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ABSTRACT
After four decades of research, today’s database systems still suf-
fer from poor query execution plans. Bad plans are usually caused
by poor cardinality estimates, which have been called the “Achilles
Heel” of modern query optimizers. In this work we propose index-
based join sampling, a novel cardinality estimation technique for
main-memory databases that relies on sampling and existing in-
dex structures to obtain accurate estimates. Results on a real-world
data set show that this approach significantly improves estimation
as well as overall plan quality. The additional sampling effort is
quite low and can be configured to match the desired application
profile. The technique can be easily integrated into most systems.

1. INTRODUCTION
Cost-based query optimization is fundamentally based on car-

dinality estimation. Virtually all industrial-strength systems esti-
mate cardinalities by combining some fixed-size, per-attribute sum-
mary statistics (histograms) with strong assumptions (uniformity,
independence, inclusion, ad hoc constants). In other words, most
databases try to approximate an arbitrarily large database in a con-
stant amount of space. It is therefore not surprising that estimators
have a very hard time detecting complex patterns like join-crossing
correlations. For real-world data sets, cardinality estimation errors
are large and occur frequently [20, 15]. These errors lead to slow
queries and unpredictable performance.

One promising alternative to histogram-based estimation is sam-
pling, as it can detect arbitrary correlations and therefore produces
much more accurate estimates. However, despite being studied for
decades [19, 28], few systems actually use sampling in production.
One reason is that in the past, when main memory capacity was
small, sampling was too expensive to be practical due to the high
cost of random disk I/O operations. For example, using a conven-
tional disk, sampling only 10 random tuples may take 30 ms. To-
day, many databases fully reside in RAM; assuming a tuple access
time of 100 ns, in the same 30 ms it is possible to sample 300,000
random rows, which makes sampling much more practical.
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Figure 1: Naive (top) vs. index-based (bottom) join sampling

A second reason why sampling is not yet widely used is that
even a relatively long sampling time may not be sufficient to es-
timate joins. Consider, for example, the join A 1A.p=B. f B, where
p is a primary key and f is an (undeclared) uniformly distributed
foreign key1. A standard technique for estimating joins using sam-
pling is illustrated in the top half of Figure 1. To estimate A 1 B,
the independent random samples of A and B are joined. It is easy
to derive (cf. Appendix A) that for this join to produce a certain
expected number of result tuples n, the number of sampled tuples
must be

√
n|A|. For example, if |A| = 10,000,000 and we would

like to retain n = 1,000 samples (after the join), we have to sam-
ple about 100,000 rows from both A and B. Any additional join
(e.g., with relation C in the figure) will quickly reduce the sample
size further. Given the large sample sizes required, systematically
estimating many intermediate results is simply not feasible.

In this work we propose a novel cardinality estimation technique
that produces accurate results but is much cheaper than joining ran-
dom samples. The basic building block is an efficient sampling op-
erator that utilizes existing index structures: As shown in the lower
half of Figure 1, to get an estimate for A 1A.p=B. f B, we obtain a
random sample of A and then look up the samples’ join partners

1We use this example to keep the math simple. If the key/foreign
key relationship is declared, a database system can, of course, es-
timate this particular join easily. Estimation is much harder in the
presence of selections, undeclared keys, or non primary key joins.



in the index for B. f (we could also start with B using an index on
A.p). The resulting sample for A 1 B can be used as a starting point
for obtaining a sample for A 1 B 1C by using an index on the join
attribute C.g and so on. Index-based join sampling is much cheaper
than joining independent samples as the sample size stays roughly
constant after each additional join.

Cheaply obtaining samples for some intermediate results is,
however, only part of the solution. Large queries can have hun-
dreds or even thousands of intermediate results, and—even with
cheap, index-based sampling—it is not feasible to sample all of
them. The question therefore is: Which intermediate results should
be sampled? We argue that one should proceed bottom-up, i.e., to
compute accurate estimates for 2-way joins, then for 3-way joins,
and so on. We then inject these accurate estimates into a traditional
query optimizer that exhaustively enumerates all join orders—but
with much better information about the true costs. Other sampling-
based approaches either greedily determine the join order during
sampling [12] or only use sampling to locally improve existing
query plans [30]. Our approach, in contrast, utilizes the strength
of exhaustive enumeration but puts it on much firmer ground with
accurate, sampling-based estimates.

