application: queries arrive one at a time with an unknown
arrival rate, and our service will schedule their execution
either on one of the existing VMs or a newly provisioned
VM. Queries could be instances of query templates (e.g.,
TPC-H), but these templates are unknown a-priori. Bandit
seeks to minimize the monetary cost paid by the application,
which includes the cost for renting the reserved VMs as well
as any SLO violation fees. VMs cost a fix dollar amount for
a given rent period, and VMs of different types (i.e., different
resource configurations) are offered at different costs.

The application interacts with Bandit by defining an SLO,
as well as a penalty function that specifies the monetary cost
of failing to achieve the SLO. Bandit supports application-
provided SLOs on the query and workload level. Examples
include (a) a deadline for each incoming query, (b) an upper
bound on the maximum or average latency of the queries
submitted so far, or (c) a deadline on a percentile of the
queries within a specific time period (e.g., 99% of submitted
queries within each hour must complete within five minutes).
If the SLO is defined over a set of queries, Bandit aims to
minimize the cumulative cost of executing this query set.
Bandit is agnostic to the performance metric of the SLO,
and requires only a penalty function mapping the query la-
tencies to penalties.

1Database-as-a-Service (DaaS) products [1, 3, 4] available today
adopt a different model where these tasks are administered by the
cloud provider and hence are outside the scope of this work.



During runtime, the application forwards each incom-
ing query to Bandit, which executes the query on a VM
and returns the results. In the back-end, Bandit inter-
acts with the underlying IaaS to provision VMs and exe-
cute queries. Specifically, it leverages a context-aware rein-
forcement learning approach that uses features of the query
as well as information about the underlying VMs to decide
which machine should process each new query, or if machines
should be provisioned or released. We collectively refer to
these features as the context of the decision (collected by the
Context Collector in Figure 1). Bandit records the cost of
each past decision and the context that decision was made
in into a set of observations. This is implemented by the
Experience Collector module in Figure 1. By continuously
collecting and using past observations, Bandit improves its
decisions and converges to a model that balances the num-
ber and types of machines provisioned against any penalty
fees in order to make low-cost performance management de-
cisions for each incoming query.

3. REINFORCEMENT LEARNING
Generally speaking, reinforcement learning problems are

ones in which an agent exists in a state, and selects from a
number of actions. Based on the state and action selected,
the agent receives a reward and is placed into a new state.
The agent’s goal is to use information about its current state
and its past experience to maximize reward over time.

It is not difficult to draw parallels between these concepts
and the challenges faced by users in cloud environments. In
the cloud database context, the agent is the application, the
state is the currently provisioned set of machines and the
queries they are processing, the actions are a set of provi-
sioning and query dispatching decisions, and the reward is
inversely proportional to the cost paid to the IaaS provider.
Next, we formalize this mapping and show how techniques
from the reinforcement learning literature can be applied.

3.1 Contextual Multi-Armed Bandits
One abstraction developed from the field of reinforcement

learning is the contextual multi-armed bandit (CMAB) [15].
Here, a gambler (agent) plays on a row of slot machines (one-
armed bandits) and must decide which machines to play
(i.e., which arms to pull) in order to maximize the sum of
rewards earned through the sequence of arm pulls. In each
round, the gambler decides which machine to play (action
a) and observes the reward c of that action. The decision is
made by observing a feature vector x (a.k.a. context) which
summarizes information about the state of the machines at
this iteration. The gambler then improves their strategy
through the new observation {a, x, c}, which is added to the
experience set D. The gambler aims to collect information
about how the feature vectors and rewards relate to each
other so that they can predict the best machine to play next
by looking at the feature vector.

CMABs in Bandit We model the workload and resource
management problem as a tiered network of CMABs, illus-
trated in Figure 2. Each running VM corresponds to a slot
machine (aka CMAB) in one of several tiers, where each tier
represents a distinct VM configuration available through the
IaaS provider. Tiers can be ordered based on price or perfor-
mance/resource criteria. Each VM has three arms/actions:
Accept, Pass, and Down. When a query enters the system,
Bandit collects query-related features (the context) and asks
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Figure 2: Bandit framework and an example decision process

the root CMAB (top left) to pick an action. The algorithm
makes a decision based on the observed context and expe-
rience collected from past decisions. If the Accept action is
selected, the query is added to that VM’s execution queue.
If the Pass action is selected, the query is passed to the next
CMAB in the same tier. If there is no other CMAB on that
tier, a new VM is provisioned and a corresponding CMAB
is created. If the Down action is selected, the query is passed
downwards to the first CMAB in the next tier. The last tier
contains no Down arms. The network contains no cycles, and
empty CMABs cannot select Pass (but may select Down), so
a query will eventually be accepted by some CMAB. Note
that the CMAB network can reside entirely inside of a sin-
gle server, and queries do not need to be passed through a
computer network.

After the query completes, the cost for each decision is
determined. This includes (a) VM startup fees (if a new
VM was provisioned) (b) the fees for processing that query
on the VM and (c) any costs incurred from violating the
SLO. Formally,

c = fs + fr × lq + p(q)

where fs is the VM startup fees, fr is the rent rate for the
VM that executed the query, lq is the query’s execution time,
and p(q) calculates applicable penalties. Note that, after the
query has completed, the query latency lq is known.

