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Multi-core hardware is everywhere

* In the cloud
« Amazon X1 instances with 64 physical cores

* On premise
« Systems with > 50 cores are widely available

* Lots interest in building DBs for multi-core hardware



Multi-core systems need synchronization

e Parallelism via concurrent execution
on CPU cores

» Communication via shared memory Shared memory

* Access to shared memory must be

synchronized
* Prevents bugs due to race conditions é é



Two cluasses of synchronization mechanism:

Latches and latch-free algorithms




Latch-free synchronization: Silver bhullet?
» Some recent research papers:

« “... fine-grained locking, does not scale on modern
hardware. Lock-free data structures, in contrast, scale very

well...” SIGMOD Workshop paper

«“ ... latches are more Iike)l&to block Iimiting scalability...
Addressing [this] issue, XXX is latchfree.” ICDE paper

* “Scalability is often limited by contention on locks and
latches ... XXX is designed for high concurrency. To achieve
this it uses only latch-free data structures” CIDR paper
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Latches

» Prevent conflicting threads
from accessing shared data

* Latch is just a memory word
« Combinations of reads & writes
acquire the latch / a




Latch-free

* Implicit synchronization
* Directly operate on shared data

« Use atomic instructions for Shared memory
correctness

. Compdre-dnd-SWCIP /T \

» Cores concurrently attempt
updates on one word % é



Latch-free list

Insert(A):

while (true)
A.next = Head
1f cmp_n_swap(&Head, A.next, A)
break
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Latch-free list

Insert(A): Insert(A’):
while true while true
1. A.next = Head
2. A’ .next = Head

1f
3. cmp_n_swap(&Head,
A.next, A)
break 1f
4. cmp_n_swap(&Head,
A’ .next, A’)

break



Latching vs latch-free algorithms

* Latch-free: strong progress guarantees
A thread is never blocked due to other threads

* Latches make no guarantees
* If latch holder is delayed, another thread cannot acquire the latch



Latch-free list

Insert(A): Insert(A’):
while true while true
1. A.next = Head
2. A’ .next = Head

1f
3. cmp_n_swap(&Head,
A.next, A)
break 1f
4. cmp_n_swap(&Head,
A.next, A)

break



Throughput
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Rules of thumb

* Writes: Concurrent writes to the same location are

processed serially
» Expected time to write proportional to #concurrent writers

 Reads: Concurrent readers “notice” a change in a word’s

value serially
 Expected time to “notice” proportional to #concurrent readers
* Prevents optimizations such as “test-and-test-and-set”

Looping while doing these

 Not discussed in this talk

is not a good idea



Latch implementations

» Spinlocks
» Cores repeatedly attempt to read or write a global location
 Test-and-set, Test-and-test-and-set, ticket latches

* Acquire latch
while (test-and-set(&word, 1) == 1)

)

* Release latch
atomic-set(&word, 0)



Latch implementations

* Acquire latch
while (test-and-set(&word, 1) == 1)

)

» Release latch

atomic-set(&word, 0) gé

A thread currently holds the latch




Latch implementations

* Acquire latch
while (test-and-set(&word, 1) == 1)

)

» Release latch Aq|Aq|Aq |:> -

atomic-set(&word, @) % % é %
Others threads attempt to acquire
the latch (unsuccessfully)




Latch implementations

* Acquire latch
while (test-and-set(&word, 1) == 1)

)

» Release latch Ris[aq[Aq[aq]—>

atomic-set(&word, 0) %% % %

Unsuccessful acquires compete with release

Increases critical section length




Latch-free algorithms

» Structure of a latch-free algorithm

* Read value of word

* Perform some computation

 “Commit” via compare-and-swap on previously read word
* If commit fails, retry

Insert(A):
while (true)
A.next = Head
1f cmp_n_swap(&Head, A.next, A)
break



Latch-free algorithms

Insert(A):
while (true)
A.next = Head
1f cmp_n_swap(&Head, A.next, A)

break / / 7‘ -
¢

¢ %



Latch-free algorithms

Only first
while (true) request succeeds

Insert(A):
A.next = Head

1f cmp_n_swap(&Head, A.next, A)
break

=

¢ %



Latch-free algorithms

Insert(A):
while (true)
A.next = Head
1f cmp_n_swap(&Head, A.next, A)

break

Requests bound to
fail



Latch-free algorithms

Insert(A):
while (true)

Later requests delayed
1f cmp_n_swap(&Head, A.next, A) by those bound to fail

A.next = Head
break




But we’re not done ...

» Some latches do not busy-wait on a single word

* “Scalable” latches
* Each core spins on a different word



Scalable latches
« MCS latches

* To acquire latch, thread

appends a queue node
» Single non-failing instruction

* First node is latch holder

* Latch holder signals the next No busy waiting on o

thread single word
* T, will signal T,
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Thread /process allocation

* # threads > # cores?

* Bad for latches
* Latch holder preemption in spinlocks
* Preemption of any waiting thread in scalable latches

* Latch-free algorithms are robust to preemption
* One thread is never delayed due to other threads



Scheduling requests

* Most leading DBMSs => request to OS thread (or process)

» Admission control typically allows significantly more

requests than cores
* Inevitably end up with more OS threads than cores



Scheduling requests

* No fundamental reason to assign request to an OS thread

* DBMS can multiplex requests across fixed set of OS
threads

« Commercial systems — VoltDB, recent Microsoft products
- DBMSs have been doing this for decades

» User-level scheduling mechanisms
* Scheduler activations
 User mode scheduling in Windows



B*tree example

* B*tree concurrency control implemented via latch-coupling
to leaves in shared-mode
» ARIES/IM, Blink trees

* Root latch is acquired on every descent
» Even if acquired in shared mode, latch meta-data is contended



B*tree example

é n
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B*tree example

»h(_

Both threads must update the
same meta-data




Scalable B*trees

* High level goal: Avoid frequent synchronization on the root

* Multi-core specific algorithms — OLFIT, Bw-tree
« OLFIT, latch-based [Cha et al. VLDB 2001]

« Bw-tree, latch-free [Levandoski et al. ICDE 2013]
* Both avoid synchronization on tree descent



What not to tuke away from this talk

» Stop designing latch-free algorithms
* Latch-based algorithms will always perform just as well

» Scalable latches will solve all your problems



What to take away

» “Latch-free” is not a synonym for scalable
* It's not a synonym for synchronization-free either

* Latch-free and latching algorithms are subject to similar
issues under contention

* Focus on how to play well with hardware

 Keep the performance of concurrent reads and writes in mind
» Better indicator of scalability than “latch-free” or “latch-based”

* Latch-free algorithms’ theoretical guarantees are mostly
irrelevant
» Assigning requests to OS threads is not fundamental
 Multiplex requests on a fixed set of threads