While sampling in main memory is quite cheap, the additional
sampling phase nevertheless increases query optimization time.
Queries with many joins have many intermediate results, each of
which should ideally be estimated by a separate sampling step. We
therefore set a time budget for the sampling phase and fall back to
traditional estimation after that. As a result, our approach has very
low overhead, which can be configured depending on the applica-
tion profile and query type.

The rest of this paper is organized as follows. After contrasting
our approach against other sampling-based proposals in Section 2,
Section 3 describes index-based join sampling and its integration
into database systems. In Section 4 we extensively evaluate our
approach using a real-world data set and a large set of multi-join
queries. The results show that index-based join sampling produces
much better plans than traditional estimators and other sampling
methods. We show that the sampling overhead of our technique is
quite low, which makes it highly practical for complex analytical
queries that often suffer from bad query plans. In Section 5 we de-
scribe query optimization techniques that have similar goals but are
not based on sampling. Finally, Section 6 summarizes the paper and
discusses future research directions.

2. BACKGROUND: SAMPLING-BASED
QUERY OPTIMIZATION

Theoretical [11] as well well as empirical [15] work has shown
that estimation errors increase exponentially with the number of
joins. A large body of work therefore aims at improving estimation,
plan quality, and robustness. In the following we focus on some
recent proposals that, like our approach, rely on sampling. A more
complete discussion of related work can be found in Section 5.

Sampling-based query re-optimization [30] first obtains a query
plan using conventional estimates. However, instead of executing
this plan, it draws independent samples from each table of the query
and then joins these samples. Since the samples are independent,
the sample size must be quite large to reduce the risk of empty
join results (the paper uses 5% of the relation size). The cardinal-
ity estimates obtained by sampling are injected into the query opti-
mizer, which is run again to compute a new query plan. The process
repeats until the plan does not change any more. Sampling-based
query re-optimization sometimes avoids bad query plans, but suf-
fers from high sampling overhead (due to large, O(n) sample sizes)

and often misses good plans due to the greedy exploration strategy.
CS2 [31], in contrast, uses materialized samples instead of sam-

pling for each query. It pre-computes one small sample for each
relation and joins these samples when estimating cardinalities. The
main idea of CS2 is to overcome the problem of empty results that
often occur when small samples are joined by using “correlated”
samples. In a star schema, for example, the fact table would serve
as a starting point (“source relation”) for which a normal sample
is computed. A tuple in a dimension table only becomes part of
the dimension table’s sample if it has a join partner in the fact ta-
ble’s sample. While CS2 works very well for star- or snowflake-like
schemas, it is not clear how to apply it automatically to more com-
plex schemas.

Despite being proposed for a non-relational language, the Run-
time Optimizer for XQueries (ROX) [12] has most similarities with
our approach. ROX also relies on existing index structures in or-
der to cheaply compute accurate samples for multi-join queries.
ROX, however, uses front-biased cutoff sampling instead of our
unbiased sampling method. Furthermore, in contrast to the exhaus-
tive, bottom-up approach which we propose, ROX greedily picks
edges to sample and this sampling process directly determines the
join order. This has the major disadvantage that some good plans
are simply never enumerated and thus cannot be chosen.

The sampling-based approaches discussed above have weak-
nesses that preclude their use in industrial-strength systems. Any
technique that requires human intervention is very unlikely to be
adopted widely. The same is true for techniques that have high
overhead, because a significant number of plans are actually pretty
close to the optimum2—despite large estimation errors. Greedy
algorithms will loose significant performance from not fully enu-
merating the search space—often slowing down queries that had
good plans in the first place. Our index-based sampling approach,
in contrast, has low (and configurable) overhead, is fully automatic,
and integrates with exhaustive join enumeration without resorting
to greedy algorithms.