We use the final cost c as a measure of how good the
decisions made by the CMAB were: lower costs means better
decisions. Each completed query and its associated cost c,
along with the action selected by each CMAB a and the
context x of the CMAB at the time the decision was made,
can be used to “backpropogate” new information to all the
CMABs involved in processing the query.

Specifically, when a query completes, each CMAB that
the query passed through records (1) its context x when the
query arrived, (2) the action selected a, and (3) the cost
incurred by the network as a whole to execute the query c,
forming a new observation {a, x, c}. Each CMAB adds this
new observation to its set of experiences D, thus providing
each CMAB with additional information. If the cost of a
CMAB taking action a in context x produced a particularly
high cost, the CMAB will be less likely to select that same
action in similar contexts. If the cost was particularly low,
the CMAB will be more likely to select that action in sim-
ilar situations. We explain the details of action selection in
Section 3.3. As more queries move through the system, each
CMAB’s experience grows larger, and the system as a whole
learns to make more cost-effective decisions.

Example To illustrate this process, imagine a CMAB net-
work with limited prior experience. So far, the network has



only received queries that are too computationally expen-
sive to be efficiently processed on the first tier of VMs, but
the network has chosen to execute every query on one of two
VMs in the first tier. As a result, each CMAB has observed
a high cost for each query, since each query failed to meet
its SLO. Now, when a new query arrives, the CMABs on the
first tier are less likely to select the Accept option because
their experience tells them it is associated with high cost.
Eventually, the CMAB will select the Down action. When it
does so, the query will be accepted on a VM in the second
tier, and the original VM will associate a lower cost with
its context and the Down action, making Down more likely
to be selected in the future. In this way, the system learns
that certain queries are too expensive to be processed on the
cheaper tier of VMs.

Cost Propagation A tiered network of CMABs where
costs are “backpropogated” to all involved VMs can auto-
matically learn to handle many complexities found in cloud
environments. Since each CMAB involved in placing a query
receives the same cost, the entire network can learn advanced
strategies. One example of a complexity “automatically”
handled by the tiered network of CMABs is passing queries
to machines with an appropriately warm cache. If the first
machine in the network has information cached that is help-
ful in processing queries of type A, and the second machine
in the network has information cached that is helpful for pro-
cessing queries of type B, then the first machine will receive
a low cost from the Accept arm when processing a query of
type A, and the first machine will receive a low cost from
the Pass arm when processing queries of type B. Since the
costs are shared, searching for a low-cost strategy at each
CMAB individually is equivalent to searching for a low-cost
strategy for the network as a whole.

Query scheduling With only Accept, Down, and Pass

arms, a VM would never be able to place a new query ahead
of a query that had already been accepted. Hence, the sys-
tem is restricted to using a FIFO queue at each machine. To
address this limitation and allow for query reordering, one
can “split” the Accept arm into smaller arms representing
various priorities, e.g. Accept High, Accept Medium, and
Accept Low. Each of the new accept arms represent placing
a query into a high, medium, or low priority queue respec-
tively. When a processing query completes, the head of the
high priority queue is processed next. If the high queue is
empty, then the head of the medium priority queue is pro-
cessed, etc. While this modification allows Bandit to reorder
incoming queries (albeit to a limited extent), it drastically
increases the complexity of the problem by creating many
more options to be explored by our learning system.

3.2 Context Features
In order to take advantage of the CMAB abstraction, and

most other reinforcement learning models, we must identify
features that can be extracted upon arrival of a query. These
features serve as a proxy for the current state of the system,
so they must contain enough information for an intelligent
agent to learn the relationship between these features, ac-
tions, and monetary cost. In the CMAB abstraction, these
features will compose the context x.

Our context includes a set of query and VM related fea-
tures. It is critical to remember that the goal is to model the
monetary cost of an action, not the exact latency of a par-
ticular query. We can thus expand our field of view beyond

metrics that are direct casual factors of query latency. While
none of our selected features would be enough on their own
to indicate the cost of an action, and while some features
may seem only tangentially related to the cost of the action,
their combination creates a description of the context that is
sufficient to model the cost of each action. This view allows
us to work with features that may seem to only be correlated
with, as opposed to being a direct cause of, cost.

We focused on features that allow Bandit to learn if a
given VM is suitable for a particular query (e.g., due to
memory requirements), which queries could be expected to
be long running (e.g., a high number of joins), as well as fea-
tures correlated with cache behavior. Since analytic queries
are often I/O-bound, properly utilizing caching is critical
to achieving good performance. Hence, a cache-aware ser-
vice can greatly increase throughput by placing queries with
similar physical plans sequentially on the same machine, pre-
venting cache evictions and thrashing.

Finally, we note that these features are appropriate for
analytic read-only workloads. We do not intend for these
features to be a complete or optimal set. Instead, we intend
to demonstrate how even a small set of features that are only
weakly related to monetary cost can perform well. Next we
describe our features, dividing them into two types, the first
related to the incoming query, and the second related to the
underlying VM.

Query-related features Our query-related features are
extracted from the query plan generated by the database
before the query is executed. The features extracted are:

1. Tables used by current query: We extract the ta-
bles used by the query to allow our model to learn,
at a low level of granularity, which queries access the
same data and hence could benefit from caching when
executed on the same machine.

