
ground

Ground: A Data Context Service
Joe Hellerstein, Vikram Sreekanti, Joey Gonzalez, et al. 
CIDR 2017 

https://github.com/ground-context/ground 

https://github.com/ground-context/ground


Open Source Big Data Community Health

Long-term Data 
Management

Data Analysis Data Wrangling

FAIL



What was the big data revolution really all about?



Database



A DECOUPLED STACK

Ingest/
PubSub

Workflow

Scheduler

Storage

Dataflow Engine

Query Optimizer

API / Query Language

Big Data



A DECOUPLED STACK

Ingest/
PubSub

Workflow

Scheduler

Storage

Dataflow Engine

Query Optimizer

API / Query Language SQL

GP ORCA

The Good: Agility



A DECOUPLED STACK

SQL

GP ORCA

The Bad: Dis-integration.



CRISIS: HOW DO WE SHARE INFORMATION?



WHAT IS METADATA?



• Data about data 
• This used to be so simple! 

• But … schema on use 
• One of many changes

WHAT IS METADATA?



Lay the groundwork for rich 
data context.

OPPORTUNITY: A BIGGER CONTEXT

Don’t just 
fill a 

metadata-
sized hole 
in the big 

data 
stack.



WHAT IS DATA CONTEXT?

All the information surrounding the use of data.



The ABCs of Data Context

Application Context: Views, models, code 

Behavioral Context: Data lineage & usage 

Change Over Time: Version histories

Generated by—and useful to—many applications and components.



ground

Janet

I bet social media 
content can predict which 
customers might cancel 

their accounts!

Hey Janet! We 
already paid for a full 
Gnip feed from Twitter 

— you can find it 
here

By the way: Sue 
used this following 
related table and 

script.



Janet

ground

Hey Janet! This looks 
like Twitter JSON. Many 
people use this script to 

turn it into a table.

Be careful: When 
people store outputs 
from this script, the 

following fields are often 
flagged by IT as PII.

BTW, 
have you tried the 
sentiment analysis 

package?

I bet social media 
content can predict which 
customers might cancel 

their accounts!



share Sue

0

7.5

15

22.5

30

0 4 8 12 16

ground

Janet

It looks true!  
Tweets predict churn!



TweetId Text Sentiment
47 “sad!” negative
53 “awesome!” positive
57 “go packers!” neutral
64 “fleek!” positive

TweetId Text neg pos neut
47 “sad!” 1 0 0
53 “awesome!” 0 1 0
57 “go packers!” 0 0 1
64 “fleek!” 0 1 0

ground

Sue

I wonder if Janet’s 
sentiment analysis will 
help with my discount 

targeting pipeline.

0

7.5

15

22.5

30

0 4 8 12 16



TweetId Text neg pos neut
47 “sad!” 0 0 0
53 “awesome!” 0 0 0
57 “go packers!” 0 0 0
64 “fleek!” 0 0 0

TweetId Text Sentiment
47 “sad!” sadness
53 “awesome!” elation
57 “go packers!” sports
64 “fleek!” trendy

Sue

Uh oh, prediction 
accuracy metrics are down!

Time passes…
Oh dear. I 

better call a meeting to 
introduce better 

governance on sentiment 
labeler.

FYI: Janet’s 
wrangling script 

changed!

ground

Prediction Accuracy

0
25

50

75
100

1/1/2017 00:00 1/1/17 18:00 1/2/17 12:00

VERSION HISTORY
12/31/2016 00:00 -800  
hash: 
6dda491064bcce14f558bf83867b8c247027c423  
user: will



WHAT DID CONTEXT ENABLE?

Figuring out which changes introduced the error. VERSION HISTORY

Determining who made the change to  
help us resolve the issue. user: will

Fueling our model accuracy monitor. 0
25
50
75

100

1/1/2017 00:00 1/2/17 00:00

Self-service catalog, wrangling and analytics. 

Collective governance of data.



7

7

9

9

THE BIG CONTEXT

Where are the interesting technical challenges? 
All over! 

Our goal is not to solve all these challenges. 
It’s to provide an environment to enable solutions.