3. INDEX-BASED JOIN SAMPLING
Our approach for improving cardinality estimates consists of two

components. The first is an index-based sampling operator that
cheaply computes a sample for a join result. The second compo-
nent is a join enumeration strategy, which systematically explores
the important intermediate results of a query using the index-based
sampling operator and ensures that the overall sampling time is lim-
ited. We first describe these two components before discussing how
our approach fits into the architecture of a typical database system.

3.1 The Index-Based Sampling Operator
To estimate the cardinalities of a query, we first compute random

samples of constant, configurable size for each base relation in the
query. To estimate σA.x=1(A), for example, we pick random tuples
(without replacement) from A and apply the selection A.x = 1 to
obtain a sample and accurate estimate. If an index on A.x exists, it
is also possible to directly sample from the index (as described later
for joins).

The basic idea of join sampling is quite simple: There are two
ways to compute a sample for the expression σA.x=1(A)1A.p=B. f B.
Using a sample of B, one can probe in the index A.p, and finally ap-
ply the selection A.x = 1. Or, if an index on B. f exists, one can start
2The claim that many plans are good may seem contradictory with
our previous statement that bad plans are common. However, both
statements are true (cf., Figure 6). Indeed, the fairly good quality
of the “average” plan is one of the main hurdles for the adoption of
any advanced (and therefore more expensive) estimation technique.



Algorithm 1 Index-based join sampling

sampleIndex(S, I,n)
Input: sample S of intermediate result T ,

suitable index I of relation A,
maximum sample size n

Output: sample for T 1 A

cpt = empty sequence of (tuple,count) pairs
for each t ∈ S

append (t, I.lookup(t).count) to cpt
sum = ∑i cpt[i].count // total join size
Sout = empty sequence of tuples
sid = sample non-negative integers < sum, |sid|= min{sum,n}
for each id ∈ sid

chosen = max{i|(∑i
j=1 cpt[ j].count)≤ id}

tS = cpt[chosen].tuple
offset = id−∑

chosen−1
i=1 cpt[i].count

tA = (I.lookup(tS))[offset]
append (tS ◦ tA) to Sout

return Sout

S

6
count per tuple (cpt)

sum: 15

(not materialized)

Sout
chosen: 0
offset: 2

chosen: 0
offset: 4

chosen: 2
offset: 1
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Figure 2: Illustration of Algorithm 1. Using a sample S, which
consists of 4 tuples, and a suitable index, the algorithm first
counts the number of join partners for each tuple in S (6, 1, 3,
and 5). To compute the final sample, it then draws 4 random
tuples (without replacement) from these 15 candidates

with the previously computed sample for σA.x=1(A) and probe in
the index B. f . While both approaches typically compute accurate
results, they differ in how many samples they may produce. If B. f
is a foreign key, the number of samples after the join may be much
larger than the original sample. Large samples are undesirable, as
they increase sampling time.

Our sampling strategy, shown in Algorithm 1, therefore directly
samples such that the result sample size does not exceed the given
maximum sample size (denoted as n). The algorithm consists of
two phases and is illustrated in Figure 2. First, for each tuple of
the input sample S, the number of matching tuples in the index
is counted without materializing this join of S and A. The overall
count, of course, can be much larger than the desired sample size.
Therefore, in the second step, the algorithm randomly draws and
materializes n tuples (without replacement) from this (potentially
large) set of matching tuples.

The algorithm assumes that indexes allow one to cheaply (O(1)
or O(logn)) count the number of matches of a particular key and
to select the k-th value of a particular key. This is, for instance,
trivially the case for hash indexes that associate each key with a
vector of values. For tree indexes (e.g., B-Trees), implementing

these operations efficiently is slightly more complicated, but can
be achieved by augmenting each node with an order statistic (cf. [5,
Chapter 14]).

3.2 Greedy vs. Bottom-Up Enumeration
The index-based sampling operator efficiently computes a fixed-

size sample for one intermediate join result. This allows one to sam-
ple multiple intermediate results for a given query. For queries with
less than 8 joins it is even realistic to sample all intermediate re-
sults (cf. Section 4.3). (We do not sample cross products, as most
join enumeration algorithms ignore them anyway.)