2. Number of table scans: The number of table scans
of the query (extracted by the query’s execution plan)
can help Bandit learn when to anticipate long execu-
tion times since table scans are often less efficient than
index-based scans.

3. Number of joins: Table joins often represent massive
increases in cardinalities or time-consuming processes.
Thus, the number of joins in a query can be an infor-
mative feature.

4. Number of spill joins: Spill join operators, which
are joins that the query optimizer knows will not fit
in memory, must perform disk I/Os due to RAM con-
straints. This feature helps Bandit learn which queries
should be given to VMs with more memory, as well as
indicates which queries may have high latency.

5. Cache reads in query plan: This feature captures
the number of table scan operations that overlap with
data currently stored in the cache. This is particularly
useful when multiple queries in our template access the
same set of tables but with varying physical plans. In
this case, the table usage information is no longer suffi-
cient for Bandit to be cache-aware. Combined with the
tables used by the current and previous queries, this
feature provides substantial information about how a
query will interact with the cache.



Virtual machine features Our learning framework also
needs to be aware of the resources available on each run-
ning VM as well as on available VM configurations. These
features help us understand how a particular VM is per-
forming, if there is a “noisy neighbor”, etc. These features
are collected when a query arrives at a CMAB (the data is
collected from the corresponding VM), while another query
may still be executing. Specifically, we collect the following
features via standard Linux tools:

1. Memory availability: This is the amount of RAM
currently available in the VM. This helps us under-
stand how RAM pressure from other queries, the op-
erating system, etc. may affect query performance. It
also allows us to differentiate between VM types with
different amounts of RAM.

2. I/O rate: This feature gives the average number of
physical (disk) I/Os done per minute over the last
query execution. This helps Bandit understand when a
machine’s storage is performing poorly, as well as giv-
ing Bandit a general gauge of the VMs I/O capacity,
which may differ even within the same pricing tier.

3. Number of queries in the queue: We track the
number of queries waiting in each machine’s queue.
This feature helps Bandit learn when a queue is too
full, suggesting that another accepted query would
have to wait too long before being processed.

4. Tables used by last query: This feature indicates
which tables were used by the previous query. This
helps Bandit learn which VMs might have useful in-
formation in their cache for the current query.

5. Network cost: This feature is used when data is par-
titioned across multiple VMs. In this case, the node
that executes the query typically requests necessary
data from other nodes. Depending on the query and
the distribution of data across the cluster, assigning
the query to a different node might incur different net-
work transfer costs. This feature captures the amount
of data a node has to move over the network from other
nodes in order to process a query. It is roughly esti-
mated by summing the size of all non-local partitions
that may be required by the query.

3.3 Probabilistic Action Selection
A major challenge of our approach is selecting low-cost

actions based on the collected observations. While accept-
able results can be achieved with very limited experience,
simply exploiting this knowledge by repeating “safe” deci-
sions might pass up opportunities for large improvements.
Hence, improving the model over time requires the explo-
ration of new (potentially high-cost) decisions. Therefore,
each CMAB must select actions in a way that addresses this
exploration-exploitation dilemma.

One algorithm for effectively solving this problem is
Thompson sampling [48], a technique for iteratively choosing
actions for the CMAB problem and incorporating feedback.
Thompson sampling is well-known in the field of reinforce-
ment learning and has been used for a wide variety of appli-
cations including web advertisement, job scheduling, rout-
ing, and process control [15,25]. The basic idea is to choose

an arm (action) according to the probability of that par-
ticular arm being the best arm given the experience so far.
Thompson sampling has been shown to be self-correcting [7]
and efficient to implement.

We apply Thompson sampling to each CMAB in the net-
work as follows. Each time a query finishes executing, each
CMAB that made a decision related to that query adds to
it set of observations D a new tuple {a, x, c}, where a is the
decision it made, x is the context it used to make that de-
cision, and c is the cost of the decision. Hence, a CMAB’s
set of experiences D grows over time.

In order to select actions based on past experience, we
assume that there is a likelihood function P (c|θ, a, x), where
θ are the parameters of a model that predicts the cost c for
a particular action a given a context x. Given the perfect
set of parameters θ∗, this model would exactly predict the
cost for any given action and context. Then the problem
of selecting the optimal action would be reduced to finding
the minimum cost action a where the cost of each action is
predicted by this perfect model.

While one clearly cannot know the perfect model (the per-
fect parameters θ∗) ahead of time, one can sample a set of
parameters θ′ from the distribution of parameters condi-
tioned on past experience, P (θ|D). Then one can randomly
choose an action a according to the probability that a is op-
timal as follows [15, 48]: sample a set of model parameters
θ′ from P (θ|D) and then choose an action that minimizes
cost assuming that θ′ = θ∗:

min
a′

E(c|a′, x, θ′)

Conceptually, this means that the system instantiates its
beliefs (θ′) randomly at each timestep according to P (θ|D)
(i.e., selects a model for predicting the cost based on the
probability that the model explains the experience collected
so far), and then acts optimally assuming this random model
is correct. If one wanted only to exploit existing knowledge,
one would not sample from P (θ|D), but would instead se-
lect the mean value of P (θ|D), a approach that maximizes
exploitation. On the other hand, choosing a model entirely
at random maximizes exploration. Instead, the Thompson
sampling approach (drawing θ from P (θ|D)) balances explo-
ration and exploitation [7, 44].