ABOVEGROUND API TO APPLICATIONS

UNDERGROUND API TO SERVICES

METAMODEL

COMMON GROUND

Parsing & 
Featurization

Catalog & 
Discovery

Wrangling

Analytics & 
Vis

Reference 
Data

Data 
Quality

Time Travel

Model 
Serving

Scavenging 
and Ingestion

Search & 
Query

Scheduling & 
Workflow

Versioned  
Storage ID & Auth

ground



Scavenging 
and Ingestion

Search & 
Query

Scheduling & 
Workflow

Versioned  
Storage ID & Auth

COMMON GROUND CONTEXT MODEL

Pachyderm Chronos

Parsing & 
Featurization

Catalog & 
Discovery

Wrangling

Analytics & 
Vis

Reference 
Data

Data 
Quality

Time Machine

Model 
Serving

ABOVEGROUND API TO APPLICATIONS

UNDERGROUND API TO SERVICES

METAMODEL

COMMON GROUND



DESIGN REQUIREMENTS

• Model-agnostic 
• Immutable 
• Scalable 
• Politically Neutral



Postel’s Law

Be conservative in 
what you do,  
be liberal in what you 
accept from others



A: Model Graphs

COMMON GROUND
The metamodel



member k1

member k1:  
string

member k2

Object 2

member k1
member k2:  

number

member k11:  
string member k12

element 1 element 2 element 3

element 1 element 2 element 3

Root

RELATIONAL SCHEMA

JSON DOCUMENT

Schema 1

Table 1

Column 1 Column c

Table t

Column 1 Column d

foreign key



COMMON GROUND
The versioning model

B. Version Graphs

A: Model Graphs



COMMON GROUND
The versioning model

A. Model Graphs

B. Version Graphs



COMMON GROUND
The usage model

C. Lineage Graphs

A. Model Graphs

B. Version Graphs



SCALABLE, IMMUTABLE BACKEND

Longstanding open problem 

Workloads? 
• Graph queries for metamodel traversal 

• Log analysis queries for usage  

Room for improvement 
• Goal: compete with in-memory performance  

(“the McSherry baseline”) 

Ground 0 makes use of LinkedIn’s Gobblin system for crawling
and ingest from files, databases, web sources and the like. We have
integrated and evaluated a number of backing stores for versioned
storage, including PostgreSQL, Cassandra, TitanDB and Neo4j; we
report on results later in this section. We are currently integrating
ElasticSearch for text indexing and are still evaluating options for
ID/Authorization and Workflow/Scheduling.

To exercise our initial design and provide immediate functionality,
we built support for three sources of metadata most commonly used
in the Big Data ecosystem: file metadata from HDFS, schemas from
Hive, and code versioning from git. To support HDFS, we extended
Gobblin to extract file system metadata from its HDFS crawls and
publish to Ground’s Kafka connector. The resulting metadata is then
ingested into Ground, and notifications are published on a Kafka
channel for applications to respond to. To support Hive, we built
an API shim that allows Ground to serve as a drop-in replacement
for the Hive Metastore. One key benefit of using Ground as Hive’s
relational catalog is Ground’s built-in support for versioning, which—
combined with the append-only nature of HDFS—makes it possible
to time travel and view Hive tables as they appeared in the past. To
support git, we have built crawlers to extract git history graphs as
ExternalVersions in Ground. These three scenarios guided our
design for Common Ground.

Having initial validation of our metamodel on a breadth of scenar-
ios, our next concern has been the efficiency of storing and querying
information represented in the Common Ground metamodel, given
both its general-purpose model graph layer, and its support for ver-
sioning. To get an initial feeling for these issues, we began with two
canonical use cases:

Proactive Impact Analysis. A common concern in managing op-
erational data pipelines is to assess the effects of a code or schema
change on downstream services. As a real-world model for this use
case, we took the source code of Apache Hadoop and constructed
a dependency graph of file imports that we register in Ground. We
generate an impact analysis workload by running transitive clo-
sure starting from 5,000 randomly chosen files, and measuring the
average time to retrieve the transitively dependent file versions.