Unfortunately, the number of intermediate results grows expo-
nentially with the number of joins in a query. In the JOB bench-
mark [15], for example, queries with 7 joins have 84–107 interme-
diate join results, and queries with 13 joins already have 1,517–
2,032 intermediate results (again ignoring cross products). For
large queries, we therefore set a limit on the time spent in the sam-
pling phase and fall back to traditional estimation after that. For
queries with many intermediate results, sampling is not exhaustive
and the sampling order becomes important.

Intuitively, one might be inclined to follow a ROX-style greedy
approach, i.e., to start with a small result and extend it one-by-
one until all relations in the query graph are covered. The advan-
tage is that one quickly obtains accurate estimates for large inter-
mediate results. The disadvantage is that many small intermedi-
ate results are not sampled and thus have to be estimated using
traditional estimation. It is well known that—due to the indepen-
dence assumption—traditional estimators tend to underestimate re-
sult sizes. Therefore, when this mix of (accurate) sampling-based
estimates and traditional (under-)estimates are injected into a query
optimizer, it will often pick a plan based on the traditional estimates
(as they appear to be very cheap). This phenomenon has been called
“fleeing from knowledge to ignorance” [21] and—paradoxically—
causes additional, accurate information to decrease plan quality.

To avoid the “fleeing from knowledge” issue we compute in-
termediate results in a bottom-up fashion, i.e., we first sample all
2-way joins, then all 3-way joins, and so on until the we run out
of budget. This will result in accurate estimates for smaller inter-
mediate results (and, under a limited budget, traditional estimation
for larger results). Our experiments indeed show that it is better to
spend the sampling time on the smaller intermediate results. This is
because it may often be feasible to exhaustively sample all 2-way,
3-way, and 4-way joins, but not larger results. A cost-based query
optimizer will thus have precise knowledge of the costs for the early
(and often crucial) joins.

3.3 Enumeration Algorithm
Algorithm 2 shows the pseudo code for our bottom-up enumera-

tion approach, which is superficially similar to System R’s dynamic
programming algorithm that enumerates plans by size and does not
consider bushy trees. However, in contrast to traditional dynamic
programming, our algorithm does not determine the join order, but
only computes samples and (not shown in the pseudo code) cardi-
nality estimates. In other words, it samples each intermediate result
instead of finding the cheapest alternative for that result. Also note
that, because index-based sampling requires at least one base rela-
tion as input, the enumeration ignores bushy trees (though this only
affects estimation and the eventual plan can be bushy).

The algorithm also keeps track of the number of index lookups
during sampling and stops once the given budget (e.g., 100,000 in-
dex lookups) is exhausted. As previously mentioned, we assume
that sampling a tuple from an index is cheap. Thus, the number of
index lookups correlates strongly with the sampling time. However,



Algorithm 2 Sampling-based estimation with a budget

estimateQuery(G,b,n)
Input: query graph G (relations: vertices, predicates: edges),

sampling budget b,
maximum sample size n

Output: table of samples

samples = structure that maps expressions to samples
for each R ∈ G.getRelations()

samples[{R}] = sampleRelation(R,n)
budget = b
for each size from 1 to G.getRelations().size()−1

for each (expin,sin) ∈ samples.getEntriesOfSize(size)
for each R ∈ G.getNeighbours(expin)

expout = expin∪{R}
if (samples[expout].size()< n/10)∧

(R.hasIndex(expin)∨|R| ≤ n)
Sout = sampleIndex(sin,R.getIndex(expin),n)
samples[expout] = Sout
budget = budget− sampleCost(sin,Sout,R)
if budget < 0

return samples
return samples

it would also be possible use a time limit directly (e.g., 100 ms) as
a budget.

For long-running reporting queries the budget can be set to a
high value to ensure that a good plan is found. A fairly high budget
is also fine for interactive, ad hoc queries, because from the per-
spective of a user it does not really matter if the query takes 1 ms
or 100 ms (both are perceived as instantaneous). What matters is
that bad query plans (e.g., ones that take 10 minutes) are avoided.
For simple queries that require low latency, on the other hand, the
sampling budget can be set to a very low value (or even 0). Another
approach, which we plan to investigate in the future, is to adaptively
set the budget depending on the estimated query cost.