Using Thompson sampling in the context of cloud comput-
ing is extremely advantageous. Traditional techniques must
accurately model many complex systems: virtual machines
hosted on cloud infrastructures can exhibit erratic behavior
when load is high; optimizers in modern databases may use
probabilistic plan generation techniques, potentially creat-
ing variance in how identical queries are processed; query
execution engines can exhibit sporadic behavior from cache
misses, context switches, or interrupts. Our approach deals
with complexity across the entire cloud environment end-to-
end by modeling the relationship between various context
features and cost probabilistically. When an action has an
unexpectedly low or high cost, we do not need to diagnose
which component (the VM, the optimizer, the execution en-
gine, the hardware itself) is responsible. We can simply
add the relevant context, action, and cost to the experience
set. If the unexpected observation was an one-off outlier,
it will not have a significant effect on the sampled models.
If the unexpected observation was indicative of a pattern,
Thompson sampling ensures that the pattern will be prop-
erly explored and exploited over time.



Regression trees Bandit uses REP trees (regression
trees) [27] to model the cost of each potential action in terms
of the context. The parameter set θ represents the splits of a
particular tree model, i.e. the decision made at each non-leaf
node. To use REP trees with Thompson sampling, we need a
way to sample a regression tree based on our past experience
(in other words, to sample a θ from P (θ|D)). Since gener-
ating every possible regression tree would be prohibitively
expensive (there are O(nn) possible trees), we utilize boot-
strapping [13]. In order to sample from P (θ|D), we select
n = |D| tuples from D with replacement (so the same tu-
ple may be selected multiple times or not at all) to use as
a training set for the regression tree learner. Bootstrap-
ping has been shown to accurately produce samples from
P (θ|D) [21]. In short, this is because there is a non-zero
chance that the entire sampled training set will be composed
of a single experience tuple (full exploration), and the mean
of the sampled training set is exactly D (full exploitation).

We choose REP trees because of their speed and ease of
use, but any sufficiently powerful modeling technique (neural
networks, SVR, etc.) could be used instead.

Action independence Reinforcement learning and
Thompson sampling literature has traditionally treated each
arm of the CMAB as independent random variables, and has
also assumed that the next context observed is independent
of the action taken. Although neither of these conditions
hold here, we demonstrate later that algorithms designed to
solve the CMAB problem work well in our context. This is
not surprising, as independence assumptions are often suc-
cessfully ignored when applying machine learning techniques
to real world problems like natural language processing [33]
and, in the specific case of Thompson sampling, web adver-
tising and route planning [25].

Bounding the strategy space Since our action selec-
tion algorithm must balance exploration and exploitation, it
may consider high-cost strategies, especially when little in-
formation is available. To reduce such catastrophic “learn-
ing experiences,” Bandit uses a heuristic search algorithm
for limiting its search space: it forbids picking the Accept

option when a machine’s queue has more than b queries in
it. From the remaining actions, each CMAB picks the one
that is expected to minimize the cost. This technique has
previously been called beam search [35].

Setting the b threshold is the responsibility of the applica-
tion, but for many SLOs a good threshold can be calculated.
For example, if the SLO requires that no query takes longer
than x minutes, we can set b = x

qmin
, where qmin is a lower

bound on query execution time. This prevents Bandit from
placing too many short queries on the same queue. The vio-
lations would be even worse if one considers longer running
queries. We note that even without beam search, Bandit
will eventually learn that no more than b queries should
be placed in the queue at once, but eliminating these op-
tions a priori accelerates convergence. However, one must
be careful not to set b too low, which could eliminate viable
strategies and cause Bandit to converge to a local optima.

Placing more constraints on the strategy space may also
decrease the time required to converge to a good strategy.
For example, we prevent VMs with no queries in their queues
from selecting the Pass arm. This prevents provisioning
multiple VMs to process a single query. It is worth not-
ing that while such restrictions may accelerate convergence,
they are not needed: Bandit will still converge to a good

strategy without them. As with the b value, one should be
wary of limited the strategy space too much, as one could
unknowingly eliminate a good strategy.

Experience size Since the experience D of each CMAB
consists of action/context/cost triples (a, x, c), and since a
new triple is added to D on a number of CMABs each time
a query completes, one may be concerned with the memory
usage of the experience array itself. Even though each expe-
rience tuple (as described here) could be represented using
relatively little space (encoding the cost, action, and each
feature as a 32-bit integer requires only 448 bits per expe-
rience tuple), the system will continue to use more memory
as long as it continues to process queries. However, since
query workloads tend to shift over time, newer experiences
are more likely to pertain to the current environment than
older ones. One solution to this problem could be to bound
the size of the experience set, and remove the oldest experi-
ences when new experiences arrive, or one could probabilis-
tically decrease the weights of older experiences, eventually
removing them when they no longer have a significant effect
on performance [12, 26]. Both approaches have shown good
performance in real-world applications [25].