Dwell Time Analysis. In the vein of the analysis pipeline Sue
manages in Section 2, our second use case involves an assessment
of code versions on customer behavior. In this case, we study how
user “dwell time” on a web page correlates with the version of the
software that populates the page (e.g., personalized news stories).
We used a sizable real-world web log [30], but had to simulate
code versions for a content-selection pipeline. To that end we
wanted to use real version history from git; in the absence of content-
selection code we used the code repository for the Apache httpd
web server system. Our experiment breaks the web log into sessions
and artificially maps each session to a version of the software. We
run 5,000 random queries choosing a software version and looking
up all of its associated sessions.

While these use cases are less than realistic both in scale and in
actual functionality, we felt they would provide simple feasibility
results for more complex use cases.

4.1 Initial Experiences
To evaluate the state of off-the-shelf open source, we chose lead-

ing examples of relational, NoSQL, and graph databases. All bench-
marks were run on a single Amazon EC2 m4.xlarge machine with
4 CPUs and 16GB of RAM. Our initial goal here was more experien-
tial than quantitative—we wanted to see if we could easily get these
systems to perform adequately for our use cases and if not, to call
more attention to the needs of a system like Ground. We acknowl-

Figure 8: Dwell time analysis. Figure 9: Impact analysis.

Figure 10: PostgreSQL transitive closure variants.

edge that with further tuning, these systems might perform better
than they did in our experiments, though we feel these experiments
are rather fundamental and should not require extensive tuning.

PostgreSQL. We normalize the Common Ground entities
(Item, Version, etc.) into tables, and the relationships (e.g.,
EdgeVersion) into tables with indexes on both sides. The dwell
time analysis amounts to retrieving all the sessions corresponding
to a server version; it is simply a single-table look-up through an
index. The result set was on the order of 100s of nodes per look-up.

For the impact analysis experiment, we compared three Post-
greSQL implementations. The first was a WITH RECURSIVE query.
The second was a UDF written in PGPLSQL that computed the paths
in a (semi-naïve) loop of increasing length. The last was a fully-
expanded 6-way self-join that computed the paths of the longest
possible length. Figure 10 compares the three results; surprisingly,
the UDF loop was faster than the native SQL solutions. Figure 9
shows that we were unable to get PostgreSQL to be within an order
of magnitude of the graph processing systems.

Cassandra. In Cassandra, every entity and relationship from the
Common Ground model is represented as a key/value pair, indexed
by key. The Cassandra dwell time analysis query was identical
to the Postgres query: a single table look-up which was aided by
an index. Cassandra doesn’t support recursive queries; for impact
analysis, we wrapped Cassandra with JGraphT, an in-memory Java
graph-processing library. We did not count the time taken to load
the graph into JGraphT from Cassandra, hence Figure 9 shows a
very optimistic view of Cassandra’s performance for this query.

Neo4j. Neo4j is a (single-server) graph database, so modeling the
Common Ground graphs was straightforward. The average Neo4j
dwell time analysis was fast; the first few queries were markedly
slow (⇠10 seconds), but subsequent queries were far faster, presum-
ably due to caching. Neo4j excelled on transitive closure, perform-
ing only 50% slower than in-memory JGraphT.

TitanDB. TitanDB is a scale-out graph database designed to run
over a NoSQL database like Cassandra, which is how we deployed
it in our experiments on a single machine. Once again, mapping our
graph-based model into TitanDB was straightforward. TitanDB’s
dwell time analysis performance was significantly slower than the
rest of the systems, despite indexing. The impact analysis query was



NEUTRALITY

Reminder: 

There will be k competing solutions for: 
• Data wrangling 
• Data cataloging 
• Schema extraction 
• Feature extraction 
• Social network analysis 
• Etc. 
• This will consolidate somewhat, but only over time 

Goal: foster the ecosystem



NEUTRALITY

YOU



MANY OPEN RESEARCH QUESTIONS

Underground 
• Workloads 
• Common Ground 

representations 
• No-overwrite versioned DB 
• Time travel queries: point 

and trend Graph queries + 
log analysis 

• Consistency 

Aboveground 
• Content extraction 
• Analytic user exhaust  
• Socio-technical networks 
• Collective governance 
• Reproducibility 
• Lifecycle of systems that 

learn



CURRENT STATUS

Alpha Release 
• Integrated with LinkedIn Gobblin, 
Kafka, Hive Metastore, Github 
•All components have Docker 
images on DockerHub 
•We’d love feedback! 

www.ground-context.org

ground