Besides managing the budget, the algorithm also contains two
additional optimizations. Previously, we have discussed how the
index-based sampling operator avoids the problem of too large
sample sizes. However, there is also the inverse problem, i.e., too
small samples, which can occur for selective queries. To reduce
the impact of this problem, we therefore sometimes revisit (and
therefore sample) an expression multiple times if the sample size
is below a threshold (e.g., n/10). The second optimization in our
algorithm is to directly join small relations with a sample if no
index exists. If a relation has less than n tuples, we simply (hash)
join it in its entirety with the sample, since this is cheap anyway
and increases the number of expressions for which one can obtain
accurate estimates.

3.4 Database System Integration
Let us close this section by discussing the interplay of index-

based sampling with the rest of the database system. Figure 3 shows
that index-based sampling is performed before the traditional query
optimizer as an additional phase that computes accurate cardinal-
ity estimates. The resulting estimates, which may be incomplete,
are injected into the existing cardinality estimation component of
the query optimizer. No changes to the cost model or plan space
enumeration algorithm are necessary. As a result, index-based join
sampling can be utilized by bottom-up (e.g., [23, 25]) as well as
top-down (e.g., [8]) join enumeration algorithms.

SELECT ...
FROM A,B,C
WHERE ...

v

B

B

A
B

C

HJ

INL

cardinality
estimation

cost model

query optimizer

plan space
enumeration

index-based
sampling

Figure 3: Integration of index-based join sampling into a tradi-
tional query optimizer

Except for the addition of the index-based sample operator, our
approach does not require any changes to the query engine. In con-
trast to adaptive query processing techniques (cf. Section 5), there
is also no feedback between the query execution and query opti-
mization. In other words, the plan produced by the optimizer is
executed as is (without any additional overhead at execution time).
As a consequence, index-based sampling integrates well with mod-
ern compilation-based query engines like HyPer, which compile the
query plan into machine code. Also note that such query engines
already have compilation overhead on the order of 100 ms [27].
In such a setting a typical sampling overhead of, e.g., 10 ms will
barely be noticed.

Our approach performs additional index lookups during query
optimization time. In a concurrent setting these additional lookups
must use appropriate synchronization techniques (e.g., latches).
However, the total number of lookups is fairly low, and with mod-
ern, optimistic synchronization protocols like Optimistic Lock
Coupling [18] the synchronization overhead is very low and readers
do not negatively affect writers.

Any query optimizer change that increases the performance for
the vast majority of queries, will also decrease performance for
some queries, which is very undesirable in production systems. Ex-
isting database systems are therefore very conservative with query
optimizer changes. Thus, one could use our approach as an optional
tuning feature for queries that are slower than expected. In other
words, if a user is not satisfied with the performance of a particu-
lar query, to get better performance she may turn on index-based
sampling only for that query.

4. EVALUATION
In this section we investigate index-based join sampling exper-

imentally. We show that (1) the estimates are much improved, (2)
the sampling overhead incurred is low, (3) the plan quality is much
better than that of alternative approaches, and that (4) our technique
works well over a wide spectrum of access path configurations.

4.1 Experimental Setup
In prior work [15] we have shown that cardinality estimation

for synthetic benchmarks like TPC-H is unrealistically easy. Our
experiments therefore use the Join Order Benchmark (JOB) [15],
which is based on the Internet Movie Database. This real-world
data set is around 3.6 GB and has a complex schema. The JOB
workload consists of 113 queries with 3 to 16 joins. Because of
the bad quality of commercial cardinality estimates, query optimiz-
ers often do not find good plans for JOB, in particular, when many
indexes are available [15].

The experiments were performed in a single-threaded in-
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Figure 4: Quality of cardinality estimates for multi-join queries in comparison with the true cardinalities. Each boxplot summarizes
the error distribution of all subexpressions with a particular size (over all queries in the workload)

memory prototype similar to MonetDB (column-wise storage, full
materialization after each operator) developed for query optimiza-
tion experimentation. For simplicity, indexes are implemented as
hash tables; efficient order-preserving data structures like ART [16]
would also be suitable. For most experiments, we create indexes on
all primary key and foreign key columns, which is the worst case
in terms of relative plan quality (more indexes make it harder to
find the optimal plan) and sampling overhead (more indexes al-
low for more sampling steps). Despite not being heavily optimized
for query performance, our prototype is about 5 times faster than
PostgreSQL.