3.4 Releasing Resources
So far, we have discussed provisioning new VMs and as-

signing queries to VMs, but we have not investigated shut-
ting down VMs. Since a cloud-deployed database applica-
tion must pay for machines until they are turned off, de-
ciding when to release a machine is important. Previous
works [10,24,32,37] have simply shutdown a machine when
that machine had no more queries in its processing queue.
While simple, this strategy can be disastrous when a query
arrives just after the previous query finishes; in this case,
the machine that was just released must be re-provisioned,
and the cost of initializing the VM must be paid again.

If the arrival time of the next query to be served on a par-
ticular VM was known ahead of time, then one could simply
calculate if it would be cheaper to keep the VM running un-
til the next query arrives or to shut down and restart the
machine. Of course, in general, this is not possible. One
might try to keep a machine active for some constant num-
ber of seconds k after its queue empties, and then shut the
machine down if it still has not received a query to process.
This approach works well when the query arrival rate is a
specific constant, but performs poorly in general.

Hill-climbing method In order to determine whether
to shut down a machine or keep it running in anticipation
of a future task, we developed a hill-climbing based learning
approach. Each machine maintains and adjusts a variable
k, which represents the number of seconds to wait once the
machine is idle before shutting down. For all machines, we
initialize k = 1sec. If no query arrives after k seconds, the
machine shuts down. If another query arrives before k sec-
onds have passed, the machine processes that query and
remains online.

We then adjust the wait period k as follows: we deter-
mine if it was profitable to wait for this query to arrive, or
if it would have been better to shut the machine down and
restart it. If the latter decision would have been more prof-
itable, we reduce the wait period to k′ = k/λ, where λ is our
learning rate, described below. If the next query arrives af-
ter the machine has been shut down, and we determine that
it would have been more profitable to have kept the machine



running, then we increase the wait period to k′ = k × λ.
Here, λ > 1 is the learning rate of the algorithm, which

represents how much new information is valued over past
experience. Setting λ closer to one causes k to adjust itself
slowly (far-sighted), whereas setting λ to a high value causes
k to be adjusted quickly (near-sighted). While a system can
benefit from tuning λ, we find that λ = 2 works well in many
situations where query arrival rates match real-world data.

Alternative learning methods While we have experi-
mented with the hill climbing approach described above, any
reinforcement learning algorithm with a continuous action
space could be applied to learn the wait period before shut-
ting down a VM. Examples of such algorithms include Monte
Carlo-based approaches [9], continuous Q-learning [23], and
the HEDGER algorithm [46]. Each of these algorithms can be
applied to select the next wait time after a machine becomes
idle. Since a cost can be generated for each decision (after
another query is accepted by that VM), any contextual con-
tinuous action space approach could be applied.

4. EXPERIMENTS
We implemented Bandit and tested its effectiveness and

training overhead on Amazon EC2 [2], using three types
of machines: t2.large, t2.medium, and t2.small. In the
majority of our experiments, we used workloads generated
from TPC-H [6] templates. However, we include experi-
ments (Section 4.2) with a larger set of templates extracted
from Vertica’s [30] performance testing suite. Unless other-
wise stated, all queries were executed on a 10GB database
stored in Postgres [5], and each VM holds its own complete
copy of the entire database, i.e. a fully-replicated database.

We model query arrival as a non-homogenous Poisson
process where the rate is normally-distributed with con-
stant mean arrival rate of 900 queries per hour and variance
k = 2.5, which is representative of real-world workloads [34].
Our experiments measure the average cost of each executed
query, and each point plotted represents a sliding window
of 100 queries. We present the most representative results
of our experimental study, aiming to illustrate the effective-
ness and capabilities of reinforcement learning systems when
applied to resource and workload management.

Feature Extraction Our virtual machine features are
extracted using via standard Linux tools. The query features
are extracted by parsing the query execution plan. One
challenge we faced was calculate the number of spill joins,
i.e., the joins for which the query optimizer predicts that
they will not fit in memory. Computing the exact number
of spill joins in the query plan may depend upon accurate
cardinality estimations for a specific query. We calculate the
number of spill joins in a query plan in a very relaxed way:
a join of table T1 and table T2 is considered to be a spill
join if and only if the maximum possible size of the result
exceeds the amount of RAM (i.e., the total size of T1 times
the total size of T2 exceeds the size of RAM), regardless
of the join predicate involved. While this is a conservative
estimation of which joins will spill, our estimate still has
some meaningful relationship with query execution cost as
discussed in Section 4.1.

4.1 Effectiveness
Next, we demonstrate the effectiveness of our learning

approach and feature set to generate low-cost solutions for
deploying data management applications on IaaS clouds.

Multiple SLO Types We evaluated Bandit’s ability to
enforce four commonly used SLO types [16, 17, 34]: (1) Av-

erage, which sets an upper limit (of 2.5 times the average
latency of each query template in isolation) on the aver-
age query latency so far, (2) Per Query, which requires that
each query completes within a constant multiple (2.5) of its
latency, (3) Max, which sets an upper limit on the latency
of the whole workload (2.5 times the latency of the longest
query template), and (4) Percentile, which requires that
no more than 10% of the queries executed so far exceed a
limit (2.5 times the average latency of the query templates
in isolation). We assume the monetary cost for violating the
SLO is one cent per second.

