
Latch-free Synchronization in
Database Systems:

Silver Bullet or Fool’s Gold?

Jose Faleiro and Daniel Abadi
Yale University

Multi-core hardware is everywhere
• In the cloud
• Amazon X1 instances with 64 physical cores

•On premise
• Systems with > 50 cores are widely available

• Lots interest in building DBs for multi-core hardware

Multi-core systems need synchronization
• Parallelism via concurrent execution
on CPU cores

• Communication via shared memory

•Access to shared memory must be
synchronized
• Prevents bugs due to race conditions

Shared memory

Two classes of synchronization mechanism:
Latches and latch-free algorithms

Latch-free synchronization: Silver bullet?
• Some recent research papers:

• “… fine-grained locking, does not scale on modern
hardware. Lock-free data structures, in contrast, scale very
well…” SIGMOD Workshop paper

• “ … latches are more likely to block, limiting scalability…
Addressing [this] issue, XXX is latch-free.” ICDE paper

• “Scalability is often limited by contention on locks and
latches … XXX is designed for high concurrency. To achieve
this it uses only latch-free data structures” CIDR paper

Latch-free synchronization: Silver bullet?

• “… fine-grained locking, does not scale on modern
hardware. Lock-free data structures, in contrast, scale very
well…” SIGMOD Workshop paper

Latch-free synchronization: Silver bullet?

• “ … latches are more likely to block, limiting scalability…
Addressing [this] issue, XXX is latch-free.” ICDE paper

Latch-free synchronization: Silver bullet?

• “Scalability is often limited by contention on locks and
latches … XXX is designed for high concurrency. To achieve
this it uses only latch-free data structures” CIDR paper

Latch-free synchronization: Silver bullet?
• Some recent research papers:

• “… fine-grained locking, does not scale on modern
hardware. Lock-free data structures, in contrast, scale very
well…” SIGMOD Workshop paper

• “ … latches are more likely to block, limiting scalability…
Addressing [this] issue, XXX is latch-free.” ICDE paper

• “Scalability is often limited by contention on locks and
latches … XXX is designed for high concurrency. To achieve
this it uses only latch-free data structures” CIDR paper

Latches
• Prevent conflicting threads
from accessing shared data

• Latch is just a memory word
• Combinations of reads & writes

acquire the latch

Shared memory

Latch-free
• Implicit synchronization
• Directly operate on shared data

•Use atomic instructions for
correctness
• Compare-and-swap

• Cores concurrently attempt
updates on one word

Shared memory

Latch-free list

Insert(A):

while (true)
A.next = Head
if cmp_n_swap(&Head, A.next, A)
break

B

C

D

Head

Latch-free list

Insert(A):
while true

A.next = Head

Insert(A’):
while true

1.
B

C

D

Head
A A’

Latch-free list

Insert(A):
while true

A.next = Head

Insert(A’):
while true

A’.next = Head
1.

B

C

D

Head
A A’

2.

Latch-free list

Insert(A):
while true

A.next = Head

if
cmp_n_swap(&Head,

A.next, A)
break

Insert(A’):
while true

A’.next = Head
1.

B

C

D

Head
A A’

2.

3.

Latch-free list

Insert(A):
while true

A.next = Head

if
cmp_n_swap(&Head,

A.next, A)
break

Insert(A’):
while true

A’.next = Head
1.

B

C

D

A A’

2.

3.

Head

Latch-free list

Insert(A):
while true

A.next = Head

if
cmp_n_swap(&Head,

A.next, A)
break

Insert(A’):
while true

A’.next = Head

if
cmp_n_swap(&Head,

A’.next, A’)
break

1.
B

C

D

A A’

2.

3.

Head

4.

Latching vs latch-free algorithms
• Latch-free: strong progress guarantees
• A thread is never blocked due to other threads

• Latches make no guarantees
• If latch holder is delayed, another thread cannot acquire the latch

Latch-free list

Insert(A):
while true

A.next = Head

if
cmp_n_swap(&Head,

A.next, A)
break

Insert(A’):
while true

A’.next = Head

if
cmp_n_swap(&Head,

A.next, A)
break

1.
2.

3.

4.