Like most systems, our prototype uses cost-based dynamic pro-
gramming to determine the join order and the join algorithm (hash
or index-nested-loop join). As the cost function we use Cmm [15],
which, in effect, counts the number of tuples that pass through each
operator. By default, cardinalities are estimated using index-based
sampling and a sample size of 1,000. As a sampling-based competi-
tor, we implemented sampling-based query re-optimization [30].

In order to compare our approach with traditional estimation,
we support injecting estimates from other systems. We inject
PostgreSQL’s cardinality estimates, which were obtained using the
EXPLAIN command. Note that we only use cardinality estimates
(not costs), which avoids any issues stemming from incompatible
cost models and allows one to compare different estimation tech-
niques in a fair way. The quality of cardinality estimates of most
commercial systems is similar to PostgreSQL [15].

We also experimented with ROX-style [12] join ordering. The
algorithm starts with the best join edge (i.e., the one that yields the
smallest result), and then samples join edges in breadth-first search
(BFS) manner. Once the BFS is finished, the path (i.e., sequence of
joins) that reduces the size of the input relation most, is executed.
Starting at this partial result, sampling and execution alternate until
all the query graph edges (i.e., relations) are covered. Despite im-
proved cardinality estimation due to sampling, in our experiments
ROX-style join ordering was not competitive (cf., Table 1) due to
its greedy nature.

4.2 Does Sampling Improve Estimation?
The most important quality of any cardinality estimator is, of

course, the quality of its estimates. Figure 4 compares the quality
of index-based sampling with PostgreSQL’s estimates for all inter-
mediate results in our query set. The figure summarizes the distri-
bution of the cardinality estimates in comparison with the true car-
dinalities. As observed in prior work [15], we see two major trends:
First, with increasing join sizes, the errors increase exponentially
(note the logarithmic scale), as evidenced by the increasing heights
of the box plots. Second, underestimation is much more common
than overestimation and is getting more pronounced with each ad-
ditional join. The estimates of sampling-based re-optimization are
very similar to PostgreSQL, as it samples only a small number of
intermediate results.

Index-based join sampling, in contrast, does much better than
PostgreSQL, in particular with a higher budget. Underestimation
occurs later because smaller intermediate results are estimated ac-
curately using sampling. Large underestimation errors only occur
once we run out of budget, which is not surprising because we fall
back to PostgreSQL’s join estimation formula in that case. Also
note that even with the low budget of 10,000, which only allows
one to sample only a few joins, the estimates of larger joins are
better than PostgreSQL’s because larger results are computed using
smaller, more accurate ones.

4.3 How Expensive is Sampling?
Let us next look at the sampling overhead. After all, sampling

is only practical if it is cheap. For each of the 113 queries in the
JOB workload, Figure 5 shows the sampling time for sampling-
based re-optimization (blue circles) and for our index-based sam-
pling technique (green symbols) under three budget settings: a very
low budget of 10,000 index lookups, a medium budget of 100,000
index lookups, and an unrestricted budget. (Note that PostgreSQL
is not shown in the figure because its fairly simple cardinality esti-
mation process is very cheap.)

Even without a budget, for queries with up to 8 joins, the sam-
pling overhead is quite low (less than 20 ms). This means that for
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medium-sized queries, it is possible to fully sample all intermedi-
ate results within a time span that lies below the human perception
threshold (around 100 ms). For larger queries, a sampling budget
effectively limits the sampling overhead (to less than 10 ms and
less than 60 ms respectively). These results show that index-based
sampling in RAM is cheap enough for interactive applications.

The sampling overhead of sampling-based re-optimization is
generally much larger (note the logarithmic scale). The reason is
that it uses large sample sizes (5% of each relation), which results
in up to 1.8 s sampling overhead. In addition, sampling-based re-
optimization requires running the join ordering algorithm for each
re-optimization step (which is not included in the measurements).
Another important difference between the two sampling techniques
is that index-based sampling systematically explores the space of
cardinality estimates. As a result, its sampling overhead, which can
effectively be bounded using a budget, mainly depends on the num-
ber of joins but not on the database size. The sampling overhead
of sampling-based re-optimization, in contrast, grows linearly with
the database size (not shown in the graph).