We compared Bandit against the optimal strategy for
these SLO types. Specifically, we generated a sequence of
thirty queries drawn randomly from TPC-H templates and
we brute forced the optimal decisions (VMs to rent and
query placement on them) to process this sequence with
minimal cost. We then trained Bandit on this workload
by repeating this sequence many times, allowing all thirty
queries to finish before submitting the next sequence2, un-
til its cost converged. We compared Bandit to a clairvoy-
ant greedy strategy, which uses a perfectly accurate latency
model to estimate the cost of each decision, and, upon the
arrival of a new query, makes the lowest-cost decision [32].
Finally, we used a simple round-robin scheduling strategy
to divide the thirty queries across seven VMs (the number
of VMs used in the optimal solution). Figure 3a shows this
comparison for the four SLO types.

The results are very positive. Bandit achieves a final cost
ranging from 8% to 18% of the global optimum; but com-
puting the optimal solution requires both a perfect latency
model and a significant amount of computing time (in some
cases the problem is NP-Hard). Bandit also represents a sig-
nificant cost reduction over naive, round-robin placement.
Finally, Bandit’s model comes within 4% of the clairvoyant
greedy model. This means that the cost model developed by
Bandit– which only implicitly models query latency – can
perform at almost the same level as an approach with a per-
fect latency prediction model.

Concurrent Queries Bandit is able to converge to effec-
tive models when queries execute concurrently, when perfor-
mance prediction is quite challenging. Figure 3b shows the
convergence of the cost per query over time for Bandit for
various concurrency levels with a Max SLO. Here, queries
are drawn randomly from TPC-H templates and their ar-
rival time is drawn from a Poisson process. One query rep-
resents no concurrent executions, i.e., we admit only one
query at a time on each machine. One query/vCPU and Two
queries/vCPU represent running up to one or two queries
respectively per virtual CPU core on each machine. In the
two queries/vCPU case, t2.small machines run two queries
at once, and t2.medium and t2.large machines run four
queries at once.3

The results show that increased concurrency levels in-
cur more training overhead (convergence takes longer), but
a lower converged cost since the cost-per-VM-hour is the
same regardless of how many CPU cores are utilized. Since
identifying the optimal strategy for these scenarios is not

2This lowered the average query arrival rate from 900
queries/hour to 200 queries/hour.
3Each query is itself executed serially. In other words, there is
parallelism between queries, but not within queries.
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Figure 3: Effectiveness of Bandit for various scenarios.

straightforward, we compare Bandit’s performance against a
clairvoyant greedy strategy. Again, Bandit performs within
4% of the clairvoyant greedy strategy. Hence, Bandit’s di-
rect cost modeling approach handles high levels of concur-
rency with no pre-training. Both Bandit and the clairvoyant
greedy strategy utilized fewer VMs at increased concurrency
levels. With no concurrency, both strategies used an aver-
age of 45 VMs. With one or two queries per vCPU, both
strategies used an average of 38 VMs.

Adaptivity to new templates Handling previously-
unseen queries represents an extreme weakness of pre-
trained query latency prediction models. Bandit can effi-
ciently handle these cases. Figure 3c shows cost curves for
two different scenarios. In both scenarios, Bandit begins
processing a workload consisting of queries drawn randomly
from 13 TPC-H templates, with the performance goal set to
the Max SLO type we defined above. In the all new tem-

plates at once scenario, seven new query templates are
introduced after the 2000th query has been processed. In
the new templates over time scenario, a new query tem-
plate is introduced every 500 queries. Introducing seven new
query templates at once causes a notable increase in cost.
Bandit eventually recovers as it gains information about the
new query templates. However, introducing queries slowly
over time causes only a slight decrease in Bandit’s perfor-
mance, and Bandit recovers from the small change faster
than it did for the large change. This makes Bandit es-
pecially well-suited for query workloads that change slowly
over time.

4.2 Convergence & Training Overhead
The three plots in Figure 4 show convergence curves for

Bandit in different scenarios. Each curve shows the average
cost per query for a sliding window of 100 queries compared
to the number of queries processed.

Impact of SLA strictness Figure 4a shows the con-
vergence curve for various SLA strictness levels for the Max

SLA type where the deadline for each query is set to 1.5, 2.5,
and 3.5 times the latency of that query in isolation. Looser
SLAs take longer to converge, but converge to a lower value.
Tighter SLAs converge faster, but have higher average cost.
This is because looser SLAs have a larger policy space that
must be explored (there are more options that do not lead
to massive SLA violation penalties), whereas tighter SLAs
have smaller policy spaces. Intuitively, this is because any
strategy that does not violate a strict SLA will not violate
a looser SLA either.

Impact of arrival rate Figure 4b shows convergence
curves for Bandit for various query arrival rates. The graph
matches an intuitive notion that high query arrival rates
should be more difficult to handle than low query arrival
rates. Higher query arrival rates require more complex work-
load management strategies that take Bandit longer to dis-
cover. For example, with a low query arrival rate, Bandit
may be able to assign all queries using a particular table
to a single VM, but with a high query arrival rate, Bandit
may have to figure out how to distribute these queries across
several machines.