B

C

D

A A’
Head

Latching vs latch-free scalability

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut

Number of Threads

Latch-free
Spinlock

80 core machine
Medium contention

Rules of thumb
•Writes: Concurrent writes to the same location are
processed serially
• Expected time to write proportional to #concurrent writers

• Reads: Concurrent readers “notice” a change in a word’s
value serially
• Expected time to “notice” proportional to #concurrent readers
• Prevents optimizations such as “test-and-test-and-set”
• Not discussed in this talk Looping while doing these

is not a good idea

Latch implementations
• Spinlocks
• Cores repeatedly attempt to read or write a global location
• Test-and-set, Test-and-test-and-set, ticket latches

•Acquire latch
while (test-and-set(&word, 1) == 1)

;

• Release latch
atomic-set(&word, 0)

Latch implementations
•Acquire latch

while (test-and-set(&word, 1) == 1)
;

• Release latch
atomic-set(&word, 0)

A thread currently holds the latch

Latch implementations
•Acquire latch

while (test-and-set(&word, 1) == 1)
;

• Release latch
atomic-set(&word, 0)

Others threads attempt to acquire
the latch (unsuccessfully)

Aq Aq Aq

Latch implementations
•Acquire latch

while (test-and-set(&word, 1) == 1)
;

• Release latch
atomic-set(&word, 0)

Unsuccessful acquires compete with release
Increases critical section length

Aq Aq AqRls

Latch-free algorithms
• Structure of a latch-free algorithm
• Read value of word
• Perform some computation
• “Commit” via compare-and-swap on previously read word
• If commit fails, retry

Insert(A):
while (true)
A.next = Head
if cmp_n_swap(&Head, A.next, A)
break

Latch-free algorithms

Insert(A):
while (true)
A.next = Head
if cmp_n_swap(&Head, A.next, A)
break

VV1 V V0 VV2 V

Latch-free algorithms

Insert(A):
while (true)
A.next = Head
if cmp_n_swap(&Head, A.next, A)
break

VV1 V V0 VV2 V

Only first
request succeeds

Latch-free algorithms

Insert(A):
while (true)
A.next = Head
if cmp_n_swap(&Head, A.next, A)
break

V0V1 VV2 V

Requests bound to
fail

Latch-free algorithms

Insert(A):
while (true)
A.next = Head
if cmp_n_swap(&Head, A.next, A)
break

V0V1 VV2 VV3 V0

Later requests delayed
by those bound to fail

But we’re not done …
• Some latches do not busy-wait on a single word

• “Scalable” latches
• Each core spins on a different word

Scalable latches
•MCS latches

• To acquire latch, thread
appends a queue node
• Single non-failing instruction

• First node is latch holder

• Latch holder signals the next
thread
• T1 will signal T2

L

T1

No busy waiting on a
single word

T2 T3

Latching vs latch-free; medium contention

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut

Number of Threads

Scalable
Latch-free

Spinlock

Latching vs latch-free; high contention

0.0 M

0.1 M

0.2 M

0.3 M

0.4 M

0.5 M

 0 10 20 30 40 50 60 70 80

Th
ro

ug
hp

ut

Number of Threads

Scalable
Latch-free

Spinlock

High contention

Latching vs latch-free; low contention

0.0 M

0.2 M

0.4 M

0.6 M

0.8 M

1.0 M

10 20 40 80 160 320 640

Th
ro

ug
hp

ut

Number of Threads

Scalable
Latch-free

Spinlock

Thread/process allocation
• # threads > # cores?
• Bad for latches
• Latch holder preemption in spinlocks
• Preemption of any waiting thread in scalable latches

• Latch-free algorithms are robust to preemption
• One thread is never delayed due to other threads

Scheduling requests
•Most leading DBMSs => request to OS thread (or process)

•Admission control typically allows significantly more
requests than cores
• Inevitably end up with more OS threads than cores

Scheduling requests
•No fundamental reason to assign request to an OS thread

•DBMS can multiplex requests across fixed set of OS
threads
• Commercial systems --- VoltDB, recent Microsoft products
• DBMSs have been doing this for decades

•User-level scheduling mechanisms
• Scheduler activations
• User mode scheduling in Windows

B+tree example
• B+tree concurrency control implemented via latch-coupling
to leaves in shared-mode
• ARIES/IM, Blink trees

• Root latch is acquired on every descent
• Even if acquired in shared mode, latch meta-data is contended

B+tree example

B+tree example

B+tree example

B+tree example

B+tree example

Two threads make
non-conflicting accesses

B+tree example

Both threads must update the
same meta-data

Scalable B+trees
•High level goal: Avoid frequent synchronization on the root

•Multi-core specific algorithms --- OLFIT, Bw-tree
• OLFIT, latch-based [Cha et al. VLDB 2001]
• Bw-tree, latch-free [Levandoski et al. ICDE 2013]
• Both avoid synchronization on tree descent

What not to take away from this talk
• Stop designing latch-free algorithms

• Latch-based algorithms will always perform just as well

• Scalable latches will solve all your problems

What to take away
• “Latch-free” is not a synonym for scalable
• It’s not a synonym for synchronization-free either

• Latch-free and latching algorithms are subject to similar
issues under contention

• Focus on how to play well with hardware
• Keep the performance of concurrent reads and writes in mind
• Better indicator of scalability than “latch-free” or “latch-based”

• Latch-free algorithms’ theoretical guarantees are mostly
irrelevant
• Assigning requests to OS threads is not fundamental
• Multiplex requests on a fixed set of threads