4.4 Does Sampling Improve Plan Quality?
The actual purpose of query optimization is to find good query
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Table 1: Geometric means of query runtimes and sampling
times (ms)

runtime sampling overh.
PostgreSQL 57.1 -
ROX 120.0 1.6
sampling-based re-optimization 48.0 144.0
index-based sampling (10k) 48.4 4.3
index-based sampling (100k) 43.3 13.3
index-based sampling (no budget) 43.4 19.3
true cardinalities 35.8 -

plans. Figure 6 shows the plan quality for different cardinality esti-
mation techniques. The cost of each query is normalized by the cost
of the optimal plan that would have been chosen if the true cardi-
nalities were known. Using PostgreSQL’s estimates, only around
one quarter of the plans are close to the optimum. 42% of the plans
are off by a factor of 2 or more and 12% are off by a factor of 10 or
more. Sampling-based re-optimization slightly improves the plan
quality in comparison with PostgreSQL but the gap to the optimum
is still large.

Index-based sampling achieves better results. Even a very small
budget of 10,000 index lookups achieves results similar to sampling-
based re-optimization—using only a tiny fraction of the sampling
overhead. A more realistic budget of 100,000 index lookups further
improves performance for many queries: Only 17% of the queries
are off by a factor of 2 or more and only 3% of the queries are
off by a factor of 10 or more. Generally, the higher the sampling
budget, the better the plan quality, but even a low budget results in
plans better than the other techniques.

We observe similar results, shown in Figure 7, when we look at
actual runtimes rather than the costs. One difference is that some
plans are actually faster (up to a factor of 3) with inaccurate esti-
mates than with the true cardinalities. This effect is caused by cost
model errors rather than inaccurate cardinalities and explains the
hesitation of many commercial database systems to change their
query optimizers. Any optimizer change that will improve perfor-
mance for the vast majority of queries, will inevitably slow down
some queries. Nevertheless, the upside of the improved estimates
is clearly visible.

Table 1 reports the geometric mean of all runtimes in our work-
load and compares them with the sampling times. Let us note again
that the sampling overhead of our technique, which is already usu-
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Figure 8: Query runtime under different index configurations

ally much lower than the query runtime on our moderately sized
data set, is independent of the data size. On larger data sets it would
indeed be negligible.

Table 1 also shows that the ROX algorithm performs worse than
PostgreSQL. This may be surprising, as ROX was designed to pick
up on join-crossing correlated predicates prevalent in our bench-
mark. To be conservative on the sample exploration cost, ROX is
a greedy algorithm, which explores the space only from the cheap-
est first execution step (typically a selection). Our theory is that
in the extensive DBLP 3-way join evaluation in [12] where anti-
correlated predicates play a role, the best plan is typically to join the
relation with the smallest selection with its anti-correlated counter-
part. In the DBLP experiments, ROX not only succeeds in identi-
fying these but also works on a physical infrastructure with parti-
tioned structural indexes, where these anti-correlated joins can be
executed very efficiently (as discussed in Section 4.4 of [15]). Thus,
the greedy nature of ROX is not a hindrance to its performance
there, whereas the situation in the JOB benchmark appears to be
quite different.

4.5 What If There are Few Indexes?
So far, all results were obtained with indexes on all primary and

foreign key attributes. In more realistic settings, only some of the
foreign key attributes will have indexes. Given our strong reliance
on index structures, one obvious question is how well our tech-
nique works if fewer applicable indexes exist. We therefore created
other index configurations by enabling foreign key indexes one-
by-one (in a random order). Figure 8 shows the normalized geo-
metric mean (relative to the optimal plan with true cardinalities)
for each index configuration. Looking at the curve of PostgreSQL’s
estimates, we see that—despite the large estimation errors—the av-
erage plan quality is quite good when there are few indexes. As the
number of indexes increases, however, the plans chosen by the op-
timizer are much further away from the optimal plan (as previously
observed [15]). Index-based sampling improves plan quality across
all configurations, but especially in those cases where plan quality
is worst—namely, when multiple indexes are available.