Impact of query templates Since TPC-H provides only
a small number of query templates, we also evaluated Ban-
dit’s performance on 800 query templates extracted from
Vertica’s [30] analytic workload performance testing suite.
These templates are used to measure the “across the board”
performance of the Vertica database, and thus they cover
a extensive variety of query types. The generated queries
are ran against a 40GB database constructed from real-
world data. For consistency, we still use Postgres to store
and query the data. Figure 4c shows convergence curves
for randomly generated workloads composed of 8, 80, and
800 query templates. For the 8 template run, we selected
the four query templates with the highest and lowest costs
(similarly, for the 80 query template run, we selected the
40 query templates with the highest and the lowest cost) so
that the average query cost is the same for all three runs.

Higher template counts take longer to converge since the
corresponding strategy space is larger. Workloads with
fewer query templates exhibit less diversity, and Bandit is
able to learn an effective strategy faster. Even when the
template count is very large (800), Bandit still finds good
strategies after having seen a reasonable number of queries.

4.3 Shutdown strategy
Impact of query arrival rate After a VM is provi-

sioned, Bandit must decide when to turn it off. Figure 5a
compares different shutdown strategies for various query ar-
rival rates. A constant delay of K = 4 (wait four seconds for
a new query once the queue is empty) can be very effective
for certain arrival rates (900 Q/h), but will not perform well
for others (1200 Q/h, 1500 Q/h). Learning K represents
the algorithm described in Section 3.4. AVG5 sets the time
to wait before shutting down a VM to the average ideal wait
time of the last 5 shutdown decisions we had to make. This
is calculated as follows: after deciding to keep a machine on
or off we compute what would have been the ideal delay and
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Figure 5: Shutdown strategies and partitioning schemes

set the new delay to the average of the last five ideal delay
values we computed. K=0 represents shutting down a VM im-
mediately after its queue becomes empty. Figure 5a shows
that Learning K is the best practical strategy independent
of the arrival rate. The increase in reward for Learning K

are larger when the query arrival rate is slower. This is be-
cause slower arrival rates cause VM queues to empty more
frequently, making the decision on whether to shutdown a
machine or to keep it running (in anticipation of another
query) more important.

Comparison with clairvoyant We also compare Ban-
dit to the clairvoyant greedy strategy using each of the shut-
down strategies described above for a query arrival rate of
900 queries per hour. Figure 5b shows the comparison. In
this experiment, we additionally compare to the ideal shut-
down strategy. This strategy works by “looking into the
future” and retroactively making the correct decision about
whether or not to shutdown a machine based on if a query
will be placed onto it again in a profitable timeframe. This is
done by iteratively running queries, noting the arrival time
of of the n-th query on each machine, and then restarting
the process (this time running to the (n+1)-th query). This
represents the optimal shutdown policy, given a particular
strategy. Clearly, this is impossible in practice. However,
our Learning K performs within 1− 3% of this optimal.

4.4 Partitioned Datasets
We have thus far limited our experiments to fully-

replicated database systems in which any machine is ca-
pable of executing any query independently. While such
systems have many applications, modern analytic databases
typically partition data across multiple machines. We exper-

imented with such scenarios. Next, we discuss these results.
For this experiment, we used a cloud-deployment of a

commercial analytic column store database. We generated
20TB of TPC-H data and loaded it into the commercial en-
gine deployed on AWS. We partitioned the large fact table
(lineitem) and replicated the other tables. We used two
different partitioning scheme: value-based partitioning, in
which a given partition will store tuples that have attribute
values within a certain range, and hash-based partitioning,
which partitions tuples based on a hash function applied
on a given attribute. Each partition is also replicated by a
factor of k = 2.

For Bandit, we initialized a cluster with three VMs at the
start of each experiment and the partitions assigned to each
VM is determined by the underlying commercial database
engine we used. For both partitioning schemes, we compare
Bandit with two different techniques:

1. A Round-Robin approach, which uses a fixed cluster
size of n = 21 VMs and dispatches incoming queries to
these VM in a circular order. We evaluated all cluster
sizes from n = 1 to n = 50, and selected n = 21
because it had the best performance for our workload.

2. A clairvoyant power of two method [38, 42] (la-
beled as Clairvoyant PO2), which randomly selects
two machines from the current pool and schedules the
query on whichever of those two machines will pro-
duce the lowest cost (as determined by a clairvoyant
cost model). Among the available machine the algo-
rithm can choose from we include three“dummy VMs”,
which represent provisioning new VMs of the three
EC2 types we used.
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Figure 6: Network utilization

In these experiments we used the Max SLO metric. Fig-
ure 5c shows the converged cost for each partitioning scheme.
For the hash-based partitioning, Bandit outperforms the
Clairvoyant PO2 method by a small margin. Hash-based
partitioning allows for each node in the cluster to participate
evenly (on average) in the processing of a particular query,
as tuples are distributed evenly (on average) across nodes.
Indeed, Bandit learns a basic round-robin query placement
strategy, but still intelligently maintains the right size of
the cluster, in contrast to the round-robin method that has
a static cluster size.

Bandit outperforms Clairvoyant PO2 more significantly
when using value-based partitioning (16%). This partition-
ing schema allows for data transfer operations to be concen-
trated on the particular nodes that have the range values
required by the query. In this case, Bandit learns to maxi-
mize locality, i.e., it learns to place certain queries on nodes
that have most (or all) the partitions necessary to process a
certain query. Generally, Bandit learns to assign each query
to a node that will incur low network cost, which leads to re-
duced query execution time and hence lower monetary cost.

Note that the round-robin technique performs signifi-
cantly worse with value-based partitioning than with hash-
based partitioning, because an arbitrarily selected node is
less likely to have as much data relevant to the query locally
with value-based partitioning than with hash-based parti-
tioning, causing more data to be sent over the network.

Figure 6 shows the average total network utilization dur-
ing the experiment. It verifies that networking overhead is
a substantial factor in the performance differences shown
in Figure 5c. For hash-based partitioning, the network uti-
lization is approximately equal for all three methods, but
for value-based partitioning, Bandit requires substantially
less data transfer. Generally, value-based partitioning needs
to be carefully configured by a DBA, whereas hash-based
methods are more “plug-and-play”. However, these results
show that value-based partitioning can lead to greatly re-
duced network utilization when combined with an intelligent
workload management system.

5. RELATED WORK
Other approaches to online query scheduling, like the

Sparrow [42] and other “Power of Two” [38] schedulers,
seek to minimize scheduling latency for time-sensitive tasks.
They achieve results significantly better than random as-
signment by sampling two potential servers and assigning
the query to whichever server is “best”, as determined by a

heuristic. While such approaches achieve excellent latency,
they often depend on latency prediction models and do not
handle cluster sizing/resource provisioning. The clairvoyant
greedy algorithm presented in our experiments is equivalent
to a“Power ofN”technique, where every server is considered
and the best is selected via a clairvoyant cost model. While
this is impossible in practice, we have demonstrated that
Bandit performs similarly to this “Power of N” technique.

When query latencies are constant (e.g. have the same la-
tency regardless of cache, machine type, etc) and known at
query arrival time, the problem of workload management un-
der a Max SLA is isomorphic to the online bin packing prob-
lem, for which there are known heuristics with asymptotic
performance ratios [45]. While this relaxation is attractive
for many reasons, it is difficult to actualize due to the com-
plexity of ahead-of-time latency prediction. Additionally,
ignoring cache and different machine tiers can drastically
affect performance and cost. Bandit avoids the dependency
on latency prediction models and takes advantage of differ-
ent machine tiers and caches.

The problem of finding sensical service level agreements
has been previously examined [40]. Here, the focus is not
on finding a good strategy given a performance constraint,
but to find performance constraints that illustrate perfor-
mance vs. cost trade-offs in cloud systems. Recently, this
system has been expanded [41] to include a reinforcement
learning approach to cluster-scaling which probabilistically
meets performance goals.

The SmartSLA [52] system looks at how to divide up the
resources (e.g., CPU, RAM) of a physical server among
multiple tenants to minimize SLA penalties in a DBaaS
(database as a service) setting. They use machine learn-
ing models to predict SLA violation costs for various pro-
posed resource distributions in order to minimize costs for
the cloud provider. SmartSLA takes a fine-grained approach
by managing resource shares, but leaves cluster sizing and
query scheduling decisions to the underlying database soft-
ware. Bandit treats each VM as an indivisible resource, but
additionally makes scheduling and cluster-sizing decisions.
Further, Bandit seeks to minimize the user’s cost, not the
cloud provider’s cost. Other works that have focused on
the lowering the cloud provider’s cost focus on co-locating
tenants advantageously, either by minimizing the number
of servers provisioned [18], maintaining a certain number of
transactions per second [31], or maximizing the profit of the
cloud provider [34].

As mentioned in the introduction, many previous works
have addressed the problem of resource provisioning [43,47],
query placement [14, 22, 28, 29, 31, 34, 36], query scheduling,
[16, 17, 42] and admission control [49, 51] for only a subset
of the SLAs supported by Bandit. Works that handle many
different types of SLAs or spanned more than one of these
tasks [10, 24, 32, 37] have all depended on explicit latency
prediction models, a notoriously difficult problem for cloud
environments [11,39].

6. CONCLUSIONS
Fully realizing the promise of elastic cloud computing will

require a substantial shift in how we deploy data manage-
ment applications on cloud infrastructure. Current applica-
tions focus too heavily on manual, human-triggered scaling
which is too slow to respond to rapid increases or decreases
in demand. Failing to spin up more resources when they are



needed or renting resources for longer than required leads
to degraded performance, wasted resources, and potentially
substantial monetary costs.

Existing research on these challenges leans too heav-
ily on explicit query latency prediction models, which be-
come inaccurate due to noisy neighbors, high levels of con-
currency, and previously unseen queries. While conve-
nient and even highly accurate for single-node database sys-
tems, approaches based on latency prediction are not easily
retrofitted for cloud environments.

We argue that there is significant space for new re-
search that applies machine learning techniques to address
workload and resource management challenges for cloud
databases. As a proof-of-concept, we have presented Bandit,
a cloud service that uses reinforcement learning techniques
to learn, over time, low cost resource provisioning and query
scheduling strategies. Bandit is able to adapt and continu-
ously learn from shifting workloads while remaining resilient
to variance caused by concurrency.

While putting scalability decisions in the hands of ma-
chine learning algorithms may be uncomfortable for some,
cloud systems are not going to become any simpler. Hence,
we strongly believe that the ever-increasing diversity of op-
tions offered by IaaS providers will only increase the need
for end-to-end, machine learning based approaches to han-
dle existing and future challenges faced by data management
applications.
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