5. RELATED WORK
While sampling is a highly promising technique, many other ap-

proaches for improving plan quality and robustness have been pro-
posed. In the following, we describe some of the major paradigms,

most of which diverge from the traditional first-optimization-then-
execution model.

One intuitive idea is to detect cardinality estimation errors at run-
time, as in the LEO project [29]. Successive executions of the same
(or a very similar) query can utilize the true cardinalities deter-
mined in an earlier run instead of inaccurate estimates. The issue
of non-consistent estimates, which occur when estimates from dif-
ferent sources are combined (true cardinalities vs. histogram-based
estimates), is addressed using a maximum entropy technique [21].

In the adaptive query processing [6, 2] paradigm, the tradition-
ally separate optimization and execution phases are merged or in-
terleaved. The Eddies [1] algorithm, for example, continuously re-
orders operators by dynamically routing incoming tuples to opera-
tors until a tuple has visited all operators. The Plan Bouquet [7] and
SpillBound [13] algorithms are based on the observation that if the
(uncertain) selectivities of a query are very high, the plan is likely
relatively cheap (because index scans are highly effective). The ap-
proach therefore starts by executing a plan that would be optimal
if the selectivities are high, and—if it turns out to take longer than
expected—switches to plans, which assume lower selectivities.

Eddies and Plan Bouquet are a very radical departure from the
traditional query optimization model and—by moving many of
the optimizer decisions to runtime—can cause significant runtime
overheads. This is a problem, because most query plans picked
by traditional optimizers are actually quite good—despite the fre-
quently large cardinality misestimates. Therefore, a number of
techniques have been proposed [26, 22, 3] that strive to detect
optimizer mistakes using limited runtime adaptivity. Thus, these
techniques have less overhead and are easier to integrate into exist-
ing systems.

Another pragmatic approach is to design the query operators
in a such a way that they do not rely on cardinality estimates.
Many operators adhering to this philosophy have been proposed.
Smooth Scan [4], for example, is a general, intelligent access path
that avoids the need to pick whether a full table scan or an index
scan should be used. In a similar vein, there has been work on the
join [10, 14], the window [17], and aggregation [24, 14] operators.
While using intelligent operators is certainly beneficial, some im-
portant decisions (e.g., the join order) have be made at optimization
time.

6. CONCLUSIONS AND FUTURE WORK
We have shown that index-based sampling in main-memory

databases is cheap. This allows one to systematically sample many
intermediate query results in a bottom-up fashion and inject the
resulting estimates into a traditional query optimizer. Our tech-
nique finds better plans in comparison with traditional, histogram
and assumption-based estimators as well as alternative sampling
proposals. Given that the query plans of state-of-the-art optimizers
are very fragile, we believe that index-based sampling is a highly
promising and practical technique.

In the future, we plan to integrate index-based join sampling
into HyPer, which already estimates the selectivity of base rela-
tion selection predicates using sampling. We will also investigate
possible adaptations of our technique for databases that are larger
than RAM. The fact that even a low sampling budget improves
plan quality indicates that our approach might also be beneficial
for databases that do not fully reside in RAM—but e.g., on modern
SSDs, which have reasonable random access times.

While our fixed-size sampling strategy is simple, has low over-
head, and is quite effective, it is certainly worthwhile to investi-
gate whether more sophisticated sampling strategies (e.g., [19, 9])
would be beneficial for our approach.
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Appendix A: Sample Size When Joining Inde-
pendent Samples
In the following, we derive the expected sample size when joining
two independent relation samples for the common key/foreign key
scenario. Consider the expression A 1A.p=B. f B, where p is a pri-
mary key and f is a uniformly distributed foreign key. If we sample
m tuples from A without replacement, the probability of any tuple
from B having a join partner (we assume m≤ |A|) is

m
|A|

.

Because we also sample m tuples from B, the expected number of
join results n is

n = m
m
|A|

.

Solving for m, we obtain the formula stated in Section 1:

m =
√

n|A|
